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Abstract
In the literature, the research on abstract mean-
ing representation (AMR) parsing is much re-
stricted by the size of human-curated dataset
which is critical to build an AMR parser with
good performance. To alleviate such data size
restriction, pre-trained models have been draw-
ing more and more attention in AMR parsing.
However, previous pre-trained models, like
BERT, are implemented for general purpose
which may not work as expected for the spe-
cific task of AMR parsing. In this paper, we fo-
cus on sequence-to-sequence (seq2seq) AMR
parsing and propose a seq2seq pre-training ap-
proach to build pre-trained models in both sin-
gle and joint way on three relevant tasks, i.e.,
machine translation, syntactic parsing, and
AMR parsing itself. Moreover, we extend
the vanilla fine-tuning method to a multi-task
learning fine-tuning method that optimizes for
the performance of AMR parsing while en-
deavors to preserve the response of pre-trained
models. Extensive experimental results on two
English benchmark datasets show that both
the single and joint pre-trained models signif-
icantly improve the performance (e.g., from
71.5 to 80.2 on AMR 2.0), which reaches the
state of the art. The result is very encourag-
ing since we achieve this with seq2seq mod-
els rather than complex models. We make
our code and model available at https://

github.com/xdqkid/S2S-AMR-Parser.

1 Introduction

Abstract meaning representation (AMR) parsing
aims to translate a textual sentence into a directed
and acyclic graph which consists of concept nodes
and edges representing the semantic relations be-
tween the nodes (Banarescu et al., 2013). Previ-
ous studies focus on building diverse approaches to
modeling the structure in AMR graphs, such as tree-
based approaches (Wang et al., 2015b; Groschwitz
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Figure 1: An example of seq2seq-based AMR parsing.

et al., 2018), graph-based approaches (Flanigan
et al., 2014; Werling et al., 2015; Cai and Lam,
2019), transition-based approaches (Damonte et al.,
2017; Guo and Lu, 2018), sequence-to-sequence
(seq2seq) approaches (Peng et al., 2017; van No-
ord and Bos, 2017; Konstas et al., 2017; Ge
et al., 2019), and sequence-to-graph (seq2graph)
approaches (Zhang et al., 2019a,b; Cai and Lam,
2020). Among these approaches, seq2seq-based ap-
proaches, which properly transform AMR graphs
into sequences, have received much interest, due to
the simplicity in implementation and the competi-
tive performance.

Similar to many NLP tasks, the performance
of AMR parsing is much restricted by the size of
human-curated dataset. For example, even recent
AMR 2.0 contains only 36.5K training AMRs. To
alleviate the effect of such restriction, a previous
attempt is to utilize large-scale unlabeled sentences
with self-training (Konstas et al., 2017). Alterna-
tively, a more recent feasible solution is to resort
to pre-training which builds pre-trained models on
large-scale (unlabeled) data. Linguistic knowledge
captured in pre-trained models can then be properly

https://github.com/xdqkid/S2S-AMR-Parser
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Task Dataset Source Target
machine translation gold sentence sentence
syntactic parsing silver sentence tree sequence
AMR parsing silver sentence AMR sequence

Table 1: Three seq2seq learning tasks explored in this
paper to obtain pre-trained models. Here silver dataset
indicates that the sequences in the target-side are gener-
ated automatically .

incorporated into the training of an AMR parser.
However, the widely used pre-trained models such
as ELMO (Peters et al., 2017) and BERT (Devlin
et al., 2019) may not work as expected for build-
ing a state-of-the-art seq2seq AMR parser. The
reasons are two-fold. On the one hand, previous
studies on both seq2seq-based AMR parsing and
AMR-to-text generation demonstrate the necessity
of a shared vocabulary for the source and target
sides (Ge et al., 2019; Zhu et al., 2019). Using pre-
trained models like BERT as pre-trained encoders
for AMR parsing, however, will violate the rule
of sharing a vocabulary. On the other hand, pre-
trained models such as BERT are basically tuned
for the purpose of representing sentences instead
of generating target sequences. According to Zhu
et al. (2020), by contrast to using BERT directly
as the encoder, a more reasonable approach is to
utilize BERT as an extra feature or view BERT
as an extra encoder. See Section 5.1 for more de-
tailed discussions on the effect of BERT on AMR
parsing.

