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Abstract

We propose a novel transcription workflow which combines spoken term detection and human-
in-the-loop, together with a pilot experiment. This work is grounded in an almost zero-resource
scenario where only a few terms have so far been identified, involving two endangered languages.
We show that in the early stages of transcription, when the available data is insufficient to train
a robust ASR system, it is possible to take advantage of the transcription of a small number of
isolated words in order to bootstrap the transcription of a speech collection.

1 Introduction

In remote Aboriginal communities in Australia, many efforts are made to document traditional know-
ledge including rock art, medicinal plants, and food practices. While it may be relatively straightforward
to capture spoken content, transcription is time-consuming and has been described as a bottleneck
(Brinckmann, 2009). Transcribing is often seen as an obligatory step, to facilitate access to audio.
Efforts have been made to speed up this process using speech recognition systems, but the amount of
data available in Indigenous language contexts is usually too limited for such methods to be effective.

Recent research has shown the efficacy of spoken term detection methods when data are scarce
(Menon et al., 2018a; Menon et al., 2018b). Taking advantage of the transcription of a few words
would allow us to propagate it through the speech collection and thus assist language workers in their
regular transcription work. So-called “sparse transcription” would be also a way to navigate a speech
collection and allow us to be selective about what needs to be transcribed (Bird, 2020). Several tools exist
for manual transcription, such as Elan and Praat (Wittenburg et al., 2006; Boersma and Weenink, 1996).
However such transcriptions are often made in isolation from the speech community (First Languages
Australia, 2014), and so we miss out on the opportunity to take advantage of the interests and skills of
local people to shape and carry out the transcription work.

We present a fieldwork pipeline which combines automatic speech processing and human expertise to
support speech transcription in almost-zero resource settings. After giving the background, we detail the
workflow and propose a pilot experiment on two very low-resource corpora.

2 Background

Existing approaches to automatic transcription of endangered languages involve methods that have been
developed for automatic speech recognition. While a few hours of transcribed speech can be enough
to train single-speaker models (Gupta and Boulianne, 2020b), speaker-independent models require a
large amount of training data to produce useful transcriptions (Gupta and Boulianne, 2020a; Foley et al.,
2018). Moreover, they draw language workers and speakers into the time-consuming task of exhaustive
transcription, forcing them to transcribe densely, including passages that may be difficult or impossible
given the early state of our knowledge of the language. A more suitable approach, we believe, involves
beginning with stretches of speech where we have the greatest confidence, and only later tackling the
more difficult parts.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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Spoken term detection involves retrieving a segment in a speech collection, given an example. With
this method, it is possible to sparsely transcribe the corpus, i.e., take advantage of an existing transcription
(or a list of spoken words) and identify tokens throughout the collection (Bird, 2020).

Dynamic Time Warping (DTW) (Sakoe and Chiba, 1978) and its more advanced versions (Park and
Glass, 2005; Jansen and Van Durme, 2011) can be used to match a query in a speech collection, but they
can be computationally expensive. DTW “aligns two sequences of feature vectors by warping their time
axes to achieve an optimal match” (Menon et al., 2018a). A common method is to compute DTW, sliding
the spoken query over each utterance in the corpus. In addition, several speech representations have been
considered in the literature for the task of word-spotting. Kamper et al. (2015) and Menon et al. (2019)
explore feature extraction from autoencoders (AE) and correspondence autoencoders (cAE) and show
how top-down constraints can improve the quality of the hidden representation for spoken term detection
tasks. Schneider et al. (2019) introduce wav2vec, a self-supervised model for speech representation
learning which is based on contrastive predictive coding, and apply this to supervised ASR.

3 Proposed Workflow

3.1 Interactive and Sparse Transcription

The key idea of sparse transcription is to use spoken term detection methods to sparsely transcribe a
speech collection, beginning with a small collection of spoken terms. A spoken term is defined as a
chunk of speech considered meaningful by a speaker, which may be a morph, a word, or a multiword
expression. This collection of terms can be a list of keywords (or morphs) recorded in isolation by a
speaker. Equally, it can be obtained by extracting audio clips from a speech collection.

We set up the workflow as shown in Figure 1. We begin with a lexicon of size s and a speech collection
(Fig. 1a). This lexicon is composed of speech terms and their orthographic transcriptions w1 . . . wn. We
use a spoken term detection method to retrieve speech terms in the collection that match those in the
lexicon (Fig. 1b). The system presents the n most confidently identified terms and presents them for
verification (Fig. 1c). False positives are corrected, i.e., erased from the transcription (Fig. 1d). We
clip out from the utterances the speech terms correctly retrieved and add them to the lexicon as extra
samples of a given entry (Fig. 1e). We allow a single entry to have maximum of m extra examples.
We manually collect new speech units with a speaker, add them to the lexicon (Fig. 1f) and start a new
iteration (Fig. 1b). We apply this for i iterations with a lexicon growing each time. The size s of the
lexicon, n number of words checked, maximum m of extra examples for each word, and number i of
iterations are hyperparameters which vary according to the contingencies of the fieldwork.

(a) Starting point (b) Spoken term detection (c) Manual confirmation

(d) Confirmed hits (e) Extra examples added to lexicon (f) Expanded lexicon

Figure 1: One iteration of our Interactive Sparse Transcription Workflow



3424

4 Pilot experiment: simulating this interactive scenario

Speech data. We apply the pipeline to two corpora. The first one is a 4h30m corpus in Mboshi1 (Godard
et al., 2018), a Bantu language spoken in Congo Brazaville (ISO mdw). It consists of 5,130 utterances
sentence and word-aligned with an orthographic transcription. The utterances are elicited from text.
This corpus contains only three speakers, of which one is responsible for 70% of the corpus. The second
corpus is a very small (0h20m) corpus in Kunwinjku, an Australian Aboriginal language (ISO gup). It
consists of 301 utterances aligned with an orthographic transcription. A forced alignment at the word-
level has been created using the MAUS aligner (Kisler et al., 2017). The corpus contains 4 guided tours
of the same town and one guided tour of another Aboriginal site. Each tour has been produced by a
different speaker. To create initial and expanded lexicons, we select the 100 and 60 most frequent words
bigger than 3 syllables for Mboshi and Kunwinjku respectively, in order to avoid words which are too
short. A speech occurrence of each entry is extracted from the speech collection using the word-level
alignments.

Acoustic features. In this interactive process, we explore several speech representations to identify
those that are most suited to the pipeline, namely mel-frequency cepstral coefficients (MFCC) and
perceptual linear prediction (PLP) features. We also use the hidden representation of an auto-encoder
(AE) and correspondence auto-encoder (cAE). For this we use architecture of (Kamper et al., 2015) to
self-train a 5-layer stacked AE (instead of 8) on 4h of Mboshi and 2h of Kunwinjku (YouTube videos).
The cAE is trained using similar segments extracted from the speech collections with an unsupervised
term discovery tool (Jansen and Van Durme, 2011). Finally we also use wav2vec representations
(Schneider et al., 2019). The wav2vec model is either trained from scratch on Mboshi and Kunwinjku
(w2v mb and w2v kun) or it is adapted from an original English model (w2v en mb and w2v en kun).
We experiment with these features, with and without mean and variance normalisation (MVN) (Strand
and Egeberg, 2004).

Sparse transcription experiments. The workflow described in section 3.1 is applied for 5 iterations
for Mboshi and 3 iterations for Kunwinjku with an initial lexicon consisting of 20 words. 20 new words
are added at the lexicon at each iteration. We end up with a 100 word lexicon for Mboshi and 60 words
for Kunwinjku. The 10 best hits per word are checked (n = 10) and a maximum of 5 extra examples
per word (m = 5) are added to the lexicon for both corpora. In addition, in order to avoid unnecessary
verification in case the DTW score is too low, the worst score of the correct words checked during the
first iteration is used as a threshold for the following iteration. To simulate human verification (Fig. 1c)
we directly compare the hits output by the system with the gold transcriptions of the corpora.

5 Results: impact of speech feature representations in the workflow

We report the results of this new workflow in Table 1. The average precision scores (AP) correspond
to the mean of the precision of the workflow computed at each iteration. The final recall is defined as
the number of items retrieved from the full corpus X out of the number of all retrievable items in the
corpus, i.e., the intersection of the lexicon L and the corpus C, X/(L ∩ C). In other words, this recall
corresponds to the coverage of the lexicon related to its tokens in the speech collection. The impact
of MVN is detailed only for the basic representations (PLP and MFCCs) since normalisation did not
show any major influence on the neural representations (AE, cAE and w2v). We can make the following
comments from the results shown in Table 1: (a) mean and variance normalisation (MVN) is important to
improve results of basic (PLP and MFCC) features. Figure 2 shows that normalisation improves retrieval
when the query term and the search term are pronounced by different speakers; (b) neural AE and cAE
features are normalized-by-design but do not lead necessarily to better performance than PLP and MFCC;
and (c) representations provided by wav2vec are not efficient. The small size of the corpora might be the
main obstacle when training efficient self-supervised models for learning speech representations.

Speaker diversity in the two corpora (Sec. 4) has an impact on the final results. For Mboshi 70%
of the words to be retrieved in the speech collection are pronounced by the same speaker in the final

1https://github.com/besacier/mboshi-french-parallel-corpus
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Features MVN AP final recall

mfcc no 23.87 16.78
mfcc yes 32.67 23.37
plp no 23.89 16.86
plp yes 31.64 23.03
w2v mb no 24.57 16.88
w2v en mb no 19.23 13.72
AE no 31.93 21.51
cAE no 27.31 20.70

Features MVN AP final recall

mfcc no 15.42 30.82
mfcc yes 20.82 42.84
plp no 15.21 32.67
plp yes 22.55 44.89
w2v kun no 5.39 15.72
w2v en kun no 5.45 15.87
AE no 22.07 45.30
cAE no 21.88 40.37

Table 1: Results for the Mboshi corpus (left) and for the Kunwinjku corpus (right)

(a) (b)

Figure 2: Proportion of same-speaker/different-speaker retrieval for each representation

lexicon and 37% for Kunwinjku. Figure 2 reports the proportion of tokens retrieved between same
speakers and different speakers over the total number of tokens retrieved for Mboshi and Kunwinjku.
The first observation is that the pipeline mostly retrieves terms pronounced by the speaker. It is clear
that MVN improves performance for both same-speaker and different-speaker retrieval. We also note
that, while wav2vec representation is overall less performant, it seems promising for extracting more
speaker-independent representations, as illustrated by the results obtained with w2v en mb features.
Future work will investigate this by leveraging more raw speech in Mboshi and Kunwinjku for training
better self-supervised (wav2vec) models.

Regarding false positives (Table 2), the first errors we can observe are different spellings of words
(in the gold transcription) referring to the same meaning (e.g., namekke / nemekke “that one”). Since
Kunwinjku is primarily a spoken language, variable spellings are common. Moreover, because of the
morphological complexity of the language, many of the top false positives are actually inflectional
variants of the query term (e.g., balanda / balanda-ken “white man / from the white man”). Allowing
matching at a smaller granularity could be a way to achieve wider coverage of the speech collection.

Query False Positive query translation hit translation

nahne mahne it (pronoun) this (demonstrative)
nemekke namekke that one that one (other spelling)
balanda balanda-ken white man of the white man (genitive)
bininj bininj-beh man from the man
nemekke yekke that one dry season
mahni mahne this (demonstrative) this (other spelling)

Table 2: Top false positive generated by the spoken term detection system in Kunwinjku
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(a) screenshot of the app (b) deployment of the app

Figure 3: Lexical confirmation app

6 Deployment

Building on prior work developing mobile tools for language documentation (Bettinson and Bird, 2017),
we have begun to explore methods for deploying the pipeline in a remote community. While the first step
of identification of new words is straightforward, the task of lexical confirmation might be much more
complex to apply. The members of an Aboriginal community might not be familiar with technologies
and they are not necessarily literate (in the narrow western sense). Taking into account these constraints,
we built a lexical confirmation app and trialled it on a small lexicon (Fig. 3).

The idea would be to load the output of the spoken term detection system into the app. Then a speaker
can listen to the query, listen to the utterance where we expect the query to be found, and confirm if the
utterance contains the query, (Fig.1c)

7 Conclusion

We investigated the use of spoken term detection methods as an alternative to the usual methods that
have been inspired by automatic speech recognition, and which require exhaustive transcription even for
passages which exceed the present state of our knowledge about the language. Instead we devised a
workflow based on spoken term detection, and simulated it for two small corpora: one in Mboshi, one
in Kunwinjku. The simulations of this workflow show that, with well chosen speech representations,
we may have a viable approach for rapidly bootstrapping transcriptions of large collections of speech in
endangered languages. The next step of this work would be to design methods to involve Indigenous
people in tasks such as the construction of the lexicon or the confirmation of the output of our system for
a deployment of this workflow in a remote community.
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