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Abstract

We introduce a new set of benchmark datasets derived from ACLED data for fine-grained event
classification and compare the performance of various state-of-the-art machine learning models
on these datasets, including SVM based on TF-IDF character n-grams and neural context-free
embeddings (GLOVE and FASTTEXT) as well as deep learning-based BERT with its contextual
embeddings. The best results in terms of micro (94.3-94.9%) and macro F1 (86.0-88.9%) were
obtained using BERT transformer, with simpler TF-IDF character n-gram based SVM being an
interesting alternative. Further, we discuss the pros and cons of the considered benchmark models
in terms of their robustness and the dependence of the classification performance on the size of
training data.

1 Introduction

Since an ever-growing amount of information on events of any type is transmitted via web in the form
of free texts (e.g. online news) one has witnessed in the last decades an emergence of research on devel-
opment of methods and tools for automated detection and extraction of structured information on events
from textual sources (King and Lowe, 2003; Yangarber et al., 2008; Atkinson et al., 2011; Piskorski et
al., 2011; Leetaru and Schrodt, 2013; Ward et al., 2013; Pastor-Galindo et al., 2020). One particular
step in the event extraction process is event classification, i.e., assigning to a text snippet including event
trigger an event type using a domain specific taxonomy, which is the main focus of this paper.

While vast amount of tasks and challenges on automated event extraction, including event classifi-
cation, has been organised over the years, relatively little work has been reported on approaches for
fine-grained event classification. Furthermore, the existing freely available datasets used for training and
evaluation purposes are rather of tiny size, ranging usually up to 5-10K events. Due to the emergence of
deep learning-based approaches for the entire range of NLP tasks, there is a particular need to have larger
event classification corpora in order to gain better insights into the performance of such methods and their
comparison with shallow learning approaches, e.g., in terms of training data sizes required to obtain ‘ac-
ceptable’ performance, types of embeddings and model robustness vis-a-vis different data characteristics.
The rise of deep learning-based approaches allowing for model pre-training in an unsupervised manner
using only plain text and then utilizing transfer learning (via re-using the pre-trained model and only
fine-tuning it in a supervised manner), poses additional questions with regard to the required data sizes
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and the robustness of transfer learning against various data characteristics. One of the most groundbreak-
ing moments in the field of NLP was the release of BERT (Bidirectional Encoder Representations from
Transformers) model (Devlin et al., 2019) in October 2018, as the first deeply bidirectional, unsupervised
language representation model, leading to a significant uplift in multiple performance benchmarks with
limited task-specific fine-tuning. Hence, among the benchmark machine learning models included in the
work reported in this article we study in particular the performance of BERT on the fine-grained event
classification tasks derived from ACLED.

The main contributions of the work reported in this paper can be summarized as follows:

• we introduce a set of relatively large benchmark datasets derived from ACLED1 data - a manually
curated event repository - each consisting of circa 600K short event descriptions for the evaluation
of fine-grained event classification, which covers 25 event types (all types are related to political
violence events, crisis situations, protest and unrest events),

• we compare the performance of various state-of-the-art benchmark models on these datasets, span-
ning SVM and NN-based classifiers that exploit for its feature representations: (a) TF-IDF character
n-grams, (b) off-the-shelf pre-trained non-contextual GLOVE and FASTTEXT embeddings, (c) con-
textual pre-trained BERT embeddings, and (d) contextual fine-tuned BERT embeddings. Further, we
discuss the pros and cons of using these models in terms of their robustness and practical application
in a real-world set-up.

The exploitation of the ACLED data for evaluation of fine-grained event classification models has, in
particular, the following two major advantages: (a) the ACLED event descriptions resemble very much
texts that can be found in online news reporting on events, and (b) ACLED data is to a certain extent noisy
in terms of grammatical correctness, which provides an excellent material to test models robustness vis-
a-vis lower quality data.

To our best knowledge, no similar corpora in terms of size for the task at hand exist, and given the
specific nature of the dataset (i.e. text snippets resembling news reporting), we believe that measuring
the event classification performance of a given method on these dataset might constitute a good approxi-
mation of the to-be-expected performance when applying the same method on real news articles.

The rest of the paper is structured as follows. First, an overview of related work is provided in Sec-
tion 2. Subsequently, Section 3 describes the corpora derived from ACLED data. Next, Section 4 intro-
duces the benchmark models for the event classification task, whereas Section 5 presents the results of
the performance of these models on the ACLED corpora and basic error analysis. The main findings and
practical implications thereof are summarized in Section 6. Finally, Section 7 gives conclusions and an
outlook on future work.

2 Related Work

The early research on event detection and classification in textual documents was driven by the Message
Understanding Contests (Sundheim, 1991; Chinchor, 1998) and the Automatic Content Extraction (ACE)
Challenges (Doddington et al., 2004; LDC, 2008). Many approaches to event detection and classification
have been reported and evaluated on the event corpora (ca. 6000 event mentions in ca. 500 documents)
developed in the context of the aforementioned ACE Challenges, which range from shallow (Liao and
Grishman, 2010; Hong et al., 2011) to deep machine learning approaches (Nguyen and Grishman, 2015;
Nguyen et al., 2016). The more recently introduced Multi-lingual Event Detection and Co-reference
challenge in the context of the Text Analysis Conference (TAC) in 20162 and 20173, included an Event
Nugget Detection subtask, which focused on detection and fine-grained classification of intra-document
event mentions (9 types and 38 subtypes), covering events from various domains (e.g., finances and
jurisdiction). The evaluation datasets used in the context of TAC are rather tiny though (<10K events).

1https://www.acleddata.com
2https://tac.nist.gov//2016/KBP/Event/index.html
3https://tac.nist.gov/2017/KBP/Event/index.html
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In the last decade other efforts on more fine-grained event classification that cover various domains
were reported too. For instance, (Lefever and Hoste, 2016) compared SVM-based models against word-
vector-based LSTMs for classification of 10 types of company-specific economic events from online
news, whereas (Nugent et al., 2017) studied the performance of various models, including ones that ex-
ploit word embeddings as features, for detection and classification of natural disaster and crisis events (7
types) in news articles. While most of the work in this area focused on English language and processing
news texts in particular, some efforts on event classification for non-English language and other domains
were reported too. A benchmark corpus for fine-grained classification of man-made and natural disasters
(28 types) for Hindi, accompanied with evaluation of deep learning baseline models for this task, has
been presented in (Sahoo et al., 2020). Furthermore, an example of fine-grained classification of cyber-
bullying events (7 classes) in social media posts was reported in (Van Hee et al., 2015). This paper reports
on the creation of benchmark corpora for fine-grained event classification of political violence, conflict
situation and protest events from short text snippets, where the main difference vis-a-vis the benchmark
corpora reported elsewhere is the size of the corpora, significantly bigger (ca.. 600K events) versus other
known event classification corpora (usually of the size in the range of 2-10K). The work reported in this
paper builds on the preliminary study of the ACLED data for event classification presented in (Piskorski
and Jacquet, 2020) and extends it in various dimensions.

3 Event Classification corpora derived from ACLED data

The Event Classification corpus was derived from event data collected in the context of the Armed Con-
flict Location & Event Data Project (ACLED)4. ACLED (Raleigh et al., 2010) gathers human-moderated
records on most important facts about political violence and protest events across various continents with
a specific focus on Africa, Asia, the Middle East, and Southeastern and Eastern Europe. The collected
event records contain information on the date of the event, location, the key actors involved, type of
violence and number and description of fatalities. For the sake of creating corpora for the Event Classi-
fication task we have extracted from circa 615K manually-curated event records available on the ACLED

web page5 three elements, including: (a) event snippets, being free-text descriptions of the events, which
mention basic information on all key information on the event, (b) event type, and (c) and event sub-
type. The ACLED event type ontology has 6 main even types (battles, explosion and remote violence,
violence against civilians, protests, riots, strategic developments), which are further subdivided into 25
fine-grained subtypes. The detailed definitions of the various event types and subtypes in ACLED are
reported in the so called ACLED Codebook (ACLED, 2019). Some examples of event descriptions for
violent demonstration, peaceful protest, and armed clash events resp. are given below.

1. Several people were injured when demonstrations erupted at Sangam following the death of a local
militant in a gun fight with government forces the day before. The forces resorted to lathicharge
followed by bursting of teargas shells to disperse the stone-pelting demonstrators.

2. Striking members of the Punjab State Ministerial Staff Union staged a protest in Bathinda on Friday
against the state government’s alleged ’anti-employee policies’.

3. On 12-March-2013, the Myanmar army fired machine guns at a KIA post in Mu Bum [could not
find; geocode for Momauk where the Myanmar army’s LIB 437 is based]. No fatalities noted.

While the texts in the first two examples resemble texts that could as well appear in news articles, the
third example contains some comments in brackets provided by the human experts.

From the raw data extracted from ACLED event records three event corpora were created, each be-
ing result of cleaning and normalising the original free-text event descriptions. The main drive behind
creating three corpora was to move from textual data that contain some ”noise” and some not fully gram-
matically correct constructions to a corpus containing grammatically correct sentences and constructions
which are very close to texts appearing in the news reporting on events.

4https://www.acleddata.com
5https://www.acleddata.com/curated-data-files/

https://www.acleddata.com
https://www.acleddata.com/curated-data-files/
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ACLED-I was created through carrying out most basic cleaning of the texts, including: (a) removing from
the event descriptions quotation and similar non-content relevant characters, (b) removing too obvious
markers that would artificially hint a classifier to guess the correct event (sub)type, e.g., initial phrases
like ”Attack:” corresponding directly to the definition of the event type, and (c) filtering out event records,
whose event descriptions consist of less than 20 characters, which were deemed as non informative.

ACLED-II was created via applying the following treatments on ACLED-I: (a) removing outliers, i.e.,
events, whose description is longer than 650 characters, (b) removing from event descriptions circa 100
unique phrases (provided that they appear at the beginning of the event description and are followed by a
colon) that might indicate the event type6 that are, however, not identical with the event type definitions
(e.g. Detonation:), (c) removing references to urls, (d) removing comments in brackets introduced by hu-
man experts in texts, e.g., [size=thousands], [codes as 10 ....], (e) removing non-Latin based characters,
(f) correcting errors related to missing whitespaces at the end of sentences.

ACLED-III resulted from further cleaning and normalisation of ACLED-II, which included: (a) re-
moving events whose description is shorter than 60 characters, (b) removing additional non-sentence-
like structures corresponding to comments introduced by human experts encoding the events (i.e, con-
structions in brackets like in ACLED-II d) above, but significantly longer), (c) normalisation of vari-
ous non-alphanumeric symbols, (d) removing numeric encoding of locations (coordinates), and (f) re-
moving all event descriptions that contain at least one sentence, which could not be parsed by Stan-
ford PCFG Parser (Klein and Manning, 2003) and resulting in a tree with a root labelled as "S",
"FRAG" or "NP". In this context we made an assumption that parse trees with roots labelled with
tags other than the ones mentioned before constitute potential indicators of non grammatically correct
sentences/utterances/nominal phrases. For instance, the parse tree for the event description ‘Reports that
the CSNPD attacked a truck near Gore killing two people and wounding six’ was labelled with X, and
thus eliminated (subject missing).

For testing robustness of the benchmark models in the event classification task, an additional version
of ACLED-III was generated, in which two main type of modifications were carried out on the ACLED-
III corpus: (a) all day and month names were replaced with randomly selected days and months, and
(b) each occurrence of a toponym referring to a populated place was replaced with randomly chosen
toponym selected from a GEONAMES gazetteer 7 of circa 200K populated cities, whose population is at
least 500. The main drive behind these modifications was to simulate data drift that can be expected in the
domain of the data at hand. This alternate version of ACLED-III will be referred to with ACLED-III-∆.

Corpus Number of Average event description Average number Number of Fraction of
events length (in characters) of sentences/phrases unique words alphabetic chars

ACLED-I 611678 188.8 1.70 216297 80.47%

ACLED-II 610107 184.9 1.69 214249 80.53%

ACLED-III 588940 186.1 1.48 211561 80.56%

ACLED-III-∆ 588940 193.3 1.48 323880 80.87%

Table 1: Basic ACLED datasets statistics.

The basic statistics for all three ACLED datasets are provided in Table 1. The event subtype dis-
tribution diagram for all three ACLED corpora is presented in Figure 1. From the diagram one can
observe that there are 8 event subtypes for which more than 20K instances exist. On the other hand,
there are two event subtypes for which there are only few hundred instances (Chemical weapon,
Headquarters or base established). The cleaning of the data did not result in any signifi-
cant changes in the event subtype distribution for ACLED-II and ACLED-III resp. (see Figure 1). The full
list of event types and their corresponding subtypes, accompanied by more-detailed statistics is provided
in Table 5 in Appendix A.

6Not removed previously while creating ACLED-I
7http:\www.geonames.org

http:\www.geonames.org
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Figure 1: Event subtype distribution for ACLED-I, ACLED-II and ACLED-III.