In this paper, we propose to pre-train seq2seq
models that aim to capture different linguistic
knowledge from input sentences. To build such
pre-trained models, we explore three different yet
relevant seq2seq tasks, as listed in Table 1. Here,
machine translation acts as the most representative
seq2seq task which takes a bilingual dataset as the
training data. According to Shi et al. (2016) and Li
et al. (2017), a machine translation system with
good performance requires the model to well de-
rive linguistic information from input sentences.
The other two tasks require auto-parsed syntactic
parse trees and AMR graphs as the training data,
respectively. It is worth noting that the pre-training
task of AMR parsing is in the similar spirit of self-
training (Konstas et al., 2017).

In order to investigate whether various seq2seq
pre-trained models are complementary to each
other in the sense that they can be learned jointly
to achieve better performance, we further explore
joint learning of several pre-training tasks and eval-

uate its effect on AMR parsing. In addition, mo-
tivated by Li and Hoiem (2018), we extend the
vanilla fine-tuning method to optimize for both the
performance of AMR parsing and response preser-
vation of the pre-trained models. Detailed experi-
mentation on two widely used English benchmarks
shows that our approach substantially improves the
performance, which greatly advances the state-of-
the-art. This is very encouraging since we achieve
the state-of-the-art by simply making use of the
generic seq2seq framework rather than designing
sophisticated AMR parsing models.

2 Baseline: AMR Parsing as Seq2Seq
Learning

Seq2Seq Modeling. The encoder in the Trans-
former (Vaswani et al., 2017) consists of a stack
of multiple identical layers, each of which has two
sub-layers: one implements the multi-head self-
attention mechanism and the other is a position-
wise fully connected feed-forward network. The
decoder is also composed of a stack of multiple
identical layers. Each layer in the decoder con-
sists of the same sub-layers as in the encoder layers
plus an additional sub-layer that performs multi-
head attention to the output of the encoder stack.
See Vaswani et al. (2017) for more details.

Pre-Processing: Linearize AMR Graph to Tar-
get Sequence. As in van Noord and Bos (2017),
we obtain simplified AMRs by removing variables
and wiki links. Variables in AMR graphs are only
necessary to indicate co-referring nodes and they
do not carry any semantic information by them-
selves. Therefore, AMR graphs are first converted
into AMR trees by removing variables and duplicat-
ing the co-referring nodes. Then newlines present
in an AMR tree are replaced by spaces to get a
sequence. Figure 1(c) illustrates the linearization
result of the AMR graph in Figure 1(b). Based on
the data of sentences paired with linearized AMR
graphs, we train a seq2seq model whose outputs
are also linearized AMRs.

Post-Processing: Recover AMR Graph from
Target Sequence. The output from Transformer
is an AMR sequence without variables, wiki-links,
and co-occurrent variables. Moreover, the output
may contain brackets that do not match, resulting
incomplete concepts. To recover its full graph,
the post-processing should restore information re-
moved in pre-processing by assigning a unique
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variable to each concept, pruning duplicated and
redundant material, performing Wikification, and
restoring co-referring nodes. Meanwhile, it should
fix incomplete concepts.

We use the pre-processing and post-processing
scripts provided by van Noord and Bos (2017). 1

3 Seq2Seq Pre-training for AMR Parsing

In this section, we first present our single pre-
training approach, followed by the joint pre-
training approach on two or more pre-training tasks.
Then we present our fine-tuning methods.

3.1 Single Pre-training

To be consistent with the seq2seq model for AMR
parsing, the pre-trained models in this paper are
all built on the Transformer. That is, for each pre-
training task listed in Table 1, we learn a seq2seq
model which will be used to initialize seq2seq
model for AMR parsing in the fine-tuning phase.
When building the pre-trained models, we merge
all the source and target sides of the three pre-
training tasks, and construct a shared vocabulary.
Moreover, in all the models we share vocabulary
embeddings for both the source and target sides.

PTM-MT is a seq2seq neural machine transla-
tion (NMT) model which is trained on a publicly
available bilingual dataset. According to findings
in Goldberg (2019) and Jawahar et al. (2019), the
Transformer encoder is strong in capturing syn-
tax and semantics from source sentences, which is
helpful to AMR parsing.

