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Abstract

This paper reports a linguistically-enriched
method of detecting token-level metaphors for
the second shared task on Metaphor Detection.
We participate in all four phases of competi-
tion with both datasets, i.e. Verbs and All-
POS on the VUA and the TOFEL datasets. We
use the modality exclusivity and embodiment
norms for constructing a conceptual represen-
tation of the nodes and the context. Our system
obtains an F-score of 0.652 for the VUA Verbs
track, which is 5% higher than the strong base-
lines. The experimental results across models
and datasets indicate the salient contribution of
using modality exclusivity and modality shift
information for predicting metaphoricity.

1 Introduction

Metaphors are one kind of figurative language that
use conceptual mapping to represent one thing (tar-
get domain) as another (source domain). As pro-
posed by Lakoff and Johnson (1980) in Conceptual
Metaphor Theory (CMT), metaphor is not only a
property of the language but also a cognitive mech-
anism that describes our conceptual system. Thus
metaphors are devices that transfer the property
of one domain to another unrelated or different
domain, as in ‘sweet voice’ (use taste to describe
sound).

Metaphors are prevalent in daily life and play a
significant role for people to interpret/understand
complex concepts. On the other hand, as a pop-
ular linguistic device, metaphors encode versatile
ontological information, which usually involve e.g.
domain transfer (Ahrens et al., 2003; Ahrens, 2010;
Ahrens and Jiang, 2020), sentiment reverse (Steen
et al., 2010) or modality shift (Winter, 2019) etc.
Therefore, detecting the metaphors in texts is es-
sential for capturing the authentic meaning of the
texts, which can benefit many natural language

processing applications, such as machine trans-
lation, dialogue systems and sentiment analysis
(Tsvetkov et al., 2014). In this shared task, we aim
to detect token-level metaphors from plain texts
by focusing on content words (Verbs, Nouns, Ad-
jectives and Adverbs) of two corpora: VUA1 and
TOFEL2. To better understand the intrinsic proper-
ties of metaphors and to provide an in-depth analy-
sis to this phenomenon, we propose a linguistically-
enriched model to deal with this task with the use of
modality exclusivity and embodiment norms (see
details in Section 3).

2 Related Work

Many approaches have been proposed for auto-
matic detection of metaphors, using features of lexi-
cal information (Klebanov et al., 2014; Wilks et al.,
2013), semantic classes (Klebanov et al., 2016),
concreteness (Klebanov et al., 2015), word associa-
tions (Xiao et al., 2016), constructions and frames
(Hong, 2016) and systems such as traditional ma-
chine learning classifiers (Rai et al., 2016), deep
neural networks (Do Dinh and Gurevych, 2016)
and sequential models (Bizzoni and Ghanimifard,
2018).

Despite many advances in the above work,
metaphor detection remains a challenging task.
The semantic and ontological differences between
metaphorical and non-metaphorical expressions are
often subtle and their perception may vary from per-
son to person. To tackle such problems, researchers
resort to specific domain knowledge (Tsvetkov
et al., 2014); lexicons (Mohler et al., 2013; Dodge
et al., 2015); supervised methods (Klebanov et al.,
2014, 2015, 2016) or using attention-based deep
learning models to capture latent patterns (Igam-

1http://www.vismet.org/metcor/
documentation/home.html

2https://catalog.ldc.upenn.edu/
LDC2014T06
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berdiev and Shin, 2018). These methods show dif-
ferent strengths on detecting metaphors, yet each
has its respective disadvantages, such as having
generalization problems or lack association of their
results with the intrinsic properties of metaphors.
In addition, the reported performances of metaphor
detection so far (around 0.6 F1 in the last shared
task) (Leong et al., 2018) are still not promising.
This calls for further endeavours in all aspects.

In this work, we adopt supervised machine learn-
ing algorithms based on four categories of fea-
tures, which include linguistic norms, ngram-word,
-lemma and -pos collocations, word embeddings
and cosine similarity between the target nodes and
its neighboring words, as well as the strong base-
lines provided by the organizer of the shared task
(Leong et al., 2018; Klebanov et al., 2014, 2015,
2016). Moreover, we use several statistical mod-
els and ensemble learning strategies during training
and testing so as to test the cross-model consistency
of the improvement using the various features. The
methods are described in detail in the following
sections.