The distribution of the length of event descriptions for all three ACLED datasets is shown in Figure 2.
For the vast majority the length is between 30 and 400 characters, which corresponds to the length of a
title and 1-2 leading sentences in a news article reporting on an event. ACLED-I corpus contains all the
outliers, i.e., events with description of more than 1000 characters.

Figure 2: Event description length distribution for ACLED-I, ACLED-II and ACLED-III datasets.

4 Benchmark models

4.1 SVM with TF-IDF char n-grams
For the first benchmark model we follow a bag-of-words (BoW) model for extracting TF-IDF features
from the character n-grams contained within each event description and train a linear SVM model as
the classifier. We use an n-gram range between 3 and 5-grams (this turned to be the best setting based
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on empirical observations). We exclude the n-grams occurring in less than 5 event descriptions. We
observed during our experiments that these parameters could be slightly modified without important
impact on the classification results. The vectorisation is implemented with L2 normalisation, in order to
normalise for the number of expressions in each class, and sublinear TF calculations (which log-scales
the TF counts).

The dimensionality of the TF-IDF vectors varies depending on the training set size, and each event
description is represented by a large sparse vector instead of the short full vector used in the word
embedding representation. For the ACLED-III corpus, the TF-IDF vectors vary from 41 054, when
using 1% of the training set, to 364 023 when using the full training set.

Regarding non-linear kernels, due to the fact that with the given size of the data the standard non-
linear SVMs do not scale well, we have run some initial experiments following the common approach
of using kernel map approximations and applying linear SVM on the top of it. Using Nystroem method
(Williams and Seeger, 2001) for approximating RBF kernel as well as using Monte-Carlo sampling from
the Fourier transformation of the RBF (Rahimi and Recht, 2008) and chi-squared kernels (Vedaldi and
Zisserman, 2012) resulted in either worse or similar performance than plain linear SVM. Although only
several alternatives for non-linear kernels have been examined and all are subject to sampling errors
inherent in the applied approximations, we hypothesise that these results are an indication that with the
underlying BoW feature space the problem is either linearly separable or close to linearly separable.

4.2 SVM with non-contextual word embeddings

In the second benchmark model we explored a SVM trained on non-contextual word embeddings. A
word embedding is a function Words → IRd that maps words to real-valued vectors of a fixed dimen-
sion (Bengio et al., 2003). Recently, various studies reported that word embeddings perform surprisingly
well for text classification tasks (Reimers and Gurevych, 2019), in particular in the context of machine
learning models that rely on vector representation as input to enjoy richer representations of text input
while alleviating high-dimensionality issues. We experimented with two popular non-contextual word
embeddings, namely, GLOVE and FASTTEXT embeddings.

GLOVE (Pennington et al., 2014) word embeddings are obtained through exploitation of aggregated
global word-word co-occurrence statistics from a large corpus. We used the pre-trained GLOVE 300-
dimensional vectors trained on WIKIPEDIA and the English Gigaword corpus8. For computing GLOVE

vector for an event description the single GLOVE embeddings of all words contained in the event de-
scription were averaged (unknown words were discarded in this process).

FASTTEXT embeddings (Mikolov et al., 2018) are based on a model, in which each word is represented
as a bag of character n-grams, and the vector representing the word is constructed as the sum of the
vectors for the character n-grams it consists of. We exploited the pre-trained 300-dimensional FASTTEXT

vectors, trained on Common Crawl9 and Wikipedia (Grave et al., 2018) using CBOW with position-
weights with character n-grams of length 5, and a window of size 5.

4.3 SVM with contextual word embeddings

Our third benchmark model is SVM trained on contextual word embeddings. In particular, we used in
our experiments the embeddings based on BERT model, designed to pre-train deep bidirectional rep-
resentations from unlabeled text data. Such pre-trained BERT model can be then fine-tuned with an
additional output layer for classification. The main difference vis-a-vis the classical word embeddings
like WORD2VEC is the fact that BERT produces word representations that are dynamically informed
by the words around them. Further details on the BERT model are provided in the next section and
here we just provide a brief description of the two explored strategies for extracting word embeddings
from BERT: based on non-fine-tuned and fine-tuned models. The sequence embeddings based on the
non-fine-tuned model are taken as the average of all sub-word embeddings from the given text sequence,
extracted from the second-to-last hidden layer. On the other hand, the sequence embeddings based on

8https://catalog.ldc.upenn.edu/LDC2011T07
9https://commoncrawl.org/

https://catalog.ldc.upenn.edu/LDC2011T07
https://commoncrawl.org/
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the fine-tuned model are taken as the final hidden vectors of the special [CLS] tokens (which are fed into
the output layer for classification).

