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Abstract

Questions under Discussion (QUD; Roberts, 2012) are emerging as a conceptually fruitful ap-
proach to spelling out the connection between the information structure of a sentence and the
nature of the discourse in which the sentence can function. To make this approach useful for
analyzing authentic data, Riester, Brunetti & De Kuthy (2018) presented a discourse annotation
framework based on explicit pragmatic principles for determining a QUD for every assertion in
a text. De Kuthy et al. (2018) demonstrate that this supports more reliable discourse structure
annotation, and Ziai and Meurers (2018) show that based on explicit questions, automatic focus
annotation becomes feasible. But both approaches are based on manually specified questions.

In this paper, we present an automatic question generation approach to partially automate QUD
annotation by generating all potentially relevant questions for a given sentence. While transfor-
mation rules can concisely capture the typical question formation process, a rule-based approach
is not sufficiently robust for authentic data. We therefore employ the transformation rules to gen-
erate a large set of sentence-question-answer triples and train a neural question generation model
on them to obtain both systematic question type coverage and robustness.

1 Introduction

As the attention in linguistics is shifting from the analysis of isolated sentences to how information is
encoded in discourse, the information structure of sentences and how it is expressed in a given language
is receiving increasing interest. In order to connect the information structure of sentences to the overall
structure of the discourse, so-called Questions under Discussion (QUD) (Van Kuppevelt, 1995; Roberts,
2012; Beaver and Clark, 2009; Velleman and Beaver, 2016) have emerged as a way to spell out the hinge
between the properties of the sentence and the nature of the discourse in which the sentence can function.

QUDs make explicit, how the meaning expressed by a sentence fits into the functional structure of the
evolving discourse. Example (1) illustrates this with the implicit QUD Q2 connecting assertion A2 to the
previous discourse A1. Concretely, the sentence A2 answers the question Q2 given discourse A1.

(1) A1 You were working until last summer for the NSA
Q2 What did he do during his time at the NSA?
A2 and during this time you [secretly collected thousands of confidential documents.]F

That part of the sentence that directly answers the QUD, here the VP secretly collected thousands of con-
fidential documents, is marked as the so-called Focus (Rooth, 1992; Krifka and Musan, 2012), indicating
how the alternatives implicitly present in the discourse are narrowed down as the discourse progresses.
QUDs can thus be seen as a way of making alternatives explicit in the discourse.

This intuitive idea is also mentioned in corpus-based research attempting to analyze the information
structure of naturally occurring data (Ritz et al., 2008; Calhoun et al., 2010). Yet, these approaches were
only rewarded with limited success in terms of inter-annotator agreement, arguably because the task of
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identifying QUDs was not made explicit. More recently, Ziai and Meurers (2014) and De Kuthy et al.
(2016) showed that for data collected in task contexts including explicit questions, such as answers to
reading comprehension questions, focus annotation becomes more reliable. The explicit question context
enables experts and non-experts to reach substantial agreement in the annotation of discourse functions
such as focus. In addition, automated annotation of information structure becomes feasible when explicit
questions are given (Ziai and Meurers, 2018).

Bridging the gap from corpora already containing explicit questions to the analysis of any type of
authentic language data, Riester et al. (2018) spell out a discourse annotation approach in which explicit
pragmatic principles spell out how a QUD can be formulated for every assertion expressed by a text.
De Kuthy et al. (2018; 2019) show that in corpora that are manually annotated with explicit QUDs,
information structure concepts such as focus and topic can be annotated with higher inter-annotator
agreement than in previous work only implicitly making use of the idea of QUDs.

While explicitly annotating corpora with QUDs appears to be a key for reliable manual or automatic
annotation of information and discourse structure, in all of the above approaches it is a complex manual
step. In this paper, we propose to partially automate the QUD annotation process for authentic German
data. Proceeding sentence by sentence through the text, we propose to automatically generate all poten-
tially relevant questions for a given sentence. In principle, transformation rules can transparently express
the potential types of question-answer pairs, e.g., a who question asking for the subject of a sentence,
or a when question asking for a temporal adverbial. But while the relationship between the question
phrase and the answer phrase can concisely be expressed by such transformation rules, the selection of
the proper question phrase, the identification and removal of the answer phrase, and the reformulation of
the sentence into question form and word order depends on a complex interplay of factors.

