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Abstract
Recent research indicates that taking advantage of complex syntactic features leads to favorable
results in Semantic Role Labeling. Nonetheless, an analysis of the latest state-of-the-art mul-
tilingual systems reveals the difficulty of bridging the wide gap in performance between high-
resource (e.g., English) and low-resource (e.g., German) settings. To overcome this issue, we pro-
pose a fully language-agnostic model that does away with morphological and syntactic features to
achieve robustness across languages. Our approach outperforms the state of the art in all the lan-
guages of the CoNLL-2009 benchmark dataset, especially whenever a scarce amount of training
data is available. Our objective is not to reject approaches that rely on syntax, rather to set a strong
and consistent language-independent baseline for future innovations in Semantic Role Labeling.
We release our model code and checkpoints at https://github.com/SapienzaNLP/multi-srl.

1 Introduction

Semantic Role Labeling (SRL) – the task of automatically addressing “Who did What to Whom, How,
When and Where?” (Gildea and Jurafsky, 2000; Màrquez et al., 2008) – is a long standing open problem
in Natural Language Processing (NLP), and a central task required to complete the puzzle of Natural
Lan-guage Understanding (Navigli, 2018). Its roots date back to several decades ago, to when Fillmore
(1968) first theorized the existence of deep semantic relations between a predicate and other sentential
constituents. Over the years, different linguistic formalisms and their corresponding predicate-argument
structure inventories expanded Fillmore’s seminal intuition (Dowty, 1991; Levin, 1993), yet the need to
rely on manually designed complex feature templates severely limited early SRL models (Zhao et al.,
2009). Fortunately, the recent great success of neural networks in NLP has drawn attention back to SRL
and has led to considerable performance gains. This has been particularly the case for recurrent neural
networks, thanks to their ability to better capture relations over sequences (Marcheggiani et al., 2017;
He et al., 2017). The positive results obtained in SRL were rapidly extended to other fields where they
proved to be beneficial to several downstream tasks, from Machine Translation (Marcheggiani et al.,
2018) to Information Extraction (Christensen et al., 2011), Opinion Role Labeling (Zhang et al., 2019a),
and Question Answering (He et al., 2015).

As researchers constantly explored new approaches to improve SRL, the exploitation of syntactic
features soon emerged as a natural choice. Cai and Lapata (2019b) suggested that syntax ought to help
semantic role labelers since i) a significant portion of the predicate-argument relations in a semantic
dependency graph mirrors the edges that appear in a syntactic dependency graph, and ii) there is often a
deterministic mapping from syntactic to semantic roles. Following this line of thought, numerous papers
from major venues reported improvements in SRL by explicitly taking advantage of different properties
in syntactic dependency trees to various extents (Wang et al., 2019; Zhang et al., 2019b; He et al., 2019).

However, if we step back to observe the larger picture, a significant gap among languages strikes the
eye. Indeed, among the state-of-the-art multilingual SRL systems that reported their results on all the lan-
guages of the CoNLL-2009 benchmark dataset (Hajic et al., 2009), the currently best-performing system
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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(He et al., 2019) manifests a very significant discrepancy in performance between high- and low-resource
languages (around 10% in F1 score); the works of Chen et al. (2019) and Lyu et al. (2019), inter alia,
also show the same behavior, with gaps in F1 scores that fluctuate around 15% and 14%, respectively.
These large differences from language to language suggest that recently proposed innovations do not
seem to generalize consistently across different languages, especially when syntax plays a central role or
the novelty is tested on out-of-domain data. Anyhow, and perhaps most importantly, these approaches
do not address the ever-present performance gap between high-resource and low-resource languages,
such as English and German, respectively, where the disparity in F1 score still hovers around 10% in the
in-domain evaluations of CoNLL-2009, and is even wider in the out-of-domain evaluations.

We argue that correctly harnessing contextual intra-sentence information can lead to large gains in
performance on single languages and a more robust generalization capability when scaling across lan-
guages, especially when these belong to different linguistic families (e.g., English and Chinese). More
precisely, the main contributions of this paper are as follows:

• We propose the first language-agnostic SRL model that achieves state-of-the-art performance across
6 languages1 without the use of any morphological, part-of-speech or syntactic information.

• In the wake of the recent interest in cross-linguality, we report promising results in zero-shot cross-
lingual SRL.

• We conduct an analysis to provide an empirical demonstration of the robustness of our approach in
low-resource settings.

• We release our code and model checkpoints to allow easy reproduction of our experiments and
facilitate the integration of future innovations on top of our model.

We stress that our objective is not to reject syntax in SRL. On the contrary, we strongly believe that
clever integration of syntactic features is a promising avenue to advancing research. Here, however,
our aim is to provide a strong language-agnostic baseline that is robust and consistent across languages,
especially low-resource ones. We hope our effort can become a stepping stone for future developments
of both syntax-agnostic and syntax-focused SRL.

2 Related Work

Dependency or Span? Currently, SRL is cast as either a span-based or a dependency-based labeling
task. Given a predicate in a sentence, the main difference between the two settings is that, in the former,
semantic role labels are assigned to the entire span of an argument, whereas, in the latter, semantic role
labels are assigned only to the semantic head of the argument. Both span- and dependency-based SRL
have continued to be developed and supported in parallel over the years with the organization of the
CoNLL-2005 (Carreras and Màrquez, 2005) and CoNLL-2012 (Pradhan et al., 2012) tasks for span-
based SRL, and the CoNLL-2008 (Surdeanu et al., 2008) and CoNLL-2009 tasks for dependency-based
SRL. The debate over which representation is best is still open and subject to active investigation, with
ongoing efforts aimed at merging the two into a unified formalism (Li et al., 2019). In this work, we focus
mainly on dependency-based SRL as CoNLL-2009 includes the widest and most varied set of languages,
but we also report results on the span-based CoNLL-2012 English benchmark.

End-to-end approaches. Regardless of the formalism of choice, SRL is traditionally divided into a set
of simpler subtasks: predicate identification, predicate sense disambiguation, argument identification and
argument classification. Early work used different sets of template features and statistical/neural models
to tackle each predicate and argument subtask separately (Zhao et al., 2009), but the recent success of
the multi-task learning paradigm (Caruana, 1997) prompted the development of end-to-end models that
jointly address some of the subtasks (Cai et al., 2018; Li et al., 2019; He et al., 2019). Since the CoNLL-
2009 shared task provides pre-identified predicates, systems – end-to-end approaches included – usually

1CoNLL-2009 originally included 7 languages (Catalan, Chinese, Czech, English, German, Japanese, Spanish), however
we do not include Japanese in our studies as it is no longer available through LDC due to licensing problems.
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process the same sentence np times, where np is the number of predicates in the sentence; at the cost
of longer training times, this approach lets a system contextualize a sentence with respect to a specific
pre-identified predicate. In our work we take another approach: our system contextualizes a sentence
to all the predicates it contains in a single forward pass. This results in shorter inference time and a
significant reduction in training time, because our model converges in less than 30 epochs compared to
the 300 epochs required by the current state-of-the-art multilingual system of He et al. (2019).

Syntax-agnostic SRL. Marcheggiani et al. (2017) opened the door to the initial wave of syntax-
agnostic models for SRL by efficiently employing a BiLSTM-based encoder to capture longer predicate-
argument relations within an input sequence, thereby outperforming syntax-aware systems in the
CoNLL-2009 English, Czech and Spanish evaluation sets for the first time. Cai et al. (2018) proposed
the first full end-to-end syntax-agnostic SRL model to jointly learn to disambiguate predicate senses and
recognize their corresponding semantic arguments, and further enhanced the model with an attentive
biaffine scorer (Dozat and Manning, 2018) to better condition argument predictions on a given predi-
cate in the input sentence. The combined contribution of these innovations realigned the performances
of syntax-agnostic systems to the best syntax-aware systems. Most recently, Li et al. (2019) showed
that the use of contextualized word embeddings such as ELMo (Peters et al., 2018) leads to further
progress, thus lending support to the hunch that high-quality contextual information is key to enabling
high-performing SRL systems. We stress that there is a subtle catch in the definition of syntax-agnostic:
the foregoing approaches do not make use of sentence-level syntax, but do still consider lexical-level
syntactic features, such as part-of-speech tags. As a result, their input is still language-dependent. In
contrast, our approach does away with any lexical- or sentence-level syntactic feature and is therefore
truly syntax-agnostic.

Syntax-aware SRL. Syntactic features have recently gained traction in SRL research, mostly due to
the diversity of the available representations, the quality of the information they encode, and the wide
range of techniques that can be used to take advantage of them. Notable work includes the use of graph
convolutional networks to capture short-distance relations between neighbors in the syntactic dependency
graph (Marcheggiani and Titov, 2017a), deriving argument pruning rules from syntactic dependency trees
(He et al., 2018b), clustering dependency relations (Kasai et al., 2019), and syntax-based attention mech-
anisms (Strubell et al., 2018; Zhang et al., 2019b). However, most of the work that reported performance
improvements in the CoNLL-2009 benchmark dataset only did so in a subset of its in- and out-of-domain
evaluations of the 6 available languages, with the noteworthy exception of Lyu et al. (2019). This may
fuel the suspicion that either there is a lack of real interest in syntax-aware multilingual SRL, or syntax-
focused innovations do not scale immediately across languages. In any case, reporting fragmented results
strongly limits full-fledged comparisons and, therefore, hinders progress in multilingual SRL.

3 Model Description

Building on top of recent successes in deep learning, our model learns to tackle predicate sense disam-
biguation and argument identification/classification jointly. In particular:

• our model features a word encoder which, in contrast to current work in SRL, exploits the internal
states of a language model to compute the contextualized representation of a word (Section 3.1);

• while previous work uses a single sequence encoder to capture predicate-argument relations, we
adopt a two-stage sequence encoding strategy:

– a predicate-aware word encoder which re-contextualizes the word representations with respect
to all the predicates in a sentence in a single forward pass (Section 3.2);

– a predicate-argument encoder which specializes the representation of each argument to a single
predicate, for each predicate in the input sentence (Section 3.3).
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3.1 Contextualized Word Representation

The prior knowledge encoded in pretrained language models such as ELMo (Peters et al., 2018), BERT
(Devlin et al., 2018) and XLM-RoBERTa (Conneau et al., 2020) is currently showing significant benefits
in an ever-increasing array of NLP tasks. Taking inspiration from recent work (Bevilacqua and Navigli,
2020), our model computes word-level representations by combining the different knowledge encoded
at different hidden layers of a pretrained language. More formally, let L : V |t| → Rn×h be a language
model with an input vocabulary V that, given a sequence t = 〈t1, t2, . . . , t|t|〉 of tokens ti ∈ V , returns a
sequence o = 〈o1,o2, . . . ,o|t|〉 of dense vector representations oi ∈ Rh. Also, let L be structured in K

inner layers l1, l2, . . . , lK such that L(t) = lK(· · · (l1(t))), and that, for the k-th layer lk, the correspond-
ing output states ok = lk(ok−1) are accessible. Then, given an input sentence w = 〈w1, w2, . . . , wn〉
where each word wi can be tokenized into mi subwords belonging to the language model vocabulary,
i.e., wi = 〈ti1, ti2, . . . , timi : tij ∈ V 〉, we define our input sequence t as:

t =
〈
〈tSTART〉, 〈t11, t12, . . . , t1m1〉1, 〈t21, t22, . . . , t2m2〉2, . . . , 〈tn1, tn2, . . . , tnmn〉n, 〈tEND〉

〉
where tSTART and tEND are special tokens that indicate the beginning and the end of a sentence, respec-
tively. We compute the contextualized word representation ei of wi as the average of the Swish activation
(Ramachandran et al., 2018) of the concatenated hidden states extracted from the upper K ′ layers of L
for each subword tij ∈ wi. More formally:

cij = oKij ⊕ oK−1ij ⊕ · · · ⊕ o
K−(K′−1)
ij

c′ij = Swish(Wccij + bc)

ei =
1

mi

mi∑
j=1

c′ij

where okij is the output state for the subword tij from the k-th layer of L, cij is the concatenation of the
output states for the subword tij from the upper K ′ layers of L, Wc ∈ Rdw×K′·h and bc ∈ Rdw .

While previous approaches often enriched their representations with lexical-level morphological or
syntactic information, e.g., lemma and POS embeddings (Marcheggiani et al., 2017; Li et al., 2019; He
et al., 2019), or with sentence-level syntactic information, e.g., syntactic dependency embeddings, GCNs
over syntactic trees, and syntactic pruning rules (Marcheggiani and Titov, 2017b; He et al., 2019; Cai and
Lapata, 2019b), we emphasize that our word encoder relies only on raw text as an input, and is therefore
independent of any linguistic feature. However, while this word encoder provides a contextualized repre-
sentation ei of each word wi with respect to a sentence w, the resulting representations are still unaware
of the predicates appearing in w.

3.2 Predicate-Aware Word Representation

As mentioned in Section 2, predicate-specific information is usually provided at the input level by means
of a predicate indicator flag (Marcheggiani et al., 2017; Marcheggiani and Titov, 2017b; He et al., 2019),
a predicate embedding (Cai et al., 2018), or by prepending or appending the predicate word to the in-
put sentence (Shi and Lin, 2019). Instead, we adopt an opposite approach in which predicate-specific
information is explicitly expressed only at the output level: for each sentence, the model is tasked, in a
multi-objective fashion, with i) learning whether a word is a predicate, and ii) disambiguating the sense of
each predicate. With this approach, predicate-specific information can back-propagate into a tailor-made
sequence encoder to specialize the contextual word representations with respect to all the predicates in
the input sentence simultaneously.

In particular, our model features a “fully-connected” stacked-BiLSTM sequence encoder where each
BiLSTM layer lk is purposely tweaked to be directly connected not only to the layer lk−1 immediately
below lk, but also to each underlying BiLSTM layer lk−i with i ∈ {1, 2, . . . , k}. More formally, the
contextualized word embeddings E = 〈e1, . . . , en〉 are re-contextualized into predicate-aware word
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embeddings H = 〈h1, . . . ,hn〉 as follows:

H0 = E

Hk =Hk−1 ⊕ BILSTM(LAYERNORM(Hk−1))

H =HK′′

spi =Wsp · Swish(Whp
hi + bhp

) + bsp

ssi =Wss · Swish(Whs
hi + bhs

) + bss

where LAYERNORM stands for layer normalization (Ba et al., 2016) and K ′′ is the total number of layers
in the sequence encoder, whereas spi is the unnormalized log probability that word wi is a predicate and ssi
is the unnormalized log probability over the predicate sense vocabulary. We highlight that, thanks to the
direct input-output connections in our fully-connected BiLSTM encoder, predicate-specific information
coming from spi and ssi is immediately back-propagated into the i-th hidden state hk

i of the k-th BiLSTM
layer lk.

3.3 Predicate-Argument Representation
Even if the above predicate-aware word representations encode valuable information about the position
and the sense/meaning of the predicates in the input sentence, the same word may play a different se-
mantic role for each predicate. While previous systems for dependency-based SRL relied on a single
sequence encoder to capture predicate-argument relations, our model instead features a second sequence
encoder dedicated to capturing predicate-argument relations. To obtain a predicate-argument represen-
tation, i.e., a specialization of a word representation with respect to a single predicate, our predicate-
argument encoder first projects each predicate-aware word representation hi obtained in the previous
step for a word wi to two distinct vector spaces, a predicate-specific representation pi and an argument-
specific representation ai:

pi = Swish(Wphi + bp)

ai = Swish(Wahi + ba)

Then, for each predicate wp with 1 ≤ p ≤ n, we obtain a wp-specific representation of the sentence
by concatenating the predicate-specific representation pp to each argument-specific representation ai of
every word wi in the input sentence:

(P⊕A)p = 〈pp ⊕ a1, pp ⊕ a2, . . . , pp ⊕ an〉

Finally, these representations are further refined by an argument-specific fully-connected BiLSTM en-
coder in order to capture the role each word wi plays with respect to the predicate wp:

Z0
p = LAYERNORM((P⊕A)p)

Zk
p = Zk−1 ⊕ LAYERNORM(BILSTM(Zk−1))

Zp = ZK′′′

sri|p =Wr · Swish(Wzzi|p + bz) + br

where K ′′′ is the number of layers in the argument-specific fully-connected BiLSTM encoder and sri|p is
the score distribution over the role vocabulary for a word wi with respect to a predicate wp.

3.4 Multitask Training Objective
The model is trained to jointly minimize the sum of the categorical cross-entropy losses on predicate
identification L(sp) (see Section 3.2), predicate sense disambiguation L(ss) (see Section 3.2), and ar-
gument identification/classification L(sr) (see Section 3.3). The cumulative loss is the average of the
individual subtask losses weighted on the number of training instances for each subtask:

L =
NpL(sp) +NpL(ss) +N rL(sr)

Np +Np +N r
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where Np and N r are the number of instances of predicates and arguments/roles in the training set,
respectively.

4 Experiments

We evaluate our model in multilingual dependency-based SRL (CoNLL-2009) and English span-based
SRL (CoNLL-2012). Hereafter, we provide a brief overview of the CoNLL-2009 and CoNLL-2012
benchmark datasets (Section 4.1), we describe our experimental setup (Section 4.2), and report results
for each dataset and language (Section 4.3).

4.1 The CoNLL-2009 and CoNLL-2012 Benchmark Datasets

The CoNLL-2009 dataset is the most comprehensive multilingual SRL benchmark to date, featuring 6
languages from dissimilar linguistic families with 6 in-domain and 3 out-of-domain test sets. Predicates
are already identified and, therefore, systems are evaluated on predicate sense disambiguation, argument
identification and argument classification.

Performing multilingual SRL in CoNLL-2009 is not trivial since the annotation process and methodol-
ogy vary considerably from language to language: German only contemplates verbal predicates, English
also considers nominal predicates, Czech includes adjectival and adverbial predicates as well. More-
over, English uses separate predicate-argument structure inventories for verbal and nominal predicates,
i.e., PropBank and NomBank, while Chinese uses a unified inventory. Finally, training sets vary dra-
matically in size, from more than 400,000 predicate instances in Czech to less than 20,000 in German.
CoNLL-2009 is therefore the ideal benchmark for the ability of SRL models to scale multilingually.

While our focus is on multilingual SRL, we also evaluate our approach on CoNLL-2012, which is, to
the best of our knowledge, the largest dataset with gold annotations for span-based SRL, and show that
our model can also achieve state-of-the-art results on span-based English SRL.2

4.2 Experimental Setup

We implemented the model in PyTorch3 and PyTorch Lightning4, using the Transformers library5 (Wolf
et al., 2019) for language modeling. We selected the hyperparameter values according to the best F1

score on the English development split; for any other language, the model was trained with the same
hyperparameter configuration used for the English language. We trained each model configuration for at
most 30 epochs using Adam (Kingma and Ba, 2015) with an initial linear learning rate warmup followed
by a linear learning rate cooldown. Table 1b reports the hyperparameters for the best configuration. All
the results reported in the following sections refer to the output of the official scoring scripts of CoNLL-
20096 and CoNLL-20057, for dependency- and span-based SRL, respectively.

Language Models. We compare our model to current state-of-the-art multilingual SRL systems which,
however, use contextualized word representations from different pretrained language models. For a fair
comparison, we report the performance of our model when the underlying input representation is ELMo
(Peters et al., 2018), BERT (Devlin et al., 2018), and multilingual BERT (m-BERT hereafter). We also
compare the SRL performance when the weights of the underlying language model are kept frozen or
fine-tuned during training. Lastly, we also include the results of XLM-RoBERTa (Conneau et al., 2020),
a recent language model trained with an explicit cross-lingual objective.

4.3 Results

English Results. The results on the CoNLL-2009 English in-domain test sets are outlined in Table
1a, where, for completeness, we report the scores achieved by our model both when the underlying

2For span-based SRL, we use the BIO format to convert span-level tags to token-level tags.
3https://pytorch.org
4https://pytorchlightning.ai
5https://huggingface.co/transformers
6https://ufal.mff.cuni.cz/conll2009-st/scorer.html
7http://www.lsi.upc.es/˜srlconll/srl-eval.pl
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CONLL-2009 – ENGLISH P R F1

ELMo models

Cai and Lapata (2019b) � 90.9 89.1 90.0
Lyu et al. (2019) � – – 90.1
Kasai et al. (2019) � 90.3 90.0 90.2
Li et al. (2019) � 89.6 91.2 90.4
Chen et al. (2019) � 90.7 91.4 91.1
Cai and Lapata (2019a) � 91.7 90.8 91.2
This work � 91.3 91.7 91.4

BERT models (frozen)

He et al. (2019) � 90.4 91.3 90.9
This work � 91.2 91.8 91.5

BERT models (fine-tuned)

Shi and Lin (2019) � 92.4 92.3 92.4
This work � 92.5 92.7 92.6

XLM-RoBERTa models

This workfrozen � 91.5 92.1 91.8
This workfine-tuned � 92.2 92.6 92.4

(a) Results on the English in-domain test set of the CoNLL-2009
shared task. Best results in F1 score in bold. �: syntax-aware sys-
tem. �: syntax-agnostic system.

Hyperparameter Value

K ′ Upper lang. model layers 4
dw Word emb. size 512
K ′′ Pred.-aware encoder layers 3
dh Pred.-aware state size 512
dp Pred.-specific emb. size 512
da Arg.-specific emb. size 512
K ′′′ Pred.-arg. encoder layers 2
dz Pred.-arg. emb. size 256
dsp Pred. id. emb. size 32
dss Pred. dis. emb. size 256
dsa Arg. class. emb. size 512

Batch size 32
Batch size when fine-tuning 64
Max learning rate 10−3

Min learning rate 10−5

Max lr for LM fine-tuning 10−5

Min lr for LM fine-tuning 10−8

Warmup epochs 1
Cooldown epochs 15
Training epochs 30

(b) Best hyperparameter values for the English
CoNLL-2009 dev split. We use the same values
for all the other languages.

Table 1: Results on the English in-domain test of the CoNLL-2009 benchmark (a) and corresponding
model configuration (b).

CONLL-2012 - ENGLISH P R F1

He et al. (2018a) � — — 85.5
Ouchi et al. (2018) � 87.1 85.3 86.2
Li et al. (2019) � 85.7 86.3 86.0
Shi and Lin (2019) BERT-base � 85.7 86.7 86.2
Shi and Lin (2019) BERT-large � 85.9 87.0 86.5

This work BERT-base � 86.4 86.9 86.7
This work BERT-large � 86.9 87.7 87.3

Table 2: Precision (P), Recall (R), and F1 scores of recent non-ensemble systems on the CoNLL-2012
English benchmark. �: syntax-aware system. �: syntax-agnostic system.

language model weights are kept frozen and when they are fine-tuned during training. Independently
of the pretrained language model used to represent the input, our syntax-agnostic model outperforms
the best scores reported by the most recent state-of-the-art systems, both syntax-agnostic and syntax-
aware. In particular, among ELMo-based models, our approach is slightly more effective than the work
of Cai and Lapata (2019a) (+0.2% in F1), despite this latter approach being self-supervised on additional
training data. Our approach achieves a new state of the art, not only when using frozen BERT weights
where the previous best-performing approach was the syntax-aware system of He et al. (2019) (+0.6%)
– which takes advantage of purposely-built pruning rules based on syntactic dependency trees – but also
when fine-tuning BERT, where it surpasses the syntax-agnostic system of Shi and Lin (2019) (+0.2%).
Our model is also able to achieve a new state of the art in span-based English SRL, as shown in Table 2.
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CONLL-2009 - MULTILINGUAL - IN DOMAIN CA CZ DE ES ZH

CoNLL-2009 ST best � 80.3 85.4 79.7 80.5 78.6
Marcheggiani et al. (2017) � — 86.0 — 80.3 81.2
Chen et al. (2019) � 81.7 88.1 76.4 81.3 81.7
Cai and Lapata (2019a) � — — 83.8 82.9 85.0
Cai and Lapata (2019b) � — — 82.7 81.8 83.6
Lyu et al. (2019) � 80.9 87.5 75.8 80.5 83.3
He et al. (2019) � 86.0 89.7 81.1 85.2 86.9

This work m-BERT frozen � 86.2 90.1 86.5 85.3 87.3
This work m-BERT + fine-tuning � 87.4 91.1 87.1 85.9 88.0

This work XLM-R frozen � 87.4 91.4 88.7 86.0 88.4
This work XLM-R + fine-tuning � 88.3 92.1 89.1 86.9 89.1

Table 3: F1 scores on the in-domain evaluation CoNLL-2009. “CoNLL-2009 ST best” refers to the best
results obtained (by different systems) during the Shared Task. We include all the systems that reported
results in at least 3 languages. �: syntax-aware system. �: syntax-agnostic system.

Multilingual Results. While English is certainly the most studied language in SRL, the core of our
contribution lies in bridging the gap in performance between high-resource languages and low-resource
languages. Indeed, Table 3 shows that high-resource languages, e.g., Chinese, witnessed comparatively
larger improvements over the years, whereas lower-resource languages lagged behind. However, as Ta-
ble 3 also shows, we find that our language-agnostic approach is able to bring larger improvements
on low-resource languages such as German, with a 5.4% absolute improvement in F1 score over the
state-of-the-art multilingual system of He et al. (2019) when both systems use m-BERT to build a con-
textualized representation of the input sentences. We also find that our model benefits greatly from using
XLM-RoBERTa, a language model pretrained with an explicit cross-lingual objective: our best result on
German is remarkably close to the performance obtained on high-resource languages (89.1% vs 92.4% in
F1 score on German and English, respectively). We argue that improving the results on languages where
a large margin for progress still exists should not be dismissed as an easier task, and that closing the
gap between high-resource and low-resource settings should not be regarded as a foregone conclusion:
as a matter of fact, among the systems that report results on all 6 languages in Table 3, the narrowest
performance gap between English and German hovers around 10% in F1. Our model significantly closes
this gap to just 3% in F1, while advancing the state of the art across the board.

The robustness of our model is particularly evident when considering the results on the CoNLL-2009
out-of-domain test sets (Table 4a), where, once again, it outperforms the state of the art in all 3 languages.
Up until now, supervised techniques have not been able to surpass the performance of the best system
based on manual feature engineering in the challenging out-of-domain German test set, since the sen-
tences included in this split were specifically designed to contain a large number of infrequent predicates
(Hajic et al., 2009). To the best of our knowledge, our approach results in the first supervised model
capable of trumping manual feature engineering in such a setting.

Zero-shot Cross-Lingual Results. Having parity in the quality and quantity of data across languages
is often an unrealistic expectation, especially whenever the task requires expert annotators (Pasini, 2020):
this is the reason why, over the last few years, cross-lingual transfer learning techniques and benchmarks
have garnered attention in NLP (Barba et al., 2020; Blloshmi et al., 2020; Conia and Navigli, 2020; Hu
et al., 2020). While transfer learning techniques are becoming increasingly popular, their application to
SRL is not straightforward. Indeed, as mentioned in Section 4.1, in CoNLL-2009 different languages
use different, non-overlapping inventories for predicate senses and their argument structures. The only
exceptions in CoNLL-2009 are the Catalan and Spanish languages which both use the AnCora inventory
(Taulé et al., 2008). We take advantage of these two languages to evaluate how our system performs in
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CONLL-2009 - OOD CZ DE EN

CoNLL-2009 ST best � 85.4 65.9 73.3
Zhao et al. (2009) � 82.7 67.8 74.6
Marcheggiani et al. (2017) � 87.2 — 77.7
Li et al. (2019) � — — 81.5
Chen et al. (2019) � — — 82.7
Lyu et al. (2019) � 86.0 65.7 82.2

This work BERT frozen � 90.6 73.1 84.6
This work BERT + ft � 91.3 72.5 85.9

This work XLM-R frozen � 91.4 74.6 83.7
This work XLM-R + ft � 92.1 74.6 85.2

(a) F1 scores on the out-of-domain evaluation of CoNLL-2009.

0-SHOT CROSS-LINGUAL SRC-TGT F1

This work BERT frozen CA-ES 77.7
This work BERT + ft CA-ES 79.1
This work XLM-R frozen CA-ES 80.3
This work XLM-R + ft CA-ES 81.7

This work BERT frozen ES-CA 79.2
This work BERT + ft ES-CA 79.8
This work XLM-R frozen ES-CA 81.2
This work XLM-R + ft ES-CA 81.8

(b) F1 scores in the zero-shot cross-lingual setting be-
tween Catalan and Spanish, and vice versa.

Table 4: F1 scores on the out-of-domain evaluation of the CoNLL-2009 Shared Task, and in the zero-shot
cross-lingual setting. �: syntax-aware system. �: syntax-agnostic system.

zero-shot cross-lingual SRL. Table 4b reports the results obtained when our model is trained on Catalan
and evaluated on Spanish, and vice versa. While our model shows a significant drop in performance
when compared to the original setting (trained and evaluated on the same language), we note that both
training sets are relatively small (less than 15,000 sentences) and that the results are still promising
(above 80% in both CA-ES and ES-CA), providing an estimate of the performance our model would
obtain when trained on a high-resource language and evaluated on a low-resource language. To the best
of our knowledge, we are the first to report the results in zero-shot cross-lingual SRL: we hope that our
effort can be a basis for further development in this direction.

5 Analysis and Discussion

Ablation Study. We conducted an ablation study of our model architecture to better understand the
individual contribution of its main components. As shown in Table 5, a baseline model, where the
predicate-aware sequence encoder (see Section 3.2) is completely removed, shows a large drop in per-
formance on the English development split of CoNLL-2009 (86.3% against 90.4% in F1 score). Indeed,
this encoder is central to our architecture and represents around 70% of the total parameter count in the
model (pretrained language model excluded). Rather than removing the entire predicate-aware sequence
encoder, we also evaluated the difference in performance when using simple stacked-BiLSTM layers
instead of the fully-connected stacked-BiLSTM layers explained in Section 3.2 (+2.0 and +3.2% in F1

score over the baseline, respectively). Finally, we found it beneficial to rely on features and mecha-
nisms that do not exploit language-specific peculiarities, demonstrating that it is possible, not only to
achieve and surpass the state of the art without syntax, but also, and most importantly, to bridge the gap
between languages: for example, we perform layer normalization on the output of each BiLSTM layer
(+0.3%), adopt Swish in place of the more traditional ReLU (+0.1%), and add predicate identification as
a secondary task (+0.5%).

Do We Need More Training Data? Our model significantly narrows the gap between high- and low-
resource languages, nevertheless one may wonder whether the amount of annotated data is still too
limited for some of the languages in CoNLL-2009. In particular, German should be the most affected
by this bottleneck, as it comes with the smallest number of annotated predicates (see Appendix A).
However, surprisingly perhaps, Figure 1 shows that greatly reducing the already limited German training
set does not degrade performance as much as one would expect: our model is still able to achieve state-
of-the-art results in German on the in-domain evaluation with just 50% of the training data, and on the
out-of-domain evaluation with just 25% of the training data.
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ABLATION STUDY F1

Baseline 86.3
+ predicate-aware encoder 88.3
+ fully-connected BiLSTM layers 89.5
+ layer normalization 89.8
+ Swish activation 89.9
+ predicate identification 90.4

Table 5: Results of the ablation study on the
English development split.

Figure 1: Our model outperforms the state of the art in
German even when trained on a much smaller dataset.

6 Conclusion and Future Work

Recently, research in Semantic Role Labeling has revolved predominantly around syntax, with several
studies showing the benefits of integrating syntactic features into existing models. Syntax-based innova-
tions, however, have struggled to transfer improvements from high- to low-resource languages, as they
appear to require a substantial amount of high-quality annotations.

In this paper, we have gone against the flow and proposed a model that puts both sentence- and lexical-
level syntax aside, in order to avoid relying on noisy language-specific features. Our truly syntax-agnostic
approach surpasses the previous state of the art among all syntax-agnostic and syntax-aware systems in
the in- and out-of-domain evaluations of all 6 languages in the CoNLL-2009 benchmark dataset. Most
crucially, our model seamlessly scales across languages, finally bridging the long-standing gap between
high- and low-resource settings. Our analysis delineates the strengths of our approach and highlights its
exceptional robustness: our model only needs 50% and 25%, respectively, of the training data to surpass
the previous best-performing system in the in-domain and out-of-domain German test sets. To the best
of our knowledge, we are the first to evaluate a model on zero-shot cross-lingual SRL, where we obtain
results that are promising with a view to further developments in transfer learning techniques. Finally,
we demonstrate that, not only is our model able to achieve state-of-the-art results in dependency-based
SRL, but it also surpasses current syntax-agnostic and syntax-aware techniques in span-based SRL on
CoNLL-2012.

As previously stated, our objective has not been to dismiss the undeniable importance of syntax-
based innovation in SRL, but rather to establish a launch pad from which future syntactic developments
can take off. In order to encourage future work on joint syntactic and semantic dependency parsing
(Cai and Lapata, 2019b), the use of more powerful or cleverly trained language models (Lewis et al.,
2020), the integration of SRL into other cross-lingual semantics-first tasks such as Semantic Parsing
(Blloshmi et al., 2020) and Word Sense Disambiguation (Scarlini et al., 2020), and the exploitation and
integration of newly available knowledge from recently released resources, such as VerbAtlas (Di Fabio
et al., 2019) and Conception (Conia et al., 2020), we make available not only the code for our SRL model
and experiments, but also our model checkpoints and training/validation logs at https://github.com/
SapienzaNLP/multi-srl.

Acknowledgments
The authors gratefully acknowledge the support of the ERC Consolidator
Grant MOUSSE No. 726487 under the European Union’s Horizon 2020 re-
search and innovation programme.

This work was supported in part by the MIUR under grant “Dipartimenti di eccellenza 2018-2022” of
the Department of Computer Science of Sapienza University.



1406

References
Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer normalization. arXiv, abs/1607.06450.

Edoardo Barba, Luigi Procopio, Niccolo Campolungo, Tommaso Pasini, and Roberto Navigli. 2020. MuLaN:
Multilingual label propagation for Word Sense Disambiguation. In Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-20, pages 3837–3844.

Michele Bevilacqua and Roberto Navigli. 2020. Breaking through the 80% glass ceiling: Raising the state of the
art in Word Sense Disambiguation by incorporating knowledge graph information. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pages 2854–2864.

Rexhina Blloshmi, Rocco Tripodi, and Roberto Navigli. 2020. XL-AMR: Enabling Cross-Lingual AMR parsing
with transfer learning techniques. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2020.

Rui Cai and Mirella Lapata. 2019a. Semi-supervised Semantic Role Labeling with cross-view training. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019, pages 1018–1027.

Rui Cai and Mirella Lapata. 2019b. Syntax-aware Semantic Role Labeling without parsing. Trans. Assoc. Comput.
Linguistics, 7:343–356.

Jiaxun Cai, Shexia He, Zuchao Li, and Hai Zhao. 2018. A full end-to-end semantic role labeler, syntactic-agnostic
over syntactic-aware? In Proceedings of the 27th International Conference on Computational Linguistics,
COLING 2018, Santa Fe, New Mexico, USA, August 20-26, 2018, pages 2753–2765.
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Sentences Predicates Arguments

Totals Annotated Avg. Len. Totalp Senses Totala Roles

CoNLL-2009

CA 13,200 12,873 30.2 37,431 3,554 84,367 38
CZ 38,727 38,578 16.9 414,237 9,135 365,255 60
DE 36,020 14,282 22.2 17,400 1,271 34,276 10
EN 39,279 37,847 25.0 179,014 8,237 393,699 52
ES 14,329 13,835 30.7 43,824 4,534 99,054 43
ZH 22,277 21,071 28.5 102,813 12,587 231,869 36

CoNLL-2012

EN 115,812 90,856 20.5 253,070 5,287 852,053 67

Table 6: Overview of the CoNLL-2009 and CoNLL-2012 training datasets. For each dataset we report
the number of sentences (Totals), the number of sentences with at least an annotated predicate (Anno-
tated), the average number of tokens per sentence (Avg. Len.), the number of predicates (Totalp) and
predicate senses (Senses), and also the number of arguments (Totala) and argument roles (Roles).

.

A Data Statistics

Table 6 shows the composition of the training sets of CoNLL-2009 and CoNLL-2012. While German is
not usually considered a low-resource language, in the CoNLL-2009 dataset it is the language with the
lowest amount of annotated predicate instances. As shown in the table, German has less than 50% of the
predicate instances of Catalan and less than 10% of the predicate instances of English.

B Computing Infrastructure

All the experiments were performed on a x86-64 architecture with 64GB of RAM, an 8-core CPU run-
ning at 3.60GHz, and an Nvidia RTX 2080Ti.