4.4 Fine-tuned BERT

As introduced in Section 4.3, BERT is a deep bidirectional language representation model which can
be pre-trained in an unsupervised manner and then fine-tuned for the specific downstream task, in our
case classification. BERT’s architecture is a multi-layer bidirectional Transformer encoder based on
the original implementation described in (Vaswani et al., 2017). In our work we used the so called
BERT-BASE version based on 12 Transformer blocks (layers), 738-dimensional hidden vectors, 12 self-
attention heads and in total 110M paremeters. The model is pre-trained using two unsupervised tasks:
masked language model (task of predicting some masked tokens) and next sentence prediction. The pre-
training corpus was lower-cased English text of the BooksCorpus (800M words) and English Wikipedia
(2,500M words). For fine-tuning all model parameters are initialized with the values from the pre-trained
model, an additional output layer for classification is used and all the parameters are updated based on
the labeled data. For further details see (Devlin et al., 2019) and the references included therein.

5 Experiments

We have evaluated five SVM-based classifiers (two of which are feeded with BERT embeddings) and
one end-to-end deep NN-based BERT classifier. More specifically, the following models are included in
our experimental setup: (a) SVM with TF-IDF char n-grams (SVM-CHAR), (b) SVM with FASTTEXT

embeddings (SVM-FAST), (c) SVM with GLOVE embeddings (SVM-GLOVE), (d) SVM with non fine-
tuned BERT embeddings (SVM-BERT), (e) SVM with fine-tuned BERT embeddings (SVM-F-BERT),
and finally (f) the deep bidirectional transformer encoder BERT (BERT). All models were used for
running experiments on all four ACLED datasets.

5.1 Experiment settings

For implementing the SVM models, we use scikit-learn (Pedregosa et al., 2011). The SVM pairwise
classification is implemented using scikit-learn’s LinearSVC SVM classifier with the One-Versus-One
wrapper (Pedregosa et al., 2011). For the experiments with BERT we have used the Pytorch-Transformers
library by HuggingFace (Wolf et al., 2019). We have fine-tuned the pre-trained BERT model for 3 epochs
with a learning rate of 3e-5 and a batch size of 32. Padding and truncation of the input text sequences
have been performed with the maximum sequence length of 64 (extending the maximum sequence length
to 128 led to only marginal performance gain).

We use a shuffle-split 80% training (for BERT, 75% training, 5% development), 20% testing. When
testing different portions of the training set, 1%, 5%, 10%, 50% and 100%, the test set remain the same
and the portions are created using stratification split to make sure that the heterogeneous class distribution
is maintained. For the 1% portion configuration, due to the high variability of such small training set, we
use a 10-fold shuffle-split cross-validation configuration and the F1-scores reported for this 1% portion
configuration correspond to the average obtained on the 10 folds.

5.2 Evaluation Metrics

For measuring the event classification performance we used the micro, macro and weighted F1 metric.
While the micro version calculates the performance from the classification of individual instances vis-
a-vis the 25-class model, in macro-averaging, one computes the performance of each individual class
separately, and then an average of the obtained scores is computed. The weighted F1 is similar to the
macro version, but computes the average considering the proportion for each class in the dataset.

5.3 Results

First, in Table 2 the comparison of micro, macro and weighted F1 score for all 6 benchmark models
trained on 100% of the training data for all ACLED corpora is provided (with the exception of SVM-BERT

and SVM-F-BERT which were evaluated only on ACLED-III). One can observe that BERT consistently
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outperforms other models on all three corpora, which is followed by SVM-F-BERT in the case of ACLED-
III. Somewhat surprisingly, SMV-CHAR model constitutes an extremely well-performing runner-up to
the fine-tuned BERT-based approaches, and due to its simplicity makes it attractive from the application
point of view. Furthermore, like shown in other studies (Reimers and Gurevych, 2019), fine-tuning BERT

transformer results in performance boost.

Corpus SVM-CHAR SVM-FAST SVM-GLOVE SVM-BERT SVM-F-BERT BERT

micro F1

ACLED-I 92.4 82.6 85.4 - - 94.9
ACLED-II 91.8 82.4 85.3 - - 94.4
ACLED-III 91.8 82.3 85.0 87.3 93.8 94.3

macro F1

ACLED-I 83.8 61.7 70.9 - - 88.9
ACLED-II 80.7 60.2 69.1 - - 87.0
ACLED-III 80.6 59.4 68.5 72.7 85.0 86.0

weighted F1

ACLED-I 92.3 81.7 84.9 - - 94.8
ACLED-II 91.7 81.4 84.8 - - 94.4
ACLED-III 91.6 81.3 84.5 87.0 93.8 94.2

Table 2: Comparison of micro, macro and weighted F1 scores on ACLED-I, ACLED-II and ACLED-III
datasets using 100% of the training data.

Interestingly, the best results obtained by all models were actually on ACLED-I. Without speculating
whether the differences between the results on ACLED-I versus the two other are statistically significant
we can hypothesize that better results on ACLED-I might be due to: (a) some discriminatory power of the
”noise” that was removed from ACLED-I while creating the other corpora, e.g., the specific comments
added by the humans (in ACLED-I) might have been associated with specific type of events, and (b)
presence of some initial phrases in the event descriptions in ACLED-I which might have constituted
good indicators of the event type (see Section 3), which are absent in the two other datasets.

In Figure 3 we provide the learning curves for micro and macro F1 score for ACLED-III dataset and
four main benchmark models (four for simplicity reasons), using different portions (1%, 5%, 10%, 50%
and 100%) of the training data of ACLED-III. One can observe that already with 1% of the training data
(approx 4.7K events) all models obtain micro F1 above 70%, whereas reaching 70% macro F1 requires
circa 10% (approx 50K events), and only BERT achieves this result actually. However, with smaller
amount of data (i.e., less than 2-3%) BERT might not constitute the best choice in terms of macro F1 as
one can infer from the diagram in Figure 3. According to Table 2 and Figure 3, BERT outperforms its
competitors in all configurations and for all datasets, except the case in which the training set is relatively
tiny. With 1% of the training data (approx. 5K events), BERT macro F1 drops under SVM-CHAR and
SVM-GLOVE. This drop is specifically visible when observing the obtained results per class, which are
provided in Table 4 in Appendix A that compares macro F1 scores per class for BERT and SVM-CHAR

with 1% and 100% of the training data available. BERT macro F1 is equal or close to zero for 9 most
poorly populated classes, whereas out of the 12 most poorly populated classes, SVM-CHAR obtains
better macro F1 for 11 of them. This illustrates how unstable BERT can be when the training set is tiny.

For the two best performing models, namely, SVM-CHAR and BERT, Figure 4 provides the compar-
ison of the learning curves for weighted F1 score across different ACLED corpora, from which we can
observe again that although ACLED-II and ACLED-III were supposed to contain less ”noise” (which
turned to have some discriminatory power) they are actually ”harder” than ACLED-I.

Finally, in order to give an insight into the models robustness in the context of data drift, Table 3
provides the comparison of four benchmark models10 in terms of micro and macro F1 on ACLED-III and
ACLED-III-∆ datasets using full training data. Although there is significant lexical variation between
the two corpora (see 1), one could not observe dramatic loss in the performance of any of the models.

10Similar behaviour was observed for the other two models, therefore we did not include them here.
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Figure 3: Comparison of micro and macro F1 measure results on ACLED-III dataset for all benchmark
models using different portion of the training data.

Figure 4: Comparison of weighted F1 scores on ACLED-I, ACLED-II and ACLED-III datasets for SVM-
CHAR and BERT models. The values on the x-axis indicate the percentage of the training dataset ex-
ploited for training of the respective models.

Corpus SVM-CHAR SVM-FAST SVM-GLOVE BERT SVM-CHAR SVM-FAST SVM-GLOVE BERT

micro F1 macro F1

ACLED-III 91.8 82.3 85.0 94.3 80.6 59.4 68.5 86.0
ACLED-III-∆ 90.9 79.1 83.7 93.7 78.3 54.1 64.8 84.8

Table 3: Comparison of micro/macro F1 on ACLED-III/ACLED-III-∆ using 100% of the training data.

