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Corbèn Poot
CLCG, University of Groningen
c.poot@student.rug.nl

Andreas van Cranenburgh
CLCG, University of Groningen

a.w.van.cranenburgh@rug.nl

Abstract

We evaluate a rule-based (Lee et al., 2013) and neural (Lee et al., 2018) coreference system on
Dutch datasets of two domains: literary novels and news/Wikipedia text. The results provide
insight into the relative strengths of data-driven and knowledge-driven systems, as well as the
influence of domain, document length, and annotation schemes. The neural system performs
best on news/Wikipedia text, while the rule-based system performs best on literature. The neural
system shows weaknesses with limited training data and long documents, while the rule-based
system is affected by annotation differences. The code and models used in this paper are available
at https://github.com/andreasvc/crac2020

1 Introduction

In recent years, the best results for coreference resolution of English have been obtained with end-to-end
neural models (Lee et al., 2017b, 2018; Joshi et al., 2019, 2020; Wu et al., 2020). However for Dutch, the
existing systems are still using either a rule-based (van der Goot et al., 2015; van Cranenburgh, 2019) or
a machine learning approach (Hendrickx et al., 2008a; De Clercq et al., 2011). The rule-based system
dutchcoref (van Cranenburgh, 2019) outperformed previous systems on two existing datasets and also
presented a corpus and evaluation of literary novels (RiddleCoref).

In this paper we compare this rule-based system to an end-to-end neural coreference resolution system:
e2e-Dutch. This system is a variant of Lee et al. (2018) with BERT token representations. We evaluate and
compare the performance of e2e-Dutch to dutchcoref on two different datasets: (1) the SoNaR-1 corpus
(Schuurman et al., 2010), a genre-balanced corpus of 1 million words, and (2) the RiddleCoref corpus of
contemporary novels (van Cranenburgh, 2019). This provides insights into (1) the relative strengths of a
neural system versus a rule-based system for Dutch coreference, and (2) the effect of domain differences
(news/Wikipedia versus literature).

The two datasets we consider vary greatly in terms of overall size and length of the individual docu-
ments; the training subset of RiddleCoref contains only 23 documents (novel fragments) compared to
581 documents for SoNaR-1. However, the average number of sentences per document is higher for
RiddleCoref than for SoNaR-1 (295.78 vs. 64.28 respectively). We also conduct an error analysis for both
of the systems to examine the types of errors that the systems make.

2 Related work

The main differences between traditional and neural approaches can be summarized as follows:

• Rule-based systems are knowledge-intensive; machine learning systems are data-driven but require
feature engineering; end-to-end neural systems only require sufficient training data and hyperparame-
ter tuning to perform well.

• Rule-based and machine learning coreference systems rely on features from syntactic parses and
named-entities provided by an NLP pipeline whereas neural systems rely on distributed representa-
tions; end-to-end systems do not require any other features.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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System CoNLL

Rule-based (Lee et al., 2011) 58.3
Perceptron (Fernandes et al., 2012) 58.7
Hybrid: rules + ML (Lee et al., 2017a) 63.2
Embeddings (Wiseman et al., 2015) 63.4
+ RL (Clark and Manning, 2016a) 65.3
+ Entity embeddings (Clark and Manning, 2016b) 65.7

System CoNLL

End-to-end (Lee et al., 2017b) 68.8
Higher-order + CTF + ELMo (Lee et al., 2018) 73.0
Finetuning BERT base (Joshi et al., 2019) 73.9
Finetuning BERT large (Joshi et al., 2019) 76.9
Pretraining SpanBERT (Joshi et al., 2019) 79.6
SpanBERT + QA (Wu et al., 2020) 83.1

Table 1: English coreference scores on the OntoNotes CoNLL 2012 shared task dataset. ML: Machine
Learning, RL: Reinforcement Learning, CTF: Coarse-to-Fine, QA: Question Answering.

• The rule-based system by Lee et al. (2013) is entity-based and exploits global features, while end-
to-end systems such as Lee et al. (2017b) rank mentions and make greedy decisions based on local
features. Although Lee et al. (2018) does approximate higher-order inference, their model does not
build representations of entities.

The rest of this section discusses the current best systems for Dutch and English.