3 Feature Sets

This work uses four categories of features (16 sub-
sets in all) to represent the nodes and contextual
information at hierarchical levels, which include
the lexical and syntactic-to-semantic information,
sensory modality scales, embodiment ratings (of
verbs only), as well as word vectors of the nodes
and cosine similarity of node-neighbor pairs, as
detailed below.

• Linguistic Norms: Two linguistic norms are
used to construct four linguistically-enriched
feature sets in the jsonlines format: 3

– ME (modality exclusivity): 42 dimen-
sion of target nodes representation, con-
taining the mapped sensorimotor values
in the modality norms;

– DM (dominant modality): 1× 5 dimen-
sion of node-neighbor pairs (five lexical
neighboring words) information, repre-
senting the dominant modality of the tar-
get nodes and the surrounding lexical
words;

3The feature sets can be accessed through the
link: https://github.com/ClaraWan629/
Feature-Sets-for-MD

– EB (embodiment): 2 dimension of nodes
representation, including embodiment
rating and standard deviation;

– EB-diff (embodiment differences): 2×5
dimension of node-neighbor pairs (five
lexical neighboring words) information.

The ME and DM feature sets are constructed
by using the Lancaster Sensorimotor norms
collected by Lynott et al. (2019). The data
include measures of sensorimotor strength (0-
5 scale indicating different degrees of sense
modalities/action effectors) for 39,707 En-
glish words across six perceptual modali-
ties: touch, hearing, smell, taste, vision
and interception, and five action effectors:
mouth/throat, hand/arm, foot/leg, head (ex-
cluding mouth/throat), torso.4 As sensori-
motor information plays a fundamental role
in cognition, these norms provide a valuable
knowledge representation to the conceptual
categories of the target and neighboring words
which serve as salient features for inferring
metaphors.

The EB and EB-diff feature sets are con-
structed by using the embodiment norms for
687 English verbs which is collected by Sidhu
et al. (2014). Research examining semantic
richness effects has shown that multiple di-
mensions of meaning are activated in the pro-
cess of word recognition (Yap et al., 2011).
This data applies the semantic richness ap-
proach (Sidhu et al., 2014, 2016) to verb stim-
uli in order to investigate how verb meanings
are represented. The relative embodiment rat-
ings (1-7 scale indicating different degrees
of bodily involvement) revealed that bodily
experience was judged to be more important
to the meanings of some verbs (e.g., dance,
breathe) than to others (e.g., evaporate, ex-
pect), suggesting that relative embodiment is
an important aspect of verb meaning, which
can be a useful indicator of meaning mismatch
of the figurative usage of verbs.

• Collocations: Three sets of collocational
features are constructed to represent the
lexical, syntactic, grammatical information
of the nodes and their neighbors: Tri-
gram, FL (Fivegram Lemma), FPOS (Five-
gram POS tags). The two corpora are

4https://osf.io/7emr6/

https://github.com/ClaraWan629/Feature-Sets-for-MD
https://github.com/ClaraWan629/Feature-Sets-for-MD
https://osf.io/7emr6/


106

lemmatized using the nltk WordNetLemma-
tizer5 and POS tagged using the nltk aver-
aged perceptron tagger6 before constructing
such features.

• Word Embeddings: For comparisons, we
utilise distributional vector representation of
word meaning to the nodes based on the
distributional hypothesis (Firth, 1957; Lenci,
2018). Two pre-trained Word2Vec models
(GoogleNews.300d and Internal-W2V.300d
(pre-trained using the VUA and TOFEL
corpora)) and the GloVe vectors are used.
GoogleNews7 in this work is pre-trained us-
ing the continuous bag-of-words architecture
for computing vector representations of words
(Church, 2017). GloVe8 is an unsupervised
learning algorithm for obtaining vector repre-
sentations for words. We use the 300d vectors
pre-trained on Wikipedia 2014+Gigaword 5
(Pennington et al., 2014).

• Cosine Similarity: We also investigate the
cosine similarity (CS) measures for comput-
ing word sense distances between the nodes
and their neighboring lexical words, based on
the hypothesis that words of distant meaning
are more likely to be metaphors. Three differ-
ent sets of CS features are constructed in this
work by using the above three different word
embedding models: CS-Google, CS-GloVe,
CS-Internal.