5.4 Error Analysis

In order to carry out a basic error analysis we have focused on the models trained on the full training
data of ACLED-III and computed confusion matrices on the common test set used for the evaluation of
all models. Based on the confusion matrices normalized for predicted conditions (columns) calculated
with SVM-GLOVE, SVM-FAST, SVM-CHAR and BERT models, and shown in Figures 5 and 6 in Ap-
pendix A, we make the following observations. The most prevalent type of error is the misclassification
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of many types of events as Armed Clash or Attack events, which applies mainly to SVM-FAST and
SVM-GLOVE, and to a much lesser extent to SVM-CHAR and BERT. We hypothesize that this type of
mismatches is mainly due to the fact that both armed clashes and attacks are mentioned in the text report-
ing other events, e.g., events on regaining and overtaking territory. Certain significant fraction of mis-
matches results most likely from small nuances in the definition of the respective event types, e.g., in the
context of events related to protests: Peaceful protest, Protest with intervention and
Force against protesters, again, more prominent phenomenon in the case of SVM-FAST and
SVM-GLOVE. Further, we observe one specific error outlier that applies only to SVM-FAST, whereas
it remains insignificant in the context of other models, namely, a mismatch of Chemical weapon
events as Air/drone strike (38%) or Artillery/Missile attack (29%) events. For the
best performing models, namely, SVM-CHAR and BERT, somewhat unsurprisingly, the Other event
type is misclassified most, i.e., in 59% and 41% of cases respectively. Lastly, we note that the highest
percentage of misclassifications between two event types for SVM-GLOVE, SVM-FAST, SVM-CHAR

and BERT is 67%, 52%, 32% and 14% respectively.

6 Discussion

Based on the results presented in Section 5.3 we can draw some general conclusions regarding real-world
usability of the benchmark models evaluated. All SVM-based and fine-tuned BERT-based transformer
model happened to be resistant to somewhat more noisy data, where in the case of the latter model
we were expecting to see some more visible performance loss given that the ACLED event descriptions
appeared to be different from the corpora on which the pre-trained BERT embeddings were learned. As
regards the classification performance BERT appears to be the winner among the compared models and
evaluation metrics, however, when time complexity is a concern (BERT being known to be of magnitudes
slower), the runner-up, namely TF-IDF character n-gram based SVM performed surprisingly well, and
is not lagging far behind, would be definitely the better choice. We have also observed that dropping
all n-grams with TF-IDF below 0.001 reduces the dimensionality of the feature space by the factor of at
least x10 with only marginal impact on classification performance, which makes SVM-CHAR even more
attractive. In addition, in the case of selecting a solution for obtaining the best results in terms of macro
F1 and having available only a tiny fraction of the training data (i.e. less than ca. 20K events) with some
very sparsely populated event classes like in ACLED, using BERT would not be convenient vis-a-vis other
models that managed better to tackle the data sparseness problem. Furthermore, all models did not turn
to dramatically suffer from significant data drift based on some rudimentary robustness tests carried out.

7 Conclusions

In this paper we presented large datasets for evaluation of fine-grained event classification (25 classes),
which were derived from ACLED data, a human-created event repository. We compared the performance
of 6 state-of-the-art benchmark models, spanning SVM and NN-based classifiers that exploit TF-IDF
character n-grams and off-the-shelf pre-trained non-contextual and contextual word embeddings as fea-
tures. The best results in terms of micro (94.3-94.9%) and macro F1 (86.0-88.9%) were obtained using
the popular BERT transformer, however the significantly simpler TF-IDF character n-gram based SVM
constitutes an interesting alternative.

There are various avenues to explore in the future, including, i.a., (a) evaluation of models that
exploit the hierarchy of the event types, (b) carrying out more advanced robustness tests (Jin et al.,
2020), (c) exploration of other transformer-based approaches (Sanh et al., 2019; Adhikari et al.,
2019), (d) more in-depth cross-model error analysis, and (e) alleviating the problem with uneven event
type distribution, and creating somewhat more ”balanced” version of the datasets. All raw ACLED-
derived corpora can be downloaded at: http://piskorski.waw.pl/resources/acled/
ACLED-DATASETS.zip, whereas the corresponding versions with partitions into training and
test data are accessible at: http://cidportal.jrc.ec.europa.eu/ftp/jrc-opendata/
LANGUAGE-TECHNOLOGY/2020_annotated_event_dataset/Folds/. Please note that for
the purpose of carrying out the evaluations reported in this paper the test data from Fold 1 was used.