We therefore proceed in two steps. We first employ a rule-based approach for German to produce
questions for a large German newspaper corpus. We then pair each question with its answer phrase and
the sentence it was generated from and use it to train a neural question generation model. The structure
of the training data ensures high-quality question-answer congruence for a range of question types. At
the same time, the variability of the authentic newspaper data that the rule-based approach was applied
to provides a rich empirical basis for training a robust neural QG model that is capable of generalizing
to data for which the rule-based approach fails to generate questions.

The paper is structured as follows: Section 2 provides some background on QUD annotation to es-
tablish the nature of the questions we aim to generate. Section 3 introduces the different methods we
will combine in our approach, rule-based and neural QG. In section 4, we spell out how the rule-based
approach is used to generate the data needed to train the neural QG, with the training being discussed
in section 5. In the evaluation section 6, we illustrate the success of the methods in quantitative terms
using BLEU scores by comparing the questions generated by the neural approach in relation to the rule-
based method. We then show that the neural approach generates high-quality, well-formed questions for
more sentences than the rule-based approach. Finally, we provide a qualitative analysis of the generated
questions, also leading to ideas for future work discussed in section 7.

2 Discourse annotation with QUDs

While QUDs were originally discussed in theoretical linguistics using constructed examples, the annota-
tion framework introduced in Riester et al. (2018) presents a method for the reconstruction of QUDs in
authentic data. The characterization of a QUD for each assertion in a text is guided by explicit principles
adapted from the formal semantic literature (Rooth, 1992; Schwarzschild, 1999; Büring, 2008; Büring,
2016). The three central principles defined by Riester et al. (2018) are:

Q-A-CONGRUENCE: QUDs must be answerable by the assertion(s) they immediately dominate.

Q-GIVENNESS: QUDs can only consist of given (or, at least, highly salient) material.

MAXIMIZE-Q-ANAPHORICITY: QUDs should contain as much given (or salient) material as possible.

How a QUD can be derived for a given sentence in a discourse according to these principles can be
illustrated using the example (2) from an Edward Snowden interview discussed in Riester et al. (2018).
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(2) A1: Edward Snowden is in the meantime a household name for the whistleblower in the age of
the internet.

Q: #Who is Edward Snowden? EQ-A-CONGRUENCE

Q: #What happened? EMAXIMIZE-Q-ANAPHORICITY

Q2: What did you do?
Q: #When were you working for the NSA? EQ-GIVENNESS

Q: #Who was working until last summer for the NSA? EQ-GIVENNESS

A2: You were working until last summer for the NSA.

Following the first sentence, A1, we want to determine the QUD for the following sentence A2. The only
contextually appropriate QUD that can be derived for the assertion A1 is the question Q2. The other
questions either violate Q-A-CONGRUENCE, or they are too general, conflicting with MAXIMIZE-Q-
ANAPHORICITY, or they contain material not yet introduced in the context, violating Q-GIVENNESS.

The QUD annotation framework is formulated using concepts from formal pragmatics that are not lan-
guage specific, so it can in principle be used to analyze data from any language. Annotation experiments
based on the above principles confirm that the method can be successfully applied to German, English,
and Italian data (De Kuthy et al., 2018; 2019) . The approach is shown to support information-structure
annotation of authentic data with substantial inter-annotator agreement, which eliminates the road block
posed by the low agreement results for information-structure annotation reported in Ritz et al. (2008).

However, manual specification of QUDs is a substantial effort making it difficult to realize large scale
discourse annotation. To address this limitation and further our understanding of QUDs as a link between
sentence and discourse, this paper explores the use of automatic question generation. We focus on the
first step: generating all questions that can be answered by a given sentence. Selecting the question under
discussion supported by the discourse from that set of questions is left to future work.