PTM-SynPar is a seq2seq constituent parsing
model. Building such a model requires a training
dataset which consists of sentences paired with con-
stituency parse trees. To construct a silver treebank,
we parse the English sentences in the bilingual data
for MT by using an off-the-shelf parser. Then we
linearize the automatic parse trees to get syntax se-
quences, as illustrated in Figure 2. Note that in the
linearization, we let the output contain the words
from the source sentence. The motivation here is to
regard parsing as a language generation problem,
similar to the idea in Choe and Charniak (2016).

PTM-SemPar is a seq2seq AMR parsing model
trained on a silver corpus of auto-parsed AMR
graphs. To construct such a corpus, we apply the

1https://github.com/RikVN/AMR
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Figure 2: A linearization example of the parse tree for
the sentence of Children flock to social networks.
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Figure 3: Illustration of the joint pre-training approach.

baseline system of AMR parsing to process the En-
glish sentences in the bilingual MT corpus. Then
we adopt the linearization process illustrated in Fig-
ure 1 to obtain source-target pairs. Finally, we train
a seq2seq-based AMR parsing model on the silver
corpus that will be used as a pre-trained model.

3.2 Joint Pre-training

Intuitively, the above described single pre-trained
models can capture linguistic features from differ-
ent perspectives. One question is whether these
models are complementary when they are properly
used to initialize a seq2seq-based AMR parser. To
empirically answer this question, we propose to
build pre-trained models through jointly learning
multiple pre-training tasks. Inspired by the zero-
shot approach proposed for multi-lingual neural
machine translation (Johnson et al., 2017), we add
a unique preceding tag to the target side of train-
ing data to distinguish the task of each training
instance, as illustrated in Figure 3.

With such tagged training instances, multi-task
learning is actually quite straightforward. We sim-
ply combine the training data of all the pre-training
tasks that we are focusing on and then feed the

 https://github.com/RikVN/AMR
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combined training data to the Transformer model.
The training process interleaves training data from
each task. For example, we update parameters
on a batch of training instances from task1 and
then update parameters on a batch of training in-
stances from task2, and the process iterates. With
such a joint training strategy, we obtain four joint
pre-trained models, i.e., PTM-MT-SynPar, PTM-
MT-SemPar, PTM-SynPar-SemPar, and PTM-MT-
SynPar-SemPar. Names of the models can tell what
pre-training tasks are learned jointly.

3.3 Fine-tuning Methods
Given a pre-trained model, we can directly fine-
tune it on a gold AMR corpus to train an AMR
parser. For this purpose we use two different fine-
tuning methods. In the following we first present
the vanilla fine-tuning method, and then extend it
under the framework of multi-task learning. For
simplicity, we refer to the latter method as Multi-
Task Learning (MTL) fine-tuning hereafter.

Vanilla Fine-Tuning optimizes the parameters
of an existing pre-trained seq2seq models to train
AMR parsing on a gold AMR corpus. Fine-tuning
adapts the shared parameters to make them more
discriminative for AMR parsing, and the low learn-
ing rate is an indirect mechanism to preserve some
of the representational structure captured in the
pre-training models.

MTL Fine-Tuning is designed to attack the po-
tential drawback of the vanilla fine-tuning method.
In vanilla fine-tuning, optimizing model parame-
ters to train AMR parsing presents a potential risk
of overfitting. Inspired by Li and Hoiem (2018),
we propose to optimize for high accuracy of AMR
parsing while preserving the performance on the
pre-training tasks. Preservation of the performance
on the pre-training tasks can be regarded as a regu-
larizer for the training of AMR parsing. To imple-
ment such MTL fine-tuning, we once again adopt
the generic multi-task learning framework depicted
in Figure 3.

Now the question left behind is how to obtain
fine-tuning instances for pre-training tasks. To this
end, we use the pre-trained model focused and in-
put sentences of gold AMR corpus to generate fine-
tuning instances for pre-training tasks. Formally
speaking, given an instance {s, t(0)} of the fine-
tuning task , and a pre-trained model learned from
k pre-training tasks, we first feed the pre-trained
model with input s and obtain its k outputs, i.e.

t1, · · · , tk for the k pre-training tasks, respectively.
Therefore, each input s in the fine-tuning task is
now equipped with k + 1 outputs, one for the fine-
tuning task while the other k for the k pre-training
tasks. Meanwhile, each output is associated with
a unique preceding tag which indicates the corre-
sponding task.