http://piskorski.waw.pl/resources/acled/ACLED-DATASETS.zip
http://piskorski.waw.pl/resources/acled/ACLED-DATASETS.zip
http://cidportal.jrc.ec.europa.eu/ftp/jrc-opendata/LANGUAGE-TECHNOLOGY/2020_annotated_event_dataset/Folds/
http://cidportal.jrc.ec.europa.eu/ftp/jrc-opendata/LANGUAGE-TECHNOLOGY/2020_annotated_event_dataset/Folds/
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Appendices

A Supporting statistics and information

1% training 100% training
BERT SVM-CHAR BERT SVM-CHAR support (test)

Peaceful protest 0.968 0.931 0.984 0.976 31511
Armed clash 0.882 0.823 0.956 0.929 27506
Attack 0.767 0.709 0.915 0.869 11560
Shelling/artillery/missile attack 0.939 0.904 0.978 0.968 10440
Air/drone strike 0.951 0.941 0.987 0.979 8698
Remote explosive/landmine/IED 0.862 0.858 0.970 0.952 5770
Violent demonstration 0.697 0.628 0.862 0.817 5179
Mob violence 0.488 0.581 0.851 0.804 4646
Protest with intervention 0.630 0.456 0.813 0.756 2455
Looting/property destruction 0.100 0.162 0.808 0.764 1193
Government regains territory 0.464 0.375 0.839 0.758 1174
Change to group/activity 0.442 0.232 0.838 0.784 1148
Abduction/forced disappearance 0.554 0.523 0.903 0.845 1065
Disrupted weapons use 0.087 0.309 0.891 0.836 877
Non-state actor overtakes territory 0.000 0.204 0.784 0.645 753
Grenade 0.732 0.634 0.893 0.867 692
Arrests 0.000 0.135 0.890 0.815 688
Other 0.000 0.086 0.640 0.518 553
Excessive force against protesters 0.000 0.142 0.692 0.599 512
Suicide bomb 0.000 0.256 0.933 0.858 369
Non-violent transfer of territory 0.006 0.073 0.730 0.661 341
Sexual violence 0.000 0.034 0.930 0.893 292
Agreement 0.008 0.023 0.831 0.768 260
Headquarters or base established 0.000 0.000 0.758 0.750 88
Chemical weapon 0.000 0.000 0.829 0.743 18

macro avg 0.383 0.401 0.860 0.806 117788
weighted avg 0.819 0.785 0.942 0.916 117788

Table 4: Macro F1 scores per class for BERT and SVM-CHAR on ACLED-III dataset.
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Event Type Event Subtype ACLED-I ACLED-II ACLED-III

BATTLES 151955 151193 146441

Armed clash 141871 141331 136944
Government regains territory 6119 5975 5809
Non-state actor overtakes territory 3965 3887 3688

EXPLOSION AND REMOTE VIOLENCE 134153 134052 129273

Chemical weapon 106 105 103
Air/drone strike 46222 46177 43617
Suicide bomb 1775 1760 1738
Shelling/artillery/missile attack 52716 52692 51484
Remote explosive/landmine/IED 29514 29501 28804
Grenade 3820 3817 3527

VIOLENCE AGAINST CIVILIANS 70844 70733 65100

Sexual violence 1770 1759 1544
Attack 63121 63027 58124
Abduction/forced disappearance 5953 5947 5432

PROTESTS 177082 176916 173443

Peaceful protest 161829 161701 158500
Protest with intervention 12636 12611 12414
Excessive force against protesters 2617 2604 2529

RIOTS 50545 50341 48964

Violent demonstration 27092 26919 26147
Mob violence 23453 23422 22817

STRATEGIC DEVELOPMENTS 27099 26872 25719

Agreement 1415 1394 1340
Arrests 3518 3505 3432
Change to group/activity 6112 6025 5737
Disrupted weapons use 4641 4629 4507
Headquarters or base established 589 584 468
Looting/property destruction 6008 5973 5719
Non-violent transfer of territory 1821 1814 1674
Other 2995 2948 2842

TOTAL 611678 610107 588940

Table 5: ACLED-I, ACLED-II and ACLED-III event corpus statistics: Number of events.
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Figure 5: Confusion matrices for SVM-FAST (top) and SVM-GLOVE (bottom) evaluated on ACLED-III
dataset.
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Figure 6: Confusion matrices for SVM-CHAR (top) and BERT (bottom) evaluated on ACLED-III dataset.
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