3 Automated question generation

3.1 Rule-based question generation

In computational linguistics, question generation (QG) has been tackled in several, usually applied con-
texts, mostly focusing on English. Automatically generating questions is a challenging task involving
methods such as parsing, coreference resolution, and the transformation of syntactic structures reflecting
complex linguistic characteristics. A variety of QG systems were developed, often for educational pur-
poses, e.g., assisting students in reading (Mazidi and Nielsen, 2015), vocabulary learning (Brown et al.,
2005; Mostow et al., 2004), or the assessment of reading comprehension (Le et al., 2014).

While systems for such applications are usually designed to generate a particular, task-specific set of
questions, some also try to generate as many different questions as possible. Such generation tradition-
ally involves a form of transformation, be it based on shallow rules created manually (Liu et al., 2010) or
learned from data (Curto et al., 2012), syntax-based transformation rules (Heilman, 2011), or transfor-
mations based on semantic representations (Mannem et al., 2010; Yao and Zhang, 2010; Yao et al., 2012;
Chali and Hasan, 2012), with some proposals also integrating discourse cues (Agarwal et al., 2011).

There is much less QG research for languages other than English, such as German. Gütl et al. (2011)
focus on the extraction of concepts from German text, reporting very little on how questions are ac-
tually constructed. As far as we are aware, Kolditz (2015) is the only systematic exploration of the
characteristics and challenges of QG for German. The rule-based QG system he implemented selects
a potential answer phrase (NPs, PPs and embedded clauses) based on a syntactic analysis of the input
sentence, replaces it with an appropriate question phrase, and transforms the syntactic representation
of the declarative input sentence into question form. This is realized using a complex NLP pipeline
performing constituency and dependency parsing, morphological analysis, and identification of relevant
semantic characteristics. The collected information supports answer phrase selection using a set of 18
rules formulated as Tregex (Levy and Andrew, 2006) patterns. For each answer phrase thus identified, a
second set of rules identifies an appropriate question word or phrase. Finally, transformation rules with a
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linearization component realize the actual QG. A particular challenge is the correct insertion of the initial
constituent of the input sentence into the rest of the sentence so that the initial position of the question
can be occupied by the question phrase, as required by German syntax.

Failure to generate questions or incorrectly generated questions can result from a number of sources.
The NLP pipeline can introduce errors in the analysis of the input sentence, or even completely fail to
process it. The answer phrase selection can fail to select all potential answer phrases, the question word
selection can fail to identify the correct question word for a given answer phrase, and the linearization
component can fail to reorder the sentence initial constituent correctly. Kolditz (2015) evaluates the
system based on a set of 93 sentences from newswire texts. The system generated questions for 77 of
the 93 sentences and produced 150 questions in total, i.e., on average two per sentence. With respect to
the quality of the generated sentences, manual evaluation found 60% to be well-formed. The evaluation
thus confirmed that a substantial number of questions of good quality can be generated, but the approach
is not sufficiently robust to produce a broad range of question types for any input sentence.

3.2 Neural question generation

Complementing rule-based QG approaches, recent QG research has focused on developing deep neural
QG methods. Sequence-to-sequence (Seq2Seq) architectures (Sutskever et al., 2014), where an encoder
network learns a representation of the source sequence and a decoder network generates target words,
have seen significant success in sequence learning tasks such as machine translation. The inclusion of
global and local attention mechanisms (Bahdanau et al., 2014; Luong et al., 2015) and self-attention
(Vaswani et al., 2017), has resulted in state-of-the-art performance in several NLP tasks (Edunov et al.,
2018; Raffel et al., 2019). Indeed, a recent survey of neural question generation (NQG) research (Pan et
al., 2019) shows that Seq2Seq architectures also form the basis of many current QG approaches.

Du et al. (2017) conditioned their generative model on target answers by encoding the position of the
answer in the context as an input feature. Where generating questions takes entire paragraphs for which
a question is to be generated as input, extra information about the intent of asking reduces the ambiguity
of the task. Another important challenge of QG is question word generation so that Sun et al. (2018)
and Du et al. (2017) split the QG task into determining the question word or type and then generating
the rest of the question. The former approach employs a template-based approach with two Seq2Seq
models while the latter proposes a more flexible approach that involves learning an additional parameter
during decoding that explicitly generates the question word. To handle larger contexts and deal with the
problem of out-of-vocabulary words, Zhao et al. (2018) implemented a gated self-attention encoder with
a Copy/Maxout pointer mechanism. Kumar et al. (2018) leveraged linguistic features such as POS and
NER tags and deep reinforcement learning techniques such as policy gradient methods to add additional
task-specific rewards to the training objective.