Please also note that we do not apply MTL fine-
tuning to the pre-training task of AMR parsing.
This is because the fine-tuning task is the same
as the pre-training task. For example, for the pre-
trained model PTM-MT-SynPar-SemPar, in MTL
fine-tuning we only keep the pre-training tasks of
MT and syntactic parsing.

4 Experimentation

In this section, we report the performance of our
seq2seq pre-training approach to AMR parsing.

4.1 Experimental Settings

Pre-training Dataset and Pre-trained Models
For pre-trained models, we use the WMT14
English-to-German dataset2 which consists of
about 3.9M training sentence pairs after filtering
out long and imbalanced pairs. To obtain syntac-
tic parse trees for the source sentences, we utilize
toolkit AllenNLP (Gardner et al., 2017) which is
trained on Penn Treebank (Marcus et al., 1993). To
obtain AMR graphs for the source sentences, we
utilize our baseline AMR parsing system. Then we
merge English/German sentences and linearized
parse trees, and AMR graphs together and segment
all the tokens into subwords by byte pair encoding
(BPE) (Sennrich et al., 2016) with 20K operations.

We implement above pre-trained models based
on OpenNMT-py (Klein et al., 2017).3 For sim-
plicity, we unify parameters of these models as the
Transformer-base model in Vaswani et al. (2017).
The number of layers in encoder and decoder is
6 while the number of heads is 8. Both the em-
bedding size and the hidden size are 512 while the
size of feedforward network is 2048. Moreover, we
use Adam optimizer (Kingma and Ba, 2015) with
β1 of 0.9 and β2 of 0.998. Warm up step, learn-
ing rate, dropout rate and label smoothing epsilon
are 16000, 2.0, 0.1 and 0.1 respectively. In addi-
tion, we set the batch token-size to 8,192. We train
the models for 300K steps and choose the model

2https://www.statmt.org/wmt14/
translation-task.html

3https://github.com/OpenNMT/OpenNMT-py

https://www.statmt.org/wmt14/translation-task.html
https://www.statmt.org/wmt14/translation-task.html
https://github.com/OpenNMT/OpenNMT-py
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with the best performance on WMT2014 English-
to-German development set as the final pre-trained
model.

AMR Parsing Benchmarks We evaluate AMR
performance on AMR 1.0 (LDC2015E86) and
AMR 2.0 (LDC2017T10). The two datasets con-
tain 16,833 and 36,521 training AMRs, respec-
tively, and share 1,368 development AMRs and
1,371 testing AMRs. All the source sentences and
linearized AMRs are segmented into subwords by
using the BPE trained for the pre-trained models.

To fine-tune the pre-trained models for AMR
parsing, we follow the settings of hyper-parameters
used for training pre-trained models.

Evaluation Metrics For evaluation purpose, we
use the AMR-evaluation toolkit to evaluate parsing
performance in Smatch and other fine-grained met-
rics (Cai and Knight, 2013; Damonte et al., 2017).
We report results of single models that are tuned
on the development set.

4.2 Experimental Results

Table 2 presents the comparison of our approach
and related studies on the test sets of AMR 1.0 and
AMR 2.0. From the results, we have the following
observations:

• Pre-trained models on a single task (i.e.,
from #2 to #6) significantly improve the
performance of AMR parsing, indicating
seq2seq pre-training is helpful for seq2seq-
based AMR parsing. We also note that the
pre-trained model of NMT achieves the best
performance, followed by the pre-trained mod-
els on AMR parsing and on syntactic parsing.
This indicates that seq2seq AMR parsing ben-
efits more from pre-training tasks that require
the encoder be able to capture the semantics
from source sentences.

• Joint pre-trained models on two or more
pre-training tasks further improve the perfor-
mance of AMR parsing. However, in the pres-
ence of NMT pre-training task, the benefits
from joint pre-training with either AMR pars-
ing, syntactic parsing or both are shrunk.

• MTL fine-tuning consistently outperforms the
vanilla fine-tuning method. For example, on
single pre-training tasks, MTL outperforms
vanilla fine-tuning by 1.5 ∼ 2.0 Smatch F1

scores while on joint pre-training tasks, the im-
provements of MTL over vanilla fine-tuning
instead decrease.

• With twice training sentences in AMR 2.0,
overall the performance on AMR 2.0 is higher
than that on AMR 1.0. However, the gap be-
tween the performance on AMR 2.0 and AMR
1.0 gets smaller when we move from single
pre-training models to joint pre-training mod-
els. For example, based on PTM-MT-SynPar-
SemPar, the performance gap is 1.1 in Smatch
F1 scores, much less than the performance gap
6.9 between their corresponding baselines.

• Finally, our approach achieves the best re-
ported performance on AMR 1.0 and the per-
formance on AMR 2.0 is higher than or close
to that achieved by previous studies which use
BERT. This is very encouraging taking into
consideration the fact that our seq2seq model
is much simper than the graph-based mod-
els proposed in related studies (Zhang et al.,
2019a,b; Naseem et al., 2019; Cai and Lam,
2020).

Table 3 compares the performance of our best
system and the systems reported recently with fine-
grained metrics. We obtain the best performance
for Reentrancies, NER, and SRL. Compared to the
systems of Z’19a, Z’19b, and C’20, we achieve
lower performance for Wiki and Negations. One
possible reason for our relatively lower perfor-
mance on Wiki and Negations is that unlike above
three systems, in this paper we do not anonymize
named entities and do not use an extra algorithm to
add polarity attributes.

5 Analysis and Discussion

In this section, we conduct more analysis on AMR
parsing with pre-trained models. In the following
all the results are obtained on AMR 2.0.

5.1 Effect of BERT on Seq2Seq AMR
Parsing

To explore the effect of BERT on seq2seq AMR
parsing, motivated by Zhu et al. (2020), we use
BERT in various ways to boost the performance of
AMR parsing.

Given an input sentence x = (x1, · · · , xn) with
n words, the BERT tokenizer segments it into a
subword sequence x′ = (x′1, · · · , x′m) with m
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# Pre-trained Model Fine-Tune AMR 1.0 AMR 2.0
P. R. F1 P. R. F1

1 None None 69.8 60.2 64.6 75.8 67.7 71.5
2 PTM-MT Vanilla 78.8 69.5 73.8 80.0 74.3 77.1
3 MTL 81.1 72.2 76.4 81.3 77.1 79.1
4 PTM-SynPar Vanilla 74.3 65.8 69.8 76.2 71.5 73.8
5 MTL 76.7 68.1 72.2 78.0 72.8 75.3
6 PTM-SemPar Vanilla 80.8 73.5 77.0 80.8 75.2 77.9
7 PTM-MT-SynPar Vanilla 79.1 70.5 74.6 79.5 75.0 77.1
8 MTL 81.2 74.0 77.5 81.5 77.6 79.5
9 PTM-MT-SemPar Vanilla 82.3 75.4 78.7 82.4 77.3 79.7
10 MTL 82.4 74.6 78.3 82.3 78.0 80.1
11 PTM-SynPar-SemPar Vanilla 81.6 74.0 77.6 81.1 76.3 78.6
12 MTL 81.8 74.0 77.7 81.3 76.8 79.0
13 PTM-MT-SynPar-SemPar Vanilla 82.4 75.4 78.7 82.1 77.6 79.8
14 MTL 82.6 75.9 79.1 82.3 78.3 80.2

Previous work without extra resources
Graph Prediction(Lyu and Titov, 2018) - - - - - 74.4

Prediction(Guo and Lu, 2018) - - - - - 69.8
Prediction(Groschwitz et al., 2018) - - - - - 71.0

Seq2Seq(Ge et al., 2019) - - - 74.0 68.1 70.9
Seq2Seq(Cai and Lam, 2019) - - - - - 73.2

Graph(Cai and Lam, 2020) - - 71.2 - - 77.3
Previous work with extra resources

Seq2Graph(Zhang et al., 2019a)† - - 70.2 - - 76.3
Seq2Graph(Zhang et al., 2019b)† - - 71.3 - - 77.0

RL(Naseem et al., 2019)† - - - - - 75.5
Seq2Seq(Ge et al., 2019)∗ - - - 77.7 71.1 74.3

Graph(Cai and Lam, 2020)† - - 75.4 - - 80.2

Table 2: Smatch scores on the test sets of AMR 1.0 and AMR 2.0. † is for using BERT as extra resource while ∗
for using other resources.

