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Abstract

Reducing rates of early hospital readmission
has been recognized and identified as a key
to improve quality of care and reduce costs.
There are a number of risk factors that have
been hypothesized to be important for under-
standing re-admission risk, including such fac-
tors as problems with substance abuse, ability
to maintain work, relations with family. In
this work, we develop RoBERTa-based mod-
els to predict the sentiment of sentences de-
scribing readmission risk factors in discharge
summaries of patients with psychosis. We im-
prove substantially on previous results by a
scheme that shares information across risk fac-
tors while also allowing the model to learn risk
factor-specific information.

1 Introduction

About 1 in 5 Medicare patients discharged from the
hospital is rehospitalized within 30 days (Jencks
et al., 2009). Four out of the top ten conditions
with the largest number of readmissions among
the Medicaid enrollees were mental health condi-
tions or substance use disorders (Hines et al., 2014).
Readmissions are harmful both in being disruptive
to patients and families, and as a major driver of
health-care costs in psychiatry (Wu et al., 2005;
Mangalore and Knapp, 2007). Also, premature
discharge of patients contributes not only to rehos-
pitalization but to increased risk of homelessness
and the possibility of violent behavior or suicide.
Thus, reducing rates of early hospital readmission
has been recognized and identified as a key to im-
prove quality of care and reduce costs.

There are a number of risk factors that previ-
ous work compiled from the literature (Holderness
et al., 2018) to be important for understanding re-
admission risk, including such factors as problems
with substance abuse, ability to maintain work, re-
lations with family. Studying readmission through

the use of explicit risk factors may go against pre-
vailing trends in machine learning (black box mod-
els that take in raw signals), but has at least two
potential benefits: 1) Allowing for descriptive study
of, and thus better understanding of, the factors that
are important for readmission; and 2) The possi-
bility that a risk classifier that uses explicit risk
factors will be more interpretable and trustworthy
to providers, and thus more likely to be put into
practical use.

In this work, we make use of a publicly available
data set of sentences from discharge summary that
is annotated for seven risk factors, along with the
“sentiment,” marked as Positive, Negative, or Neu-
tral (more details in background). Previous work
on this dataset showed that the task was approach-
able with neural methods, but performance suffered
because of small dataset size (Holderness et al.,
2019). Here, we address this issue with two ad-
vances. First, we show that transfer learning helps
dramatically. While the previous work used smaller
neural models trained from scratch, we start from
pre-trained transformer models (RoBERTa (Liu
et al., 2019)), and improve them for the task with
architectural and data augmentation strategies.

Second, we show that sharing data between the
different risk factor domains is better for perfor-
mance than training separately, at least with pre-
trained models. Previous work trained separate
classifiers for each of the risk factor domains, due
to the (legitimate) belief that there are significant
differences in predicting sentiment in different risk
factor domains (Holderness et al., 2019). Here, we
demonstrate that a method that allows for sharing of
information between different risk factor domains
can improve performance. Because of a mismatch
in the way training and test data were annotated,
we introduce a data augmentation method for the
training set that allows our method to improve over
the vanilla RoBERTa baseline. The improvements
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from this latter technique point in a direction that
could allow for further improvements even without
additional training data.

2 Background

The dataset we use was created in previous
work (Holderness et al., 2018) and made publicly
available. It consists of sentences extracted from
discharge summaries of patients with psychosis at
Boston-area hospitals. Previous work had exam-
ined two tasks on this dataset, the identification of
the risk domain represented by the sentence (Ap-
pearance, Mood, Interpersonal, Substance Use,
Occupation, Thought Content and Thought Pro-
cess), and the sentiment of the sentence given the
risk domain. In the training data, each sentence has
only one risk factor, and thus one sentiment, but
the test data allows for sentences to have multiple
risk factors, and thus multiple different sentiments
for a single sentence, conditioned on the risk factor
domain. Both the previous work for risk factor clas-
sification (Holderness et al., 2018) and sentiment
classification (Holderness et al., 2019) used mul-
tilayer neural networks in their experiments and
found them to be the best-performing.

Despite the promise of the above work, the tasks
are still unsolved. Recent work in contextualized
embeddings has shown great success for sentence
classification tasks. Specifically, BERT-based mod-
els (Devlin et al., 2019), based on the transformer
architecture (Vaswani et al., 2017), showed that pre-
training deep transformer encoders on massive text
datasets with a language modeling objective could
lead to improvements in a variety of tasks. The best
performance is typically obtained by fine tuning,
where a classifier head is attached to a special sen-
tence token, and new tasks are learned via standard
supervised learning, in which the weights of the
classifier head are trained from scratch while the
weights of the transformer encoder are allowed to
update. In this work, we make use of the RoBERTa
updates to BERT (Liu et al., 2019), which use the
same architecture but pre-trained on a larger dataset
and for a longer time.

3 Data

The training dataset contains 3500 sentence-length
texts, 500 from each of the seven readmission risk
factors mentioned above. The test dataset con-
tains 1650 texts which can involve multiple risk
factors and are more variable in length compared

with the training data, as described in the previous
study (Holderness et al., 2019). We divided the
training instances into training and development
set with an 80%/20% split,1 leaving us with 2800
training instances and 700 development instances.

Since we are focusing on sentiment prediction
in this work, we take the risk factor domains as
given, and for test sentences with multiple risk
factor domains, we create multiple instances where
the input pairs the sentence text with each domain,
and the target is the gold sentiment label for that
domain. This results in 2103 test instances. 750 of
these are labeled as the Other domain, which does
not have training instances nor reported results, so
we discard these, leaving 1353 test instances.

4 Methods

We developed several variations of a risk factor
sentiment classifier based on the RoBERTa archi-
tecture.

4.1 Baseline
We fine-tune seven independent RoBERTa models
as the baseline, one for each of the risk factor do-
mains. This follows previous work (Holderness
et al., 2019), which suggested that positive or neg-
ative clinical sentiments might differ in different
risk factor domains.

4.2 Plain RoBERTa
Instead of fine-tuning seven independent models,
we fine-tune one RoBERTa model on all training
texts to learn the shared representation of senti-
ments, ignoring the risk factor domain of the sen-
tences during training and only learning sentiment
labels. Since the test set allows for a sentence to
have multiple risk factor domains, but this model
can only make one sentiment prediction per sen-
tence, the model is penalized on cases where a
sentence has multiple risk factor domains with dif-
ferent sentiments.

4.3 Risk Factor Domain Embeddings
In this method, we modify the input representation
to contain both the input sentence and the risk fac-
tor domain to be classified. In BERT-style models,
this means using the special sentence-separating
token ([SEP]) between the sentence tokens and the
domain tokens. For example, the first sentence in

1Specifically, we use iterative train test split from scikit-
multilearn (Szymański and Kajdanowicz, 2017) to create a
split that is stratified with respect to multiple labels.
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Figure 1: One example of the augmented sentences. Two randomly chosen sentences from the training data are
concatenated to create two training instances with different risk factor domains.

Figure 1 would be represented as [CLS] has been
off cocaine and etoh x 3 wks per report. [SEP] sub-
stance use [SEP]. Giving the domain as the second
sentence allows the model to potentially learn what
part of the input the classifier should focus on, and
previous work has shown similar methods to be
effective (Shi and Lin, 2019). In contrast to another
possible approach with a separate input stream for
domain feature, this method allows us to utilize the
pre-trained contextual embeddings of the domain
words and let the model learn to use its attention
mechanism to relate the risk factor domains with
the corresponding part of the sentences and make
sentiment predictions about only that part.

4.4 Data Augmentation
The training data only has one risk factor domain
and sentiment annotation per sentence, and so the
above approach alone may fail on test data, be-
cause at training time the model may never need to
use the domain embedding, because the whole sen-
tence is relevant because of the way the data was
constructed. Then when applied to the test data the
risk factor domain embedding could be useful, but
the model has never been trained to use it.

Therefore, we developed a data augmentation
scheme that creates new synthetic training in-
stances from pairs of existing instances, such that
these synthetic instances more closely resemble
test instances with multiple risk factor domain and
sentiment labels. We concatenate two randomly
sampled sentences in the training data from two dif-
ferent domains, and create two training instances
from that concatenated input, with the two differ-
ent domain and sentiment labels from the original
instances. We add a period and space between sen-
tences missing them to look more natural. Figure 1
shows an example of the augmented sentences.
These synthetic instances are surely lacking dis-
course coherence that the real instances in the test
set will have, but our hypothesis is that they will
at least force the model to associate domain em-
beddings with specific parts of the input at training
time and not just learn the sentiment for the whole

input sequence.
We created 2800 new training instances with

this sampling procedure (1400 unique texts), for
an augmented training data size of 5600 instances
(this method is only use for augmenting training
and is not applied to the test data). We then fine-
tune the model from the previous section with this
augmented data set, using the domain risk factor as
the second sentence as above.

4.5 Training Details
We use the HuggingFace Transformer library (Wolf
et al., 2019) for our RoBERTa implementations.
We use grid search to find the optimal hyper-
parameters (batch size, learning rate and max se-
quence length) for the RoBERTa fine-tuning pro-
cess. We monitor the training and validation loss
for each training epoch and save the model with the
highest Macro-F1 score on the development set be-
fore testing on the test set. We use pandas for data
processing (Wes McKinney, 2010) and scikit-learn
for model evaluation (Pedregosa et al., 2011).

Model Neu Pos Neg Acc Macro
F1 F1 F1 F1

Baseline (Indep.) 0.375 0.623 0.698 0.591 0.565
Roberta 0.445 0.727 0.789 0.690 0.653
Roberta+D 0.456 0.723 0.778 0.680 0.652
Roberta+D+Aug 0.468 0.743 0.789 0.699 0.666

Table 1: Modeling results for the four architectures
with the highest score on each performance metric in
bold.

5 Evaluation

We evaluated the four different architectures on this
task to explore the importance of sharing informa-
tion between different risk factor domains as well
as learning the domain specific information.

We first evaluate at the instance level, computing
precision and recall for each sentiment label, and
combining to get an F1 score for each sentiment
label, as well as overall accuracy (proportion of
instances correctly predicted regardless of senti-
ment or risk factor domain). Table 1 summarizes
the accuracy F1 score results, with Macro F1 also
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Model Domain Pos P Pos R Pos F1 Neg P Neg R Neg F1 Neu P Neu R Neu F1
Holderness et al. (2019) Average 0.62 0.416 0.478 0.67 0.652 0.658 0.289 0.437 0.329
Roberta Average 0.760 0.671 0.709 0.802 0.785 0.790 0.385 0.477 0.418

Interpersonal 0.665 0.716 0.690 0.779 0.782 0.779 0.619 0.580 0.597
Mood 0.846 0.738 0.787 0.750 0.818 0.780 0.510 0.528 0.518

occupation 0.791 0.590 0.674 0.688 0.759 0.719 0.409 0.514 0.451
Substance Use 0.646 0.605 0.620 0.808 0.765 0.789 0.392 0.468 0.423
Appearance 0.854 0.647 0.735 0.852 0.868 0.857 0.395 0.565 0.465

Thought Content 0.768 0.697 0.730 0.892 0.728 0.800 0.067 0.237 0.108
Thought Process 0.748 0.706 0.728 0.842 0.772 0.807 0.306 0.447 0.362

Roberta+D+Aug Average 0.779 0.708 0.735 0.860 0.713 0.768 0.404 0.581 0.459
Interpersonal 0.654 0.822 0.724 0.896 0.646 0.748 0.653 0.720 0.682

Mood 0.873 0.714 0.785 0.750 0.883 0.810 0.480 0.456 0.464
Occupation 0.838 0.656 0.733 0.896 0.607 0.722 0.475 0.769 0.585

Substance Use 0.680 0.556 0.606 0.833 0.824 0.829 0.415 0.489 0.446
Appearance 0.882 0.776 0.824 0.893 0.491 0.626 0.313 0.762 0.438

Thought Content 0.737 0.636 0.680 0.882 0.732 0.799 0.114 0.410 0.179
Thought Process 0.787 0.798 0.790 0.872 0.811 0.840 0.381 0.463 0.416

Table 2: Results of Roberta and Roberta fine-tuned on augmented dataset (Roberta+D+Aug) with the highest score
on each performance metric in bold. The top row is reported results of the “Fully Supervised MLP” system of
Holderness et al. (2019). “Average” scores are computed by taking the average of 7 risk factor domains in the
same column.

Example input text Domain GOLD Roberta Roberta+D+Aug
A. Pt.’s affect appeared slightly brighter, but remains flat
at baseline. Her mood appears slightly improved as well.

Mood Positive Positive Positive
Appearance Neutral Positive Neutral

B. Discussed pt.’s job and recent episode of
“crying but not knowing why.”

Mood Neutral Neutral Negative
Occupation Neutral Neutral Neutral

C. discussed work dynamics, MI for substance abuse,
processing the episode, medication planning

Occupation Neutral Neutral Neutral
Substance Use Negative Neutral Neutral

Table 3: Three examples of the sentiment extraction results in the test data

reported as the average across sentiment labels. Ta-
ble 2 shows detailed results of the plain RoBERTa
and the augmented (RoBERTa+D+Aug) model, in-
cluding precision and recall, and broken down by
risk factor domain. The average across risk fac-
tor domains is substantially higher than the results
reported in previous work.

The overall best performance was obtained by
using domain embeddings with data augmentation
(RoBERTa+D+Aug). Although fine-tuning seven
independent RoBERTa models for each risk factor
domain is the worst performing model, its baseline
scores are still higher than the previous study which
did not use pre-trained models (Holderness et al.,
2019). Plain RoBERTa is surprisingly strong in this
task despite the fact that it ignores the risk factor
domain and is forced to make the same predictions
for texts with multiple sentiment labels.

The improvement obtained by fine-tuning one
single RoBERTa model instead of seven indepen-
dent models suggests that the benefits of sharing
information between risk factor domains outweigh
the potential risks that the model will learn conflict-
ing information. However, simply using domain as
the second sentence during RoBERTa fine-tuning
does not lead to improvement in the overall model

performance. Augmenting the training data to look
more like the test data was necessary in order for
the domain embedding input to show benefits.

We tested the significance of the improvements
in accuracy and Macro-F1 between RoBERTa and
RoBERTa+D+Aug by fine-tuning with 20 ran-
domly selected seeds, and performing a one-tail
t-test, and results were found to be significant
(p<0.05, p<0.005 for accuracy and Macro-F1).

6 Discussion and Conclusion

We selected instances from the test set
where the system trained on augmented data
(RoBERTa+D+Aug) did well, and others where
it did not (see Table 3). Example A shows that
the system is able to distinguish between the
positive mood and neutral appearance, where plain
RoBERTa was forced to select a single sentiment
label. Example B shows where RoBERTa+D+Aug
still makes mistakes – plain RoBERTa actually
does better by picking the single sentiment for the
sentence that fits best, while RoBERTa+D+Aug
tries to pick two different sentiments and gets one
wrong. In fact, in 66.5% of the 221 test sentences
with multiple risk factor domains, the sentiment
labels are the same, which means plain RoBERTa
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is usually not penalized for picking a single
sentiment label. Example C shows an example
where both models make errors, probably due to
missing the complex inference that the patient has
a substance abuse issue that requires treatment
(MI=motivational interviewing).

Overall, our new approach shows major gains
in performance over the existing state of the art
for this problem. The biggest gains come from
simply using large pre-trained models. However,
the modified architecture and data augmentation
technique lead to further gains, and have the abil-
ity to separate out multiple sentiments for a single
sentence on new data. Future work may see larger
benefit with methods for creating augmented train-
ing data that create more natural-looking sentence
pairs. The source code used to fine-tune the model
will be made publicly available 2.
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