4 Obtaining data for a neural question generation approach

The productivity and rich compositionality of human language makes handcrafting rule-based systems
for robust question generation very difficult. Deep neural QG methods, on the other hand, can learn latent
representations of syntactic and semantic language characteristics from large sets of data. For this one
needs pairs of questions and the text they are asking about, i.e., a lot of instances of the generalizations
encoded by the transformation-rules in a large, variable set of authentic language data. An NQG model
trained on such a rich set of data then can potentially be more robust since it learns the systematic trans-
formation patterns mixed in with the variable language patterns characterizing authentic use. Obtaining
appropriate training corpora thus is an essential ingredient of NQG.

In current research approaching QG in the context of question answering (QA), QA corpora such as
SQuAD (Rajpurkar et al., 2016), Coqa (Reddy et al., 2019), or Quac (Choi et al., 2018) are typically
used to train and evaluate the NQG models. However, such corpora are not well-suited given our goal of
generating QUDs. These corpora provide a paragraph-level context for each question, where the question
is related to the information encoded in the paragraph, not to the way this information is structured and
presented in a sentence. So Q-A-Congruence between the question and a sentence that answers it is not
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ensured. For research like ours that investigates the relationship between the information structure of a
sentence and the question context, corpus data that does not ensure Q-A-Congruence is insufficient.

In addition, the existing corpora overwhelmingly provide only English data. The few multilingual,
parallel datasets such as XQUAD (Artetxe et al., 2019) and MLQA (Lewis et al., 2019) are evaluation
datasets of very limited size. Automatically translating a corpus or designing a neural model architecture
to jointly translate, align and generate questions (Carrino et al., 2019), while potentially promising, sub-
stantially increases complexity and potentially reduces performance due to translation error propagation.

As empirical basis for developing a German NQG approach with the vision of generating QUDs, we
created a suitable corpus by leveraging the rule-based question generation system of Kolditz (2015),
which he kindly made available to us. Creating such a corpus required a large, authentic German text
source. We initially considered using the German version of Wikipedia. Yet the encyclopedic nature
of these texts collecting facts from a wide of perspectives makes them suboptimal for our approach
designed to identify QUDs in a text with a coherent discourse structure. We therefore settled on the
German newspaper Die Tageszeitung (TAZ, https://taz.de) which in the science edition is available in
XML format and has also been used for the German TüBa-D/Z treebank (Telljohann et al., 2004).

We extracted the text of 450K individual TAZ articles from years 1995 to 2001 using Beautiful Soup 4
(https://crummy.com/software/BeautifulSoup) and performed tokenization and sentence segmentation
using spaCy’s (https://spacy.io) de core news sm model. To eliminate potential segmentation problems
and focus on declarative sentences, we filtered out sentences with fewer than four tokens, not starting
with an uppercase letter, or not ending with a period or exclamation mark. The resulting 5.46 million
sentences were fed into an updated version of the rule-based QG of Kolditz (2015), producing a corpus
of 5.24 million triples of the form <sentence, question, and the answer phrase in the sentence given the
question> (which we make available upon request). This includes over 30 different types of question
phrases, also discussed in section 6. The most common types of answer phrases are NP subjects and
objects as well as various types of adverbial modifiers. (3) and (4) show two typical examples.

(3) A: Beamte,
civil servants,

Richter
judges

und
and

Soldaten
soldiers

in
in

Ostdeutschland
East Germany

werden
will

auch
also

in
in

Zukunft
future

weniger
less

verdienen
earn

als
than

ihre
their

westdeutschen
West German

Kollegen.
colleagues

Civil servants, judges and soldiers in East Germany will continue to earn less than their West
German colleagues.

Q: Wer
who

wird
will

auch
also

in
in

Zukunft
future

weniger
less

verdienen
earn

als
than

ihre
their

westdeutschen
West German

Kollegen?
colleagues

Who will continue to earn less than their West German colleagues in the future?