Metric C’19 G’19 N’19 Z’19a Z’19b C’20 Our
Smatch 73.2 74.3 75.5 76.3 77 80.2 80.2
Unlabeled 77.0 77.3 80 79.0 80 82.8 83.7
No WSD 74.2 74.8 76 76.8 78 80.8 80.8
Reentrancy 55.3 58.3 56 60.0 61 64.6 66.5
Concepts 84.4 84.2 86 84.8 86 88.1 87.4
NER 82.0 82.4 83 77.9 79 81.1 85.4
Wiki 73.2 71.3 80 85.8 86 86.3 75.1
Negations 62.9 64.0 67 75.2 77 78.9 71.5
SRL 66.7 70.4 72 69.7 71 74.2 78.9

Table 3: Detailed F1 scores on AMR 2.0 test set. Here,
C’19 is for Cai and Lam (2019), G’19 for Ge et al.
(2019), N’19 for Naseem et al. (2019), Z’19 for Zhang
et al. (2019a), Z’19b for Zhang et al. (2019b), C’20 for
Cai and Lam (2020)

subwords. Then BERT returns a hidden state se-
quence b = (b1, · · · , bm) in shape Rm×dBERT ,
where dBERT is the size of BERT hidden states
(e.g., dBERT=768 in our experiment). Figure 4
illustrates the process of obtaining BERT hidden
states for an input sentence. Next we use the follow-
ing methods to properly incorporate BERT hidden
states b into Transformer-based AMR parsing.

• BERT as embedding, which uses f
(
bWB

)
as

input of the the Transformer encoder, where
WB ∈ RdBERT×d are model parameters to be

learned, d is the model size for seq2seq AMR
parsing, and f is the activation function ReLu.

• BERT as encoder, which uses f
(
bWB

)
as the

output of the Transformer encoder. That is to
say, we replace the Transformer encoder with
BERT.

• BERT as extra feature, which views b as ex-
tra features for an input sentence x′. The
input of the Transformer encoder is de-
fined as f

(
[b, (Emb (x′) + Pos (x′))]WE

)
,

where [·, ·] represents the operation of con-
catenation, Emb (x′) and Pos (x′) return the
word embeddings and position embeddings
of x′ respectively, and WE ∈ R(d+dBERT )×d

are model parameters to be learned.

• BERT as extra encoder, which adds a sub-
layer, i.e, BERT-context-attention sub-layer,
in the Transformer decoder after the masked-
self-attention sub-layer and the context-
attention sub-layer. The BERT-context-
attention sub-layer works in a similar way as
the context-attention sub-layer by attending to
BERT hidden states f

(
bWB

)
.
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# Methods P. R. F1
1 None 73.5 66.9 70.0
2 BERT as embedding 78.1 72.2 75.1
3 BERT as encoder 75.5 68.0 71.5
4 BERT as extra feature 79.2 71.5 75.2
5 BERT as extra encoder 75.1 68.2 71.5

Table 4: Smatch scores on AMR 2.0 when incorporate
BERT in various methods.

Meanwhile, we also provide another
Transformer-based baseline in which we
segment input sentences into subwords with the
BERT tokenizer. For all above experiments, the
source-side vocabulary is the set of subwords
in training sentences segmented by the BERT
tokenizer while the target-side vocabulary is the
set of subwords in training AMRs segmented by
BPE mentioned in Section 4.1.

Table 4 compares the performance of AMR pars-
ing when incorporating BERT in various methods.
By comparing the performance of #1 in Table 4
against the baseline #1 in Table 2, we observe a
drop of Smatch F1 score from 71.5 to 70.0, in-
dicating that it is important to share vocabulary
for seq2seq AMR parsing. Based on the baseline
of not sharing vocabulary, the four different meth-
ods of incorporating BERT result in very different
performance ranging from 71.5 to 75.2 in Smatch
F1 score. Among them, incorporating BERT as
embedding or extra feature achieves similar perfor-
mance, which is much higher than the performance
of incorporating BERT as either encoder or extra
encoder. This suggests that rather than straightly
feeding BERT hidden states into a decoder, it is im-
portant to feed them into an encoder first. However,
our pre-trained seq2seq models, even on a single
pre-training task (i.e., #3, #5, #6) outperform using
BERT, indicating the effectiveness of pre-trained
seq2seq models for AMR parsing.

5.2 Effect of Training Data Sizes on
Pre-training Models

In this section we investigate the impact of the size
of pre-training data to check whether AMR pars-
ing benefits more from pre-trained models that are
trained on larger datasets. To this end, we ran-
domly use 20%, 40%, 60%, and 80% of the full
pre-training instances to train the pre-trained mod-
els, respectively.

As shown in Figure 5, except syntactic pars-

BERT

[CLS] What are you    babbling        about now ? [SEP]

[CLS] What are you b ##ab ##bling about now ?  [SEP]

BERT Word Piece Tokenizer

Figure 4: Illustration of obtaining BERT hidden states
for an given sentence.
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Figure 5: Learning curve over the number of training
sentences in pre-training datasets.

ing (i.e., PTM-SynPar), the pre-training models on
the other three kinds of pre-training tasks achieve
higher AMR parsing performance with the increas-
ing of training data sizes. Based on the learning
curve, we suspect there still exists much room for
further improvements if we enlarge the training
data of pre-training tasks.

5.3 Effect of Different Pre-Training
Components on Seq2Seq AMR Parsing

When adapt a pre-trained model to AMR parsing,
we initialize the whole seq2seq Transformer model
of AMR parsing with the counterpart of the pre-
trained model. However, it is unveiled what part of
initialization contributes most. To this end, we de-
compose the whole seq2seq model into three com-
ponents, i.e., (shared) word embedding, encoder
and decoder. The three components take account
of 31.1%, 29.5% and 39.4% of parameters, respec-
tively. Then we do ablation study by accumulating
the initialization using the pre-trained model while
the other components will be randomly initialized.

We use the PTM-MT-SynPar-SemPar pre-
trained model as representative (i.e., #14 in Ta-
ble 2). Table 5 presents the performance. From the
table, we observe that with well-learned word em-
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Pre-trained Initialization P. R. F1
None 75.8 67.7 71.5
Embedding 80.7 76.3 78.4
Embedding + Encoder 81.3 77.2 79.2
Embedding + Decoder 80.7 76.5 78.5
All 82.3 78.3 80.2

Table 5: Smatch F1 scores on the test sets of AMR2.0
when initialize different components of seq2seq model
with a pre-trained model. Here we use MTL as fine-
tuning method.

bedding, we substantially boost the performance
from 71.5 in Smatch F1 score to 78.4 while initial-
izing the other two components with the pre-trained
model leads to another 1.8 improvement in Smatch
F1 score (i.e., from 78.4 to 80.2).

5.4 Effect of Pre-trained Models Trained on
Different Datasets

As shown in Table 2, the pre-trained model of PTM-
SynPar (or PTM-SemPar) significantly improves
the performance AMR parsing from 71.5 to 75.3
(or 77.9) in Smatch F1 score. However, in the
presence of PTM-MT, joint pre-training with either
PTM-SynPar, PTM-SemPar, or both gives another
up to 1.0 improvement, suggesting that comple-
mentarity among the pre-trained models does exist
but is relatively limited. We suspect that the over-
lapping is mainly due to the fact that we pre-train
these models on the same source-side dataset. We
conjecture that more improvement is potentially
reachable if the pre-training tasks are trained on
different datasets.

To test the conjecture, we construct another sil-
ver dataset for both syntactic parsing and AMR
parsing that is in the same size (i.e., 3.9M) as be-
fore. This is done by randomly selecting 3.9M En-
glish sentences from WMT14 English monolingual
language model training data.4 Table 6 compares
the Smatch F1 scores. From it, we observe con-
sistent improvement if the pre-trained models are
jointly trained on different datasets. For example,
by replacing the pre-training dataset of AMR pars-
ing with the new constructed dataset, we improve
AMR parsing from 80.1 in Smatch F1 score to 81.4.
This suggests that assigning different pre-training
tasks with different datasets improves the perfor-
mance of AMR parsing.

4http://statmt.org/wmt14/
training-monolingual-news-crawl/news.
2008.en.shuffled.gz

# Pre-trained Model F1
1 PTM-MT (WMT14B) 79.1
2 PTM-MT(WMT14B)-SemPar(WMT14B) 80.1
3 PTM-MT(WMT14B)-SemPar(WMT14M) 81.4
4 PTM-MT(WMT14B)-SynPar(WMT14B) 79.5
5 PTM-MT(WMT14B)-SynPar(WMT14M) 79.9

Table 6: Smatch F1 scores on the test set of AMR
2.0 when the pre-training tasks are trained on differ-
ent datasets. Here WMT14B is for WMT14 English-
to-German dataset while WMT14M is for WMT14 En-
glish monolingual dataset.