2.1 Dutch coreference resolution

The largest dataset available for Dutch coreference resolution is the SoNaR-1 dataset (Schuurman et al.,
2010) which consists of 1 million words annotated for coreference. This corpus was a continuation of
the Corea project (Bouma et al., 2007; Hendrickx et al., 2008a,b). De Clercq et al. (2011) present a
cross-domain coreference resolution study conducted on this corpus. They use a mention-pair system,
which was originally developed with the KNACK-2002 corpus and then further improved in the Corea
project, and observe that the influence of domain and training size is large, thus underlining the importance
of this large and genre-balanced SoNaR-1 dataset.

The current best coreference resolution system for Dutch is called “dutchcoref” (van Cranenburgh,
2019) and is based on the rule-based Stanford system (Lee et al., 2011, 2013). This system improved on
the systems in the SemEval-2010 shared task (Recasens et al., 2010) and a previous implementation of
the Stanford system for Dutch (GroRef; van der Goot et al., 2015). The main focus of van Cranenburgh
(2019) was evaluating coreference on literary texts, for which a corpus and evaluation is presented. Most
coreference resolution systems are evaluated using newswire texts, but a domain such as literary text
presents its own challenges (Bamman, 2017); for example, novels are longer than news articles, and
novels can therefore contain longer coreference chains.

2.2 English Coreference resolution

The main benchmark for English is the CoNLL 2012 shared task (Pradhan et al., 2012). Table 1 reports
a timeline of results for this task, which shows the dramatic improvements brought by neural networks,
especially the end-to-end systems on the right. Neural coreference systems improved on previous work
but were still relying on mention detection rules, syntactic parsers, and heavy feature engineering (Table 1,
left). They were outperformed by the first end-to-end coreference resolution system by Lee et al. (2017b).
This system looks at all the spans (expressions) in a text, up to a maximum length, and then uses a
span-ranking model that decides for each span which previous spans are good antecedents, if any. The
spans themselves are represented by word embeddings.

Although the models by Clark and Manning (2016a) and Lee et al. (2017b) are computationally efficient
and scalable to long documents, they are heavily relying on first order models where they are only scoring
pairs of mentions. Because they make independent decisions regarding coreference links, they might
make predictions which are locally consistent but globally inconsistent (Lee et al., 2018). Lee et al. (2018)
introduce an approximation of higher-order inference, which uses the span-ranking architecture from
Lee et al. (2017b) described above in an iterative fashion, and also propose a coarse-to-fine approach to
lower the computational cost of this iterative higher-order approximation. Further improvements over
Lee et al. (2017b) were obtained through the use of deep contextualized ELMo (Peters et al., 2018) word
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RiddleCoref SoNaR-1

Train Dev Test Train Dev Test

documents 23 5 5 581 135 145
sentences 6803 1525 1536 37,346 10,585 11,671
tokens 105,517 28,042 28,054 635,191 171,293 197,392
sents per doc 295.78 305 307.2 64.28 78.41 80.49
avg sent len 15.51 18.39 18.26 17 16.18 16.91
mentions 25,194 6584 6869 182,311 50,472 57,172
entities 9041 2643 3008 128,142 37,057 39,904
mentions/tokens 0.24 0.23 0.24 0.29 0.29 0.29
mentions/entities 2.79 2.49 2.28 1.42 1.36 1.43
entities/tokens 0.09 0.09 0.11 0.20 0.22 0.20
% pronouns 40.4 35.7 38.1 11.6 11.3 11.0
% nominal 47.0 49.4 52.8 70.8 70.4 71.9
% names 12.6 14.9 9.1 17.6 18.3 17.1

Table 2: Dataset statistics

embeddings. The current state-of-the-art scores are even higher by using BERT finetuning (Joshi et al.,
2019, 2020; Wu et al., 2020) However, this paper focuses on the model by Lee et al. (2018).

Bamman et al. (2020) present coreference results on English literature with an end-to-end model
comparable to the one used in this paper, except for using a separate mention detection step. However,
their dataset consist of a larger number of shorter novel fragments (2000 words). They report a CoNLL
score of 68.1 on the novel fragments.

3 Coreference corpora

In this paper we consider entity coreference and focus on the relations of identity and predication. The
rest of this section describes the two Dutch corpora we use.

3.1 SoNaR-1: news and Wikipedia text

The SoNaR-1 corpus (Schuurman et al., 2010) contains about 1 million words of Dutch text from various
genres, predominantly news and Wikipedia text. Coreference was annotated from scratch (i.e., annotation
did not proceed by correcting the output of a system), based on automatically extracted markables. The
markables include singleton mentions but also non-referring expressions such as pleonastic pronouns. The
annotation was not corrected by a second annotator. Hendrickx et al. (2008b) estimated the inter-annotator
agreement of a different corpus with the same annotation scheme and obtained a MUC score of 76 % for
identity relations (which form the majority).

We have created a genre-balanced train/dev/test split for SoNaR-1 of 70/15/15. The documents are
from a range of different genres and we therefore ensure that the subsets are a stratified sample in terms of
genres, to avoid distribution shifts between the train and test set.1.

We convert the SoNaR-1 coreference annotations from MMAX2 format into the CoNLL-2012 format.
Since dutchcoref requires parse trees as input, we use the manually corrected Lassy Small treebank (van
Noord et al., 2006; Van Noord, 2009), which is a superset of the SoNaR-1 corpus.2 We align the Lassy
Small trees at the sentence and token level to the SoNaR-1 coreference annotations, since there are
some differences in tokenization and sentence order.3 We also add gold standard NER annotations from
SoNaR-1. The manually corrected trees lack some additional features produced by the Alpino parser (van
Noord, 2006) which are needed by dutchcoref; we merge these predicted features into the gold standard
trees.

1Cf. https://gist.github.com/CorbenPoot/ee1c97209cb9c5fc50f9528c7fdcdc93
2We could also evaluate with predicted parses from the Alpino parser, but components of the Alpino parser have been trained

on subsets of Lassy Small, so predicted parses of Lassy Small are not representative of Alpino’s heldout performance.
3The conversion script is part of https://github.com/andreasvc/dutchcoref/

https://gist.github.com/CorbenPoot/ee1c97209cb9c5fc50f9528c7fdcdc93
https://github.com/andreasvc/dutchcoref/
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3.2 RiddleCoref: contemporary novels

The RiddleCoref corpus consists of contemporary Dutch novels (both translated and originally Dutch),
and was presented in van Cranenburgh (2019). The corpus is a subset of the Riddle of Literary Quality
corpus of 401 bestselling novels (Koolen et al., 2020). This dataset was annotated by correcting the output
of dutchcoref. Most novels in the dataset were corrected by two annotators, with the second performing
another round of correction after the first. In this dataset, mentions include singletons and are manually
corrected; i.e., only expressions that refer to a person or object are annotated as mentions. Besides this
difference, relative clauses and discontinuous constituents have different boundaries (minimal spans).

The system by van Cranenburgh (2019) is a rule-based system that does not require a training data, and
therefore the dev/test split used in this paper is not suitable for a supervised system. To avoid this issue,
we create a new train/dev/test split which reserves 70% for training data. We also evaluate dutchcoref on
this new split. The new dev and test sets have no overlap with the original development set on which the
rules of dutchcoref were tuned.

No gold standard parse trees are available for the novels. Instead, we use automatically predicted parses
from the Alpino parser (van Noord, 2006).

3.3 Dataset statistics

Table 2 shows statistics of the two datasets and their respective splits. The documents in RiddleCoref are
almost four times as long as those in SoNaR-1, and this is reflected in a higher number of mentions per
entity, while SoNaR-1 has a higher density of entities to tokens. We also see a difference due to the more
selective, manual annotation of mentions: almost 30% of SoNaR-1 tokens are part of a mention, compared
to less than 25% for RiddleCoref. Finally, we see large differences in the proportion of pronouns, nominals
and names, due to the genre difference.

4 Coreference systems

We now describe the two coreference systems, dutchcoref and e2e-Dutch, which we evaluate on the
coreference corpora described in the previous section.

4.1 Rule-based: dutchcoref

The dutchcoref system4 (van Cranenburgh, 2019) is an implementation of the rule-based coreference
system by Lee et al. (2011, 2013). The input to the system consists of Alpino parse trees (van Noord,
2006), which include named entities. The system infers information about speakers and addressees of
direct speech using heuristic rules. This information is used for coreference decisions. Note that this
information is not given as part of the input.

We have made some improvements to the rules of this system in order to make it more compatible
with the SoNaR-1 annotations; this was however based only on the output of a single document in the
development set, as well as on the original, RiddleCoref development set on which dutchcoref was
developed. When evaluating on SoNaR-1, we apply rules to filter links and mentions from the output to
adapt to the annotation scheme of this dataset.

4.2 End-to-end, neural: e2e-Dutch

The e2e-Dutch system5 is fully end-to-end in the sense that it is trained only on the token and coreference
column of the CoNLL files of the dataset, without using any metadata. Our data does not contain speaker
information which is used by models trained on the OntoNotes dataset (Hovy et al., 2006). In addition,
models trained on OntoNotes use genre information; while our data does have genre metadata, we have
not experimented with using this feature. For English, such information provides additional improvement
in scores (Lee et al., 2017b).

4https://github.com/andreasvc/dutchcoref
5The e2e-Dutch system is being developed as part of the Filter Bubble project at the VU and eScience

center. The specific commit we used is https://github.com/Filter-Bubble/e2e-Dutch/tree/
056dcf7d3d711a3c7b8cda241a16cdd76158a823

https://github.com/andreasvc/dutchcoref
https://github.com/Filter-Bubble/e2e-Dutch/tree/056dcf7d3d711a3c7b8cda241a16cdd76158a823
https://github.com/Filter-Bubble/e2e-Dutch/tree/056dcf7d3d711a3c7b8cda241a16cdd76158a823
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Figure 1: Overview of the first step of the end-to-end model in which the embedding representations and
mention scores are computed. The model considers all possible spans up to a maximum width but only a
small subset is shown here. Figure adapted from Lee et al. (2017b).

The model that e2e-Dutch is based on (Lee et al., 2018) uses a combination of character n-gram
embeddings, non-contextual word embeddings (GloVe; Pennington et al., 2014) and contextualized
word embeddings (ELMo; Peters et al., 2018). These embeddings are concatenated and fed into a
bidirectional LSTM. Span heads are approximated using an attention mechanism; while this step is
intended to approximate syntactic heads, it does not rely on parse tree information. Figure 1 shows an
overview of the model. e2e-Dutch adapts this architecture by adding support for singletons; i.e., during
mention detection, each span is classified as not a mention, a singleton, or a coreferent mention.

Character n-gram embeddings are extracted by iterating over the data and feeding the character n-grams
to a Convolutional Neural Network (CNN) which then represents these n-grams as learned 8-dimensional
embeddings. The GloVe embeddings were replaced with fastText6 embeddings (Grave et al., 2018). We
also trained fastText embeddings on our own datasets but saw a performance decrease; we therefore stick
with pre-trained embeddings. Lastly, the ELMo embeddings were replaced by BERT (Devlin et al., 2019)
token embeddings, since BERT tends to outperform ELMo (Devlin et al., 2019) and because there is a
pretrained, monolingual Dutch BERT model available whose pretraining data includes novels (BERTje;
Vries et al., 2019). However, there is no overlap between the 7000+ novels that BERTje is trained on
and the RiddleCoref corpus. Whenever there is a mismatch between the subtokens of BERT and the
tokens in the coreference data, the model takes the average of the BERT subtoken embeddings as token
representation. The last BERT layer is used for the token representation; however, recent research has
showed that layer 9 actually performs best for Dutch coreference (de Vries et al., 2020). Note also that we
do not finetune BERT for this task, contrary to Joshi et al. (2019); this is left for future work.

We use some different hyperparameters compared to Lee et al. (2018). Our model only considers
up to 30 antecedents per span instead of 50; this only leads to marginally worse performance, a 0.03
decrease in the LEA F1-score, while reducing the computational cost substantially. During training, each
document is randomly truncated at 30 sentences, but different random parts are selected at each epoch.
We have experimented with higher values for this parameter with RiddleCoref, but only obtained marginal
improvements (0.01 difference), and did not pursue this further. The top span ratio controls the number of
mentions that are considered and determines the precision/recall tradeoff for mentions. We experimented
with tuning this parameter, but settled on the default of 0.4. Mentions up to 50 tokens long are considered.

During training, the model is evaluated every 1500 epochs (2500 for SoNaR-1). If the CoNLL score on
the development set does not increase after three rounds, training is stopped.

5 Evaluation

Before presenting our main benchmark results, we discuss the issue of coreference evaluation metrics.

6We use Fasttext common crawl embeddings, https://fasttext.cc/docs/en/crawl-vectors.html

https://fasttext.cc/docs/en/crawl-vectors.html
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System dataset Mentions LEA CoNLL

R P F1 R P F1

dutchcoref RiddleCoref, dev 86.85 85.84 86.34 49.18 58.03 53.24 65.91
e2e-Dutch RiddleCoref, dev 83.12 87.65 85.33 48.37 50.99 49.65 64.81

dutchcoref RiddleCoref, test 87.65 90.80 89.20 50.83 64.78 56.97 69.86
e2e-Dutch RiddleCoref, test 81.95 89.00 85.33 44.82 50.48 47.48 63.55

dutchcoref SoNaR-1, dev 64.88 86.78 74.25 37.98 52.23 43.98 55.45
e2e-Dutch SoNaR-1, dev 90.24 88.09 89.16 65.02 65.55 65.29 71.53

dutchcoref SoNaR-1, test 65.32 85.94 74.22 37.87 52.55 44.02 55.91
e2e-Dutch SoNaR-1, test 88.96 86.81 87.87 60.67 62.48 61.56 68.45

Table 3: Coreference results (predicted mentions, including singletons).

5.1 Metrics

The challenge with evaluating coreference resolution lies in the fact that it involves several levels: mentions,
links and entities. Results can be correct on one level and incorrect on another, and the levels interact.
One of the most important factors in coreference performance is the performance of mention detection,
since an incorrect or missed mention can lead to a large number of missed coreference links (especially
for a long coreference chain). We therefore report mention scores. It turns out that mention performance
also has a large influence on coreference evaluation metrics (Moosavi and Strube, 2016). We will use two
coreference metrics. The CoNLL score (Pradhan et al., 2011) is the standard benchmark, but it does not
have a precision and recall score, and the MUC, B3, and CEAFe metrics on which it is based have their
own flaws. Therefore we will also look at the LEA metric (Moosavi and Strube, 2016). LEA gives more
weight to larger entities, so that mistakes on more important chains have more effect on the score than
mistakes on smaller entities.

Unless otherwise noted, all our results include singletons. Evaluating with and without singletons will
affect all of the scores, and the two datasets differ in the way they annotated singletons. Singletons inflate
coreference scores due to the mention identification effect. Since most mentions are easy to identify based
on form, singletons reduce the informativeness of the coreference score. SoNaR-1 includes automatically
extracted markables instead of manually annotated mentions, as in RiddleCoref. The automatically
extracted markables are more numerous and easier to identify (they were extracted based on syntax)
than manually annotated mentions that are restricted to potentially referring expressions (a semantic
distinction). One possibility to rule out the mention identification effect completely is to present the
systems with gold mentions. However, this still leaves the singleton-effect. If singletons are included, the
system will not know which of the gold mentions are singletons, and this can lead to incorrect coreference
links. A dataset with more singletons (such as SoNaR-1) will thus have more potential for incorrect
coreference links (precision errors). If singleton mentions are excluded from the set of gold mentions, it
is given that all mentions are coreferent. The system should then use this information and force every
mention to have at least one link. However, this requires re-training or re-designing the coreference
system, and does not allow us to do a realistic end-to-end coreference evaluation. We are therefore stuck
with the complications that come with combining mention identification and coreference resolution.

5.2 Results

The main results are presented in Table 3. For RiddleCoref, dutchcoref outperforms e2e-Dutch by a 6
point margin. For SoNar-1, e2e-Dutch comes out first, and the gap is even larger. Despite the advantage
dutchcoref has due to its use of gold standard parse trees, its performance is lower than e2e-Dutch. We
can see from the mention recall score that dutchcoref misses a large number of potential mentions; this
may be due to the fact that SoNaR-1 markables include singletons and non-referential mentions. However,
dutchcoref also has a lower LEA recall, so the gap with e2e-Dutch on SoNar-1 is not only due to mention
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Figure 2: Learning curve of e2e-Dutch on RiddleCoref dev set, showing performance as a function of
amount of training data (initial segments of novels).

Novel System Mentions LEA CoNLL

R P F1 R P F1

Forsyth Cobra dutchcoref 90.67 93.14 91.89 62.82 74.83 68.30 77.42
Forsyth Cobra e2e-Dutch 78.31 85.23 81.62 39.82 44.27 41.93 55.71

Japin Vaslav dutchcoref 86.19 92.78 89.36 44.57 61.39 51.65 65.79
Japin Vaslav e2e-Dutch 83.13 91.75 87.22 49.23 50.89 50.05 66.09

Proper GooischeVrouwen dutchcoref 88.20 91.12 89.63 58.65 66.95 62.53 72.29
Proper GooischeVrouwen e2e-Dutch 87.60 92.21 89.85 50.10 44.74 47.27 64.77

Royen Mannentester dutchcoref 87.15 86.01 86.57 44.66 58.21 50.54 65.01
Royen Mannentester e2e-Dutch 87.90 89.94 88.91 54.48 56.19 55.32 69.93

Verhulst LaatsteLiefde dutchcoref 86.24 87.70 86.96 45.38 59.66 51.55 66.09
Verhulst LaatsteLiefde e2e-Dutch 82.66 87.98 85.23 41.58 48.77 44.89 61.38

Table 4: Performance difference between e2e-Dutch and dutchcoref for each individual novel

performance. While results for different datasets and languages are not comparable, the performance
difference for SoNaR-1 has the same order of magnitude as the difference for OntoNotes between the
comparable rule-based and neural systems of Lee et al. (2011) and Lee et al. (2018) in Table 1.

RiddleCoref is much smaller than the SoNaR-1 dataset. Is there enough training data for the neural
model? Figure 2 shows a learning curve for e2e-Dutch. This curve suggests that for the coreference scores
the answer is no, because the performance does not reach a plateau—instead the curve is steep until the
end. The performance of dutchcoref is the top of the plot; if we extrapolate the curve linearly, we might
expect e2e-Dutch to outperform dutchcoref with 1.1–1.3 times the current training data. However, as an
anonymous reviewer pointed out, training curves are usually logarithmic, so more training data may be
required. Mention performance does reach a plateau, which suggests this task is easier.

6 Analysis

The previous section showed some surprising results. We now take a closer look at the differences between
the two coreference systems, datasets, and the annotations.

6.1 Rule-based versus neural coreference

See Table 4 for a novel by novel comparison of dutchcoref and e2e-Dutch. On 3 out of 5 novels, dutchcoref
is better on both LEA F1 and CoNLL. Interestingly, on 1 novel, LEA F1 and CoNLL disagree on the
ranking of the systems. Mention performance is high across all novels, except for a large discrepancy on
Forsyth in which e2e-Dutch scores 10 points lower.

To get more insight in the particular errors made by the systems, we perform an error analysis using
the tool by Kummerfeld and Klein (2013).7 This tool attributes errors to mention spans, missing or extra

7We adapted this tool for Dutch: https://github.com/andreasvc/berkeley-coreference-analyser

https://github.com/andreasvc/berkeley-coreference-analyser
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System Dataset Span Conflated Extra Extra Divided Missing Missing
Error Entities Mention Entity Entity Mention Entity

dutchcoref RiddleCoref 73 476 130 96 587 379 154
e2e-Dutch RiddleCoref 47 321 101 36 420 511 369

dutchcoref SoNaR-1 352 2432 2327 1772 2640 2469 1519
e2e-Dutch SoNaR-1 203 1187 895 695 1994 3428 2330

Table 5: Error types and their respective counts for both systems and datasets

Dataset System error name nom. pron.

RiddleCoref d.c. extra 5 83 42
RiddleCoref e2e extra 6 55 40
RiddleCoref d.c. missing 11 163 205
RiddleCoref e2e missing 115 274 122

SoNaR-1 d.c. extra 544 1473 310
SoNaR-1 e2e extra 175 550 170
SoNaR-1 d.c. missing 283 1842 344
SoNaR-1 e2e missing 825 2124 479

Incorrect part Rest of entity Divided Conflated
Na No Pr Na No Pr d.c. e2e d.c. e2e

- - 1+ - 1+ 1+ 104 66 118 74
- - 1+ 1+ 1+ 1+ 202 49 11 72
- - 1+ - 1+ - 62 66 156 31
- 1+ - - 1+ - 22 30 33 20
- 1+ 1+ - 1+ 1+ 33 31 16 13
- 1+ - - 1+ 1+ 34 18 33 6
- 1+ 1+ 1+ 1+ 1+ 36 29 2 12
- - 1+ - - 1+ 15 11 25 14
Other 79 120 82 79

Table 6: Left: Counts of missing and extra mention errors by mention type. Right: A breakdown of
conflated/divided entity errors on RiddleCoref grouped by Name/Nominal/Pronoun composition; 1+
means that the entity contains one or more mentions of the given type.

mentions/entities, and entities which are divided (incorrectly split) or conflated (incorrectly merged). We
use the default configuration of ignoring singletons mentions, but add an option to support the Dutch
parse tree labels. Table 5 shows an overview of these error types by the systems on the RiddleCoref
and SoNaR-1 test sets. We can see that e2e-Dutch makes less errors of all types, except for missing
mentions and entities, which is due to its lower mention recall. Even though e2e-Dutch showed a high
score for mention recall on SoNaR-1 in Table 3, we actually find that dutchcoref and e2e-Dutch both
show a similarly low mention recall when singletons are excluded (65.8 and 64.3, respectively). Finally,
note that a lower mention recall means that there is less opportunity to make errors of other types, so this
comparison is not conclusive.

To understand what is going on with mention identification, we can look at a breakdown by mention
type, see Table 6. We see that e2e-Dutch produces substantially less extra nominal (NP) mentions, but is
otherwise similar. In terms of missing mentions, e2e-Dutch makes substantially more errors on names
and nominals, but on RiddleCoref it has less missing pronouns, while it has more missing pronouns with
SoNaR-1. Although pronouns form a closed class, the issue of pleonastic pronouns still makes pronoun
mention detection non-trivial for RiddleCoref, where pleonastic pronouns are not annotated as mentions.
Since dutchcoref has no rules to detect non-pleonastic uses of potentially pleonastic pronouns, it defaults
to treating them as non-mentions. For SoNaR-1, the performance difference on missing mentions may
be due to information from the gold parse trees which is used by dutchcoref; for example the possessive
zijn (his) has the same form as the infinitive of the verb to be, but POS tags disambiguate this, and this
information is not available to e2e-Dutch.

Finally, we can try to understand the coreference link errors. Table 6 shows the counts of link errors on
RiddleCoref by the two systems, with the entities categorized by their configuration. We see that for both
dutchcoref and e2e-Dutch, the most common divided and conflated entity errors have a pronoun present
in the incorrect part, although dutchcoref makes more of these errors. We can thus reconfirm the finding
by Kummerfeld and Klein (2013) and van Cranenburgh (2019) who report that the most common link
error involves pronouns. Coreference resolution for Dutch provides an extra challenge in the fact that the
third person singular pronouns can refer to either biological or linguistic gender (Hoste, 2005).
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Figure 3: Coreference scores as a function of document length. Gold and system output are truncated
at different lengths (based on % of words, rounded to the nearest sentence boundary); r is the Pearson
correlation coefficient.

System Dataset Mentions Singletons Mentions F1 LEA F1 CoNLL

dutchcoref RiddleCoref predicted excluded 80.56 48.15 56.21
e2e-Dutch RiddleCoref predicted excluded 79.94 45.31 54.90
dutchcoref RiddleCoref predicted included 86.34 53.24 65.91
e2e-Dutch RiddleCoref predicted included 85.33 49.65 64.81
dutchcoref RiddleCoref gold included 100 61.89 75.84
e2e-Dutch RiddleCoref gold included 100 55.17 72.01

dutchcoref SoNaR-1 predicted excluded 63.57 39.71 46.96
e2e-Dutch SoNaR-1 predicted excluded 67.08 46.18 52.76
dutchcoref SoNaR-1 predicted included 74.25 43.98 55.45
e2e-Dutch SoNaR-1 predicted included 89.16 65.29 71.53
dutchcoref SoNaR-1 gold included 100 59.34 70.90
e2e-Dutch SoNaR-1 gold included 100 74.88 80.61

Table 7: Development set results under different conditions.

6.2 RiddleCoref (novels) versus SoNaR-1 (news/Wikipedia)

Are the scores on the two datasets comparable? There are several issues which hinder the comparison:
document length, domain differences, and mention annotation.

We first look at document length. It could be that the evaluation metrics are influenced by document
length, since longer documents offer more opportunities for errors. We will investigate this effect by
truncating the documents before evaluation, while keeping other factors such as the model or training
data constant. We truncate after running the coreference system because we want to focus on the effect of
document length on the evaluation, and we have no reason to expect the coreference systems to behave
differently on truncated texts. We truncate the novels at different lengths based on the number of words,
rounded to the nearest sentence. Note that truncating does not cause additional errors, because gold and
system output are both truncated. Figure 3 shows coreference scores as a function of document length
for the novels. We conclude that e2e-Dutch seems to perform worse on longer documents, based on the
negative correlation of scores and document length. While LEA weighs larger entities more, we also see
this effect with the CoNLL score, so it is not an artifact of the LEA metric. Moreover, we do not see the
effect for dutchcoref, so the effect is not inherent to the coreference metrics. The documents in SoNaR-1
are much shorter (number of sentences and words), and this may be an advantage for e2e-Dutch. Joshi
et al. (2019) report a similar document length effect for English with their end-to-end model.

Table 2 shows there is large difference in distribution of pronouns, names, and noun phrases, which are
not equally difficult. Novels tend to have a larger proportion of pronouns. However, it is hard to say a
priori whether this would make novels easier or more difficult in terms of coreference.
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In order to see the influence of the mention identification effect, as well as the influence of evaluating
with and without singletons, Table 7 shows a comparison on the development set. Note that in our
experiments with e2e-Dutch, singletons are always included during training; excluding singletons only
refers to excluding them from the system output and gold data during evaluation. We see that ignoring
singletons has a counter-intuitively large effect on coreference scores, while it has a relatively small effect
on mention identification for RiddleCoref, but a large effect with SoNaR-1. However, whether singletons
are included or not does not change the ranking of the systems. Finally, when gold mentions are given
during evaluation we see the large effect that mention identification has downstream, although again the
ranking is preserved.

6.3 SoNaR-1 annotation issues

Since the gap between the performance of e2e-Dutch and dutchcoref on SoNaR-1 is so large, we take a
quick look at the SoNaR-1 annotations of a single development set document (WR-P-E-C-0000000021),
in order to understand the errors made by dutchcoref. However, it is apparent that part of these errors are
actually errors in the annotation. The first thing that stands out are mentions with exact string matches
which are not linked; for example: Amsterdam (5x), Hilversum (6x), de zeventiende eeuw (the seventeenth
century, 4x), etc. Other errors are due to missing mentions; for example, 2 out of 10 mentions of the artist
Japix are missing, probably because the name occurs twice as part of a possessive. A corpus based on
semi-automatic annotation would not contain such errors, while it is understandable that such links are
easy to overlook in a longer document when manually annotating from scratch.

An example of a questionable mention boundary (with corrected boundary underlined):

(1) [Hij] was [burgemeester van Franeker en later gedeputeerde van Friesland in de Staten-Generaal].
[He] was [mayor of Franeker and later deputy of Frisia in the Senate].

This is actually an example of a downside of semi-automatic annotation, at least if there is no correction,
since the markable boundaries of SoNaR-1 were automatically extracted and could not be changed by
annotators. For the RiddleCoref corpus, such boundaries were corrected.

An example of a missing anaphoric link (second hij was not linked):

(2) Een vers aan [Caspar Barlaeus]1 ondertekent [hij]2 met ‘Dando petere solitus’ dat wil zeggen:
[hij]2 schrijft poëzie in de hoop betere verzen terug te krijgen .
A verse to [Caspar Barlaeus]1 he2 signes with ‘Dando petere solitus’ which is to say: he2 writes
poetry in the hope to get better verses back.

This only scratches the surface of the SoNaR-1 annotations. A more systematic study should be done.

7 Conclusion

We found large gaps in performance for the two systems across the two domains, but this result is not
conclusive due to several reasons, which are as follows. The neural system shows a weakness with the long
documents in the novel corpus, but also needs more training data to reach its full potential. The rule-based
system should be better adapted to the SoNaR-1 annotation scheme, but the neural system’s capacity to
adapt to arbitrary annotation conventions does not necessarily imply better linguistic performance. To
maximize the comparability and usefulness of the corpora, their annotations should be harmonized, which
involves manual mention annotation. In future work we want to improve the neural system by using
genre metadata and finetuning BERT, and the rule-based system should be extended to a hybrid system by
adding supervised classifiers.
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