(4) A: Nostalgiker
nostalgics

erzählen
talk

noch
still

gerne
like

von
about

dem
the

“Silbertäßchen”
little silver cup

Medellin.
Medellin

Nostalgics still like to tell about the little silver cup of Medellin.
Q: Wovon

what of
erzählen
talk

Nostalgiker
nostalgics

noch
still

gerne?
like

What else do nostalgics like to tell about?

In (3), the complex subject NP shown in bold is replaced by the matching question word Wer (‘who’), and
the question is generated with adjusted agreement morphology on the finite verb (werde → wird). In (4),
the PP object in bold is replaced by the question word Wovon (‘what of’), and the question appropriately
integrates the originally sentence-initial phrase (Nostalgiker).

5 Training a neural question generation model

Question generation is a sequence learning problem where the model accepts an input sequence x1, ..., xn
and learns the conditional probability p(y|x, z) of generating the target question y1, ..., ym while condi-
tioned on the answer z:

log p(y |x, z) =
m∑
j=1

log p(yj | y<j , x, z)

https://taz.de)
https://crummy.com/software/BeautifulSoup
https://spacy.io
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We implemented a Seq2Seq model with multiplicative attention (Luong et al., 2015) using TensorFlow
2.0 (Abadi et al., 2015), with our code available upon request. The (surface-form) tokens of the source
sentence, their part-of-speech tags, and the span of the answer phrase were used as inputs to the model.
spaCy (https://spacy.io) with the de core news sm pretrained model was used for tokenization, tagging,
and parsing. The answer span was encoded in IOB format. All input sequences were padded with special
leading and trailing tokens to indicate their beginning and end. In the encoder stage of the model, the
input at each timestep was the concatenation of the embeddings of the token and the POS tag, and the
answer span indicator. Pretrained fastText embeddings (Bojanowski et al., 2017) were used to initialize
the token embedding matrix, which was then frozen during training. The embedding matrix for the POS
tags was randomly initialized. A fixed vocabulary was used for both input and target sequences, which is
generated from 100K most frequent words in the corpus. Out-of-vocabulary (OOV) tokens were replaced
with a special marker token. The model hyperparameters we used are given in Table 3 in the appendix.

We observed that many generated questions could be considered well-formed were it not for the ap-
pearance of the special token in place of OOV words. Most such occurrences appear in noun phrases,
often involving proper nouns. To remedy this, we developed a simple post-processing module to heuris-
tically improve the model’s prediction. Whenever the OOV marker token appears in the generated ques-
tion, the post-processing locally aligns the dependency parse tree of the noun phrases at the level of
triplets (Head, Label, Modifier) between the source sentence and the generated question. The OOV
marker tokens in the question then are replaced with the aligned original tokens in the input sentence.
Given the heuristic nature of this align-and-copy post-processing step, its performance is limited by its
local scope, the accuracy of the dependency parse, and the quality of the generated question.

The corpus introduced in section 4 was iteratively undersampled to create multiple sets of training,
validation and test data for different sample sizes with the same distribution of question types. We trained
two versions of the model, one on 150K training samples and the other on 400K. Validation datasets of
15K samples were used for both models. Teacher forcing was enabled to ensure training stability.

6 Evaluation

6.1 Quantitative BLEU score evaluation on large test set

In the first evaluation, the trained models predicted the questions for 14.700 previously-unseen sentences
and the results were compared to gold-standard questions. For this evaluation on a large test set, for which
no manually validated gold-standard questions are available, we used the questions generated by the
rule-based approach as the gold standard. As measure we used the BLEU metric (Papineni et al., 2002)
standardly employed in current QG research. The SacreBLEU (Post, 2018) Python library (V. 1.4.10
with default parameters) was used to calculate the cumulative and individual n-gram precision scores.
Table 1 lists the results for models differing in training set size as well as the No Copy performance of
the models without OOV post-processing step.