# Pre-trained Model F1
1 PTM-MT on EN-DE Vanilla 77.1
2 MTL 79.1
3 PTM-MT on EN-FR Vanilla 77.5
4 MTL 79.4

Table 7: Smatch F1 scores on the test set of AMR
2.0 when the pre-training tasks are trained on different
bilingual dataset.

5.5 Effect of Different Bilingual Datasets
For the pre-training task of machine translation,
we have chosen English-to-German (EN-DE) with
3.9M sentence pairs. However, it is still unclear
whether it is critical to choose the right language
pair. To this end, we move to WMT14 Englilsh-to-
French (EN-FR) translation and randomly select
3.9M sentence pairs from its training dataset, as
the same size of EN-DE translation. Table 7 com-
pares the Smatch F1 scores when the pre-trained
models are trained on different bilingual datasets.
From it, we observe that pre-training on EN-FR
dataset achieves even slight higher performance
than that on EN-DE dataset. This further confirms
our finding that AMR parsing can greatly benefit
from machine translation.

6 Related Work

We describe related work from two perspectives:
pre-training and AMR parsing.

Pre-training. Pre-training a universal model and
then fine-tuning the model on a downstream task
have recently become a popular strategy in the field
of natural language processing. Previous works on
pre-training can be roughly grouped into two cate-
gories. One category of approaches is to learn static
word embeddings such as word2vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014) while
the other group builds dynamic pre-trained mod-
els that would also be used in downstream tasks.
Representative examples in the latter group in-

http://statmt.org/wmt14/training-monolingual-news-crawl/news.2008.en.shuffled.gz
http://statmt.org/wmt14/training-monolingual-news-crawl/news.2008.en.shuffled.gz
http://statmt.org/wmt14/training-monolingual-news-crawl/news.2008.en.shuffled.gz
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clude Dai and Le (2015), CoVe (McCann et al.,
2017), ELMo (Peters et al., 2017; Edunov et al.,
2019), OpenAI GPT (Radford et al., 2018), and
BERT (Devlin et al., 2019). Besides the afore-
mentioned encoder-only (e.g., BERT) or decoder-
only (e.g., GPT) pre-training approaches, recent
studies also propose approaches to pre-training
seq2seq models, such as MASS (Song et al., 2019),
PoDA (Wang et al., 2019), PEGASUS (Zhang et al.,
2020), BART (Lewis et al., 2020), and T5 (Raffel
et al., 2020).

AMR Parsing. As a semantic parsing task that
translates texts into AMR graphs, AMR parsing
has received much attention in recent years. Di-
verse approaches have been applied to the task.
Flanigan et al. (2014) pioneer the research work
on AMR parsing by using a a two-stage approach:
node identification followed by relation recogni-
tion. Werling et al. (2015) improve the first stage
in the parser of Flanigan et al. (2014) by generat-
ing subgraph aligned to lexical items. To avoid
conducting AMR parsing from scratch, Wang et al.
(2015b) propose to obtain AMR graphs from de-
pendency trees by using a transition-based method.
Wang et al. (2015a) extend their previous work
by introducing a new transition action to get bet-
ter performance. Damonte et al. (2017) propose
a complete transition-based approach that parses
sentences left-to-right in linear time. The recent
neural AMR parsing could be roughly grouped
into two categories. On the one hand, the generic
seq2seq-based approaches have been widely used
for AMR parsing which show competitive perfor-
mance (Peng et al., 2017; van Noord and Bos, 2017;
Konstas et al., 2017; Ge et al., 2019). On the other
hand, to better model the graph structure on the
target side, graph-based models are well studies
for AMR parsing which achieve the state-of-the-
art-performance (Lyu and Titov, 2018; Guo and
Lu, 2018; Groschwitz et al., 2018; Zhang et al.,
2019a,b; Cai and Lam, 2020).

7 Conclusion

In this paper we proposed a seq2seq-based pre-
training approach to improving the performance
of seq2seq-based AMR parsing. To this end, we
designed three relevant seq2seq learning tasks,
including machine translation, syntactic parsing,
and AMR parsing itself. Then we built seq2seq
pre-trained models through either single or joint
pre-training tasks. Detail experimentation shows

that both the single and joint pre-trained models
substantially improve our baseline and the perfor-
mance reaches the state of the art. The accomplish-
ment is encouraging since we achieve this simply
by using the generic seq2seq framework rather than
complex models.
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