These features constitute a rather comprehen-
sive representation of the mismatch of the nodes
and their neighbors in terms of senses, domains,
modalities, agentivity and concreteness etc, which
are highly indicative of metaphorical uses and are
hence hypothesized as more distinctive features
than the strong baselines in Leong et al. (2018).

In addition, we replicate the three strong base-
lines provided by the organizer for comparison pur-
poses:

• B1: lemmatized unigrams (UL)

5https://www.nltk.org/_modules/nltk/
stem/wordnet.html

6https://www.kaggle.com/nltkdata/
averaged-perceptron-tagger

7https://github.com/mmihaltz/
word2vec-GoogleNews-vectors

8https://nlp.stanford.edu/projects/
glove/

• B2: lemmatized unigrams, generalized Word-
Net semantic classes, and difference in con-
creteness ratings between verbs/adjectives and
nouns (UL + WordNet + CCDB)

• B3: baseline 2 and unigrams, pos tag, topic,
concreteness ratings between nodes and up
and down words respectively (UL + WordNet
+ CCDB + U + P + T + CUp + CDown)

4 Classifiers and Experimental Setup

Three traditional classifiers are used for predicting
the metaphoricity of the tokens, including Logis-
tic Regression, Linear SVC and a Random Forest
Classifier. The Machine Learning experiments are
run through utilities in the SciKit-Learn Laboratory
(SKLL) (Pedregosa et al., 2011). 9

For parameter tuning, we use grid search to find
optimal parameters for the learners. Finally, we set
up the following optimized parameters for the three
classifiers:

• Logistic Regression (LR):
‘class weight’:‘balanced’, ‘max iter’:5000,
‘tol’:1

• Linear SVC (LSVC):
‘class weight’:‘balanced’, ‘max iter’:50000,
‘C’:10

• Random Forest Classifier (RFC):
‘min samples split’:8, ‘max features’:‘log2’,
‘oob score’:‘True’, ‘random state’:10,
‘class weight’:‘balanced’

5 Results and Discussions

5.1 Evaluation Results
In order to evaluate the discriminativeness of the
various features for metaphor detection and their
fitness to the three classifiers, we focus on the VUA
Verbs phase and randomly select a development set
(4380 tokens) from the training set in proportion to
the Train/Test ratio. Experiments are run using the
three classifiers and the setup in Section 4.

The evaluation results on the individual features
in terms of F1-score are summarized in Table 1
below:

In Table 1, the top five features with the LR
classifier are highlighted in bold. Results show
that the best individual feature is ME, followed by

9https://skll.readthedocs.io/en/
latest/index.html
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Individual Features LR LSVC RFC
Baseline B1T2 .632 .621 .618
Linguistic MET1 .637 .636 .632

DM .616 .620 .623
EB .547 .548 .544
EB-diff .322 .321 .302

Collocation TrigramT4 .626 .625 .612
FLT5 .624 .623 .621
FPOS .378 .369 .335

Word2Vec GoogleNews .605 .607 .603
GloVeT3 .630 .627 .633
Internal .569 .555 .568

CS GoogleNews .448 .451 .445
GloVe .403 .404 .410
Internal .436 .421 .402

Table 1: Evaluation Results on Individual Features. T1-
5 are the top five features in terms of F1 score.

B1, W2V.GloVe, Trigram and FL. For the concep-
tual representations, modality exclusivity features
demonstrate outstanding performance, while the
embodiment features perform quite poorly. This is
due to the data sparseness of the embodiment fea-
ture representations. As the data in the embodiment
norms only contains 687 English verbs, it cannot
cover most of the words in the two corpora of the
shared task, which causes many empty values in
the feature matrix, resulting in a poor performance
in the task. Despite of this, it still helps the overall
performance, if concatenated with other features,
as to be shown in the later section.

The performances of the three classifiers are
quite close for all features, with LR performing
slightly better. To test the combined power of these
features for metaphor detection, we also conduct
evaluation on fused features, as shown in Table 2
below:

Fused Features LR LSVC RFC
B2 .641 .636 .635
B3 .631 .630 .628
Top3 .653 .649 .650
Top4 .668 .666 .659
Top5 .669 .665 .668
Linguistic+B2 .655 .654 .652
Collocation+B2 .659 .658 .655
Word2Vec+B2 .637 .636 .637
CS+B2 .639 .637 .636
Selected .672 .670 .671

Table 2: Evaluation Results on Fused Features

Results in Table 2 show that B2 is a stronger
baseline than B3, so we use B2 as the compari-
son basis. Among the four categories of features,
the linguistic and collocational features in combi-
nation with B2 achieve the greatest improvement

by around 1.5% F1-score. The top three to five
features also improve the performance by 1-2% F1-
score. However, the word embeddings and cosine
similarity features show no improvement over base-
line 2. Finally, we selected 12 features (excluding
the W2V features) using the automatic feature se-
lection algorithm and have achieved the best results
for evaluation (.672 F1 for LR).

5.2 Results on Test Sets
We use the best feature sets and classifier (LR) in
the above evaluation for the final submission. The
released results of our system on the test sets of the
four phases in terms of F1-score are summarized
in Table 3 below:

Phase/Method B2 Top5 L+B2 Selected
VUA-Verbs .600 .645 .642 .652
VUA-AllPOS .589 .597 .591 .603
TOFEL-Verbs .555 .588 .581 .596
TOFEL-AllPOS .543 .550 .552 .560

Table 3: Released Final Results of Our System

In Table 3, ‘L+B2’ stands for ‘Linguistic feature
fused with baseline 2’ and the best results are high-
lighted in bold. In addition to the best methods, we
also submit the Top5 features and the ‘L+B2’ fea-
tures which all show consistent improvement (1-5%
F1) over baseline 2. The evaluation results prove
the effectiveness of using the linguistic features,
especially the Modality Exclusivity representations
for metaphor detection.

5.3 Comparison to other Works
To demonstrate the effectiveness of our method,
this section presents the comparisons of our system
to some highly related works that participated in
the same shared task (2018) of the VUA corpus.
All the results are publicly available, as reported in
Leong et al. (2018). We compare our results on the
VUA-Verbs and VUA-AllPOS phases to the top
three teams (T1-3), the baseline2 (B2) and the only
team using linguistic features (Ling) in 2018. The
detailed results are displayed in Table 4 below:

Obviously, our method obtains very promising
results: it beats the Top 2 team for the Verbs phase
and is close to Top3 for the AllPOS phase; more-
over, our results are significantly superior to both
the baseline and another linguistically-based ap-
proach. This suggests the effectiveness of using
conceptual features for metaphor detection, echo-
ing the hypothesis that metaphor is a concept mis-
match between the source and target domains.
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Phase Method F1
VUA-Verbs-T1 w2v+CNN+Bi-LSTM .672
VUA-Verbs-us linguistic+LR .652
VUA-Verbs-T2 w2v+LSTM RNN .642
VUA-Verbs-T3 dictionary-based+LSTM .619
VUA-Verbs-B2 UL+WordNet+CCDB+LR .600
VUA-Verbs-Ling linguistic+CRF .246
VUA-AllPOS-T1 w2v+CNN+Bi-LSTM .651
VUA-AllPOS-T2 w2v+Bi-LSTM+linguistic .635
VUA-AllPOS-T3 w2v+LSTM RNN .617
VUA-AllPOS-us linguistic+LR .603
VUA-AllPOS-B2 UL+WordNet+CCDB+LR .589
VUA-AllPOS-Ling linguistic+CRF .138

Table 4: Comparison of Results of Our System to
Works in the last Shared Task

6 Conclusion

We presented a linguistically enhanced method for
word-level metaphor detection using conceptual
features of modality and embodiment based on tra-
ditional classifiers. As suggested by the results,
the modality exclusivity and embodiment norms
provide conceptual and bodily information for rep-
resenting the nodes and the context, which help
improve the performance of metaphor detection
over the three strong baselines to a great extent. It
is noteworthy that our system did not employ any
deep learning architectures, showing advantages of
simplicity and model efficiency, yet it outperforms
many sophisticated neural networks. In the future
work, we will use the current feature sets in combi-
nation with state-of-the-art deep learning models
to further examine the effectiveness of this method
for metaphor detection.
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