Model Variant BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU (Cumulative)

150K No Copy 79.8 66.4 56.2 47.9 61.47
150K 87.8 76.3 67.7 60.7 72.46
400K No Copy 84.9 75.0 67.1 60.3 71.25
400K 93.8 86.5 81.0 76.5 84.24

Table 1: Evaluating the Seq2Seq models in relation to the questions generated by the rule-based approach

A high BLEU score here indicates a high similarity between the question predicted by the neural model
and the questions generated by the rule-based approach. The very high scores show that the model learns
that QG in the QUD context can essentially be decomposed into the tasks of question phrase generation
and reordering of words from the input sentence. Some generation is also needed for verb forms, as was
illustrated by (3). The post-processing step successfully takes care of many OOV cases.

https://spacy.io
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When put next to the results of recent NQG models for English, such as the BLEU-4 scores of 16.20
(Kim et al., 2019), 16.38 (Zhao et al., 2018), and 22.17 (Chan and Fan, 2019), the scores we presented
above compare very favorably. While the scores provide some related context, they are not directly com-
parable in that we use a different, German corpus and base question generation on individual sentences,
whereas the English approaches uses larger paragraph-sized contexts, conceptualizing QG more as a
subtask of reading comprehension and question answering.

6.2 Quantitative manual evaluation on 500 sentence test set

To determine whether the high BLEU scores achieved by our models when compared to the questions
generated by the rule-based method actually indicates the models’ ability to generate high quality, well-
formed questions, we manually evaluated the questions generated by the different neural models on a test
set of 500 sentences randomly sampled from the original TAZ corpus introduced in section 4. We also
ran the rule-based QG approach on this test set to compare its performance to that of the neural models.

For the 500 sentence test corpus, the rule-based system successfully generated questions for 290 sen-
tences. To run the Seq2Seq QG models, we took the 290 sentences with the answer phrases selected
by the rule-based approach and for the other 210 sentences manually selected one answer phrase each.
For the resulting set of 500 sentences with marked answer phrases, each Seq2Seq model successfully
generated 500 questions.

To manually evaluate the quality of the questions, we formulated annotation guidelines spelling out
the aspects to be considered for the binary decision. To be judged positively, the question must be
grammatically well-formed and meaningful, the sentence must answer the question (Q-A-Congruence),
and the generated question phrase must match the marked answer phrase. Evaluating the inter-annotator
agreement of two annotators for 200 cases, we found substantial agreement (κ = 0.74). Disagreements
arose around the relevance of capitalization and punctuation, for which the guidelines were extended.

On this basis, the human annotators evaluated the questions generated by the different approaches for
the 500 test sentences, with the results being shown in Table 2.

Rule-based 150K (No Copy) 150K 400K (No Copy) 400K

Number of questions 290 500 500 500 500
Well-formed questions 183 147 223 157 261

Table 2: Evaluation results on random sample of 500 sentences

Of the 290 questions that the rule-based approaches generated, 183 were found to be high-quality.
So when the rule-based approach generates a question, 63% of those are of high quality. This arguably
supports use of those questions as reference for the BLEU evaluation in section 6.1. Overall, for the 500
sentence test set, the rule-based approach only generated 183 well-formed questions though (37%).

Of the 500 questions generated by the best neural question model (400K), 261 were found to be high
quality. With 52%, the approach substantially outperforms the rule-based approach, with the success
clearly being due to the robustness of the neural approach, generating questions for all sentences.

6.3 Qualitative analysis

Turning to a more in-depth investigation of the generated questions, we found that both Seq2Seq models
produced questions that are identical to those of the rule-based approach, as illustrated by (5).

(5) A: Auch
also

Otto
Otto

Graf
Graf

Lambsdorf
Lambsdorf

ist
is

gegen
against

zweierlei
double

Wahlrecht.
voting rights

Otto Graf Lambsdorf is also against double voting rights.
Q: Wogegen

what against
ist
is

auch
also

Otto
Otto

Graf
Graf

Lambsdorf?
Lambsdorf

What is also Otto Graf Lambsdorf against?
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For sentence A and the given answer phrase (shown in bold), both Seq2Seq models produced the question
Q, with appropriate question phrase Wogegen (‘against what’) and the sentence initial phrase auch Otto
Graf Lambsdorf (‘also Otto Graf Lambsdorf’) properly integrated into the question.

For the vision of generating possible QUDs, an approach should be able to generate a broad variety of
different question types reflecting the possible answer phrases in a sentence, i.e., possible foci. Question
type variety can be most easily measured in terms of the variety of question phrases generated by the
systems. We found that the rule-based system generated high quality questions with 20 different question
phrases, the 150K model 25 different ones, and the 400K model with 27 produced the largest variety. A
complete table of all question phrases generated by the systems can be found in Table 4 in the appendix.

Turning from the variety to the quality of the question phrase, (6) shows a case, where both neural
models produced an appropriate question word (NQ:), whereas the rule-based approach did not (RQ:).

(6) A: Bürgermeister Karl Henselin hielt sich an die Absprache.
Mayor Karl Henselin kept to the agreement.

NQ: Woran
to what

hielt
kept

sich
himself

Bürgermeister
mayor

Karl
Karl

Henselin?
Henselin?

What did mayor Karl Henselin keep to?

RQ: Wohin
where to

hielt
kept

sich
himself

Bürgermeister
mayor

Karl
Karl

Henselin?
Henselin?

Predicting the appropriate question phrase matching the given answer phrase in the sentence is a
challenge for all QG approaches. For the rule-based model, errors in parsing the input sentence and word
order errors are the two other major problems. For the neural models, unknown words, inappropriately
generated semantically related words, and word order errors are the major challenges. A complete list of
the error types we identified in the 500 sample questions can be found in Table 5 in the appendix.

While word order errors are among the major error sources, the Seq2Seq models in principle picked
up the general word order patterns of questions in German and were even able to produce the correct
question word order for cases where the rule-based system did not. This is illustrated by example (7).

(7) A: Die
the

für
for

heute
today

vorgesehene
planned

Wahl
election

der
of the

Stadtregierung
city government

”fällt
falls

erst
for

mal
now

flach”,
flat

erklärte
announced

ein
a

CDU-Sprecher.
CDU spokesperson
The election of the city government planned for today ”falls flat for now”, announced a CDU

spokesperson.
NQ: Wer

who
erklärte
announced

die
the

für
for

heute
today

vorgesehene
planned

Wahl
election

der
of the

Stadtregierung
city government

”fällt
falls

erst
for

mal
now

flach”?
flat

Who announced the election of the city government planned for today ”will fall flat for now”?

RQ: Wer
who

für
for

heute
today

vorgesehene
planned

Wahl
election

der
of the

Stadtregierung
city government

”fällt
falls

erst
for

mal
now

flach”,
flat

erklärte
announced

die?
the

In the question NQ, the neural model correctly reordered the entire subordinate clause Die für heute
vorgesehene Wahl der Stadtregierung “fällt erstmal flach” after the finite verb erklärte (‘announced’).
In the rule-based question RQ, only the first word Die of this clause was reordered and occurs after the
finite verb, resulting in an ill-formed question.

Since the seq2seq models are based on word embeddings, there is one error type that the rule-based
system does not produce, namely the occurrence of words in the question than are somewhat but not
sufficiently semantically related to words in the source sentence. Example (8) illustrates such a case.

(8) A: Die
the

Landwirte
farmers

haben
have

auf
on

rund
about

24
24

Hektar
hectares

Schlafmohn
opium poppies

angebaut.
cultivated

The farmers have cultivated opium poppies on about 24 hectares.
NQ: Wer

who
hat
has

auf
on

rund
around

24
24

Hektar
hectares

Schlafmohn
opium poppies

exportiert?
exported?
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In the question NQ, the main verb exportiert (‘exported’) was generated by the neural question generator
instead of the verb angebaut (‘cultivated’) of the input sentence. The result is an inappropriate shift in
meaning that violates Q-A-Congruence.

Finally, for very long source sentences (> 20 tokens), some of the typical problems of neural gener-
ation models occur in the generated questions, such as degenerate sequences with repeated words. But
overall, the neural Seq2Seq question generation models do very well with respect to the core compo-
nents of the task: They learn to predict the correct question phrases for the specified answer phrase, and
they pick up on the underlying German language characteristics, especially regarding the word order,
that enable them to generate well-formed German questions from the authentic, highly variable input
sentences.

7 Conclusion and Outlook

Based on the insight that texts annotated with QUDs are an important source for reliable discourse
analysis of larger corpora, we set out to explore how the labor-intensive manual annotation of QUDs
can be partially automated by generating questions for every sentence in a given text. We employed
a rule-based question generation model to generate a large corpus of sentence-question-answer triples.
The corpus was used to train and test a neural question generation model that, given a sentence and a
possible answer phrase, generates the matching question. The quantitative analysis using BLEU scores
and a manual evaluation of a sample set of generated questions showed that the neural model successfully
generated meaningful, well-formed questions. It learned to predict correct question words for a given
answer phrase and generated questions reflecting the appropriate word order characteristics.

As a next step, we envision a question generation model that is able generate all possible questions
that can be answered by a single sentence. For fully-automated QUD annotation, the remaining step
then is the selection of the specific question that is the appropriate QUD in a given discourse. As an
alternative, we also plan to investigate whether the neural question generation approach can be extended
with discourse context to support QUD generation in a single step. In terms of future work on the neural
network approach, we also plan to leverage the insight that the vocabulary of the generated questions
almost entirely derives from that of the source sentence by explicitly encoding it in the neural network’s
architecture using pointer networks (Vinyals et al., 2015) or copy mechanisms (Gulcehre et al., 2016).
Using pretraining methods (Devlin et al., 2018) to impart the model with a deeper understanding of the
problem domain is another potential avenue for this future research.

Developing an approach supporting the generation of a specific QUD for each sentence in a given
discourse can also be seen as a step towards a normal form realization of QUDs. Such normal forms could
facilitate automatic comparison of discourse annotations, which currently is hampered by the fact that
the pragmatic principles formulated by De Kuthy et al. (2019) characterize the meaning to be encoded
by the question, so often there are multiple options for the concrete formulation of the question.
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Appendices

Hyperparameter Value

Batch size 128
Epochs (w/t early-stopping) 40
RNN Unit LSTM
Encoder/Decoder Hidden Size 512
Encoder/Decoder Dropout 0.5
Word Embedding Dim 300
POS Embedding Dim 100
Beam Width 5

Table 3: Seq2Seq Model Hyperparameters

Question Phrase 400K 150K R-based

Was (‘what’) 96 91 67
Wer (‘who’) 90 69 61
Wann (‘when’) 11 11 8
Worin (‘where in’) 9 7 8
Wo (‘where’) 7 8 7
Wozu (‘what for’) 6 6 5
Wovon (‘of what’) 5 6 3
Wen (‘whomacc’) 4 2 4
Für wen (‘for whom’) 3 0 1
Wem (‘whomdat’) 3 4 3
Wobei (‘where by’) 3 3 3
Wohin (‘where to’) 3 3 4
Womit (‘with what’) 3 2 2
Mit wem (‘with whom’) 2 0 0

Question Phrase 400K 150K R-based

Warum (‘why’) 2 1 0
Wonach (‘after what’) 2 2 2
Woran (‘on what’) 2 2 0
Bei wem (‘by whom’) 1 1 1
Laut was (‘according to what’) 1 1 1
Seit wann (‘since when’) 1 2 1
Um was (‘what about’) 1 1 0
Von wem (‘of whom’) 1 0 0
Wie lange (‘how long’) 0 1 0
Wofür (‘what for’) 1 1 1
Wogegen (‘against what’) 1 1 1
Worauf (‘on what’) 1 1 0
Worüber (‘about what’) 1 1 1
Zu wem (‘to whom’) 1 1 0

Table 4: Types and Frequency of Question Phrases in Well-formed Questions of the 500 Sample

Error Type 400K 150K R-based

W-Word 88 82 34
Unknown Word 47 52 0
Word Order 40 33 27
Answer Phrase 18 21 29
Different Word 18 58 0
Missing Word 6 7 0
Verb Form 6 5 1
Repeated Word 5 12 0
Additional Word 4 0 0
No Clause 4 4 6
Collocation 3 3 3

Table 5: Most Frequent Error Types in Questions of the 500 Sample
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