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Abstract

Elementary Discourse Unit (EDU) recognition is the basic task of discourse analysis, and the
Chinese and English discourse alignment corpus is helpful to the studies of EDU recognition.
This paper first builds Chinese-English parallel discourse corpus, in which EDUs are annotated
and aligned. Then, we present the framework of Bi-LSTM-CRF EDUs recognition model using
word embedding, POS and syntactic features, which can combine the advantage of CRF and Bi-
LSTM. The results show that F1 is about 2% higher than the traditional method. Compared with
CRF and Bi-LSTM, the Bi-LSTM-CRF model can combine the advantages of them and obtains
satisfactory results for Chinese and English EDUs recognition. The experiment of feature contri-
bution shows that using all features together can get best result, the syntactic feature outperforms
than other features.

1 Introduction

Discourse analysis is helpful for the performance of machine translation, question answering, sum-
marization and other application. EDU recognition is a basic work in discourse analysis task. Only
by recognition EDU, can we make further discourse analysis or other works. At present, the existing
Chinese-English parallel corpus only align paragraphs, sentences and other linguistic units, but do not
annotate bilingual EDUs alignment, which due to EDU recognition is mainly carried out on monolingual.
However, EDUs recognition on Chinese and English is vital to bilingual analysis, machine translation et
al. For Example1 is a bilingual sentence of Chinese and English, Chinese EDUs are numbered sequen-
tially by e1, e2 and e3, and English EDUs are marked by e1′, e2′ and e3′. Obviously, e1 and e1′, e2 and
e2′, e3 and e3′ are alignment pair.

Example 1 A) [®É$à�5�u§] e1[üWû_�8§]e2 [n´u�"]e3

B) [The Beijing - Hangzhou Grand Canal has been prosperous since ancient times,] e1′ [with both
sides of the bank swarming with merchants] e2′ [and well - developed trade.]e3

′

The main work of this paper is recognition the EDUs of Chinese and English as much as possible. The
following is the contribution of this paper:

We annotate Chinese and English discourse alignment corpus, which is first corpus contain EDUs
alignment information as far as we know;

We get satisfactory results without any handcraft feature by using Bi-LSTM-CRF Model;
We conduct to find out the contribution of various model and features.
This paper combines existing research and Chinese-English discourse alignment corpus to identify

and analyze Chinese-English EDUs. Section 2 builds Chinese-English EDUs alignment corpus; Section
3 describes the Bi-LSTM-CRF model and the framework this paper used; Section 4 reports and analyzes
the experimental results; Section 5 overviews the related work; Finally, Section 6 summarizes this paper
and points out the future research direction.
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2 Chinese-English Alignment Corpus

2.1 Chinese-English EDUs alignment methods
In order to represent the discourse, the first task is to define the EDUs. Inspired by the work of Li et
al(2014) and Feng (2013), we give the definition of Chinese EDUs. Firstly, a clause should contain
more than one predicate, expressing not less than one proposition. Secondly, one EDU should have
propositional function to another EDU. Finally, a clause should be segmented by some punctuation. As
for English EDU, it is the corresponding content of Chinese EDU.

When annotate, we dividing Chinese sentence into parts, and adapting the alignment strategy of the
source language is preferred. That is to say, it is segmented according to the established Chinese EDUs,
and then align in English. Therefore, EDUs in Chinese and English sentences is correspondence. Such as
Example 1, recognition and alignment are achieved under the guidance of this principle. Since Chinese
EDUs are preferential when making alignment rules, some sentences with widely ranges may appear in
English translation. These EDUs are not adjacent in English sentences, it will affect the alignment of
Chinese and English EDUs. EDUs cannot be completely corresponding in this case, and the solution is
to align the main parts.

2.2 Chinese-English alignment corpus
According to the alignment annotation principle mentioned in the 2.1. We annotate alignment corpus of
Chinese and English. Corpus select from Xinhua daily, and we have marked 100 Chinese-English trans-
lation documents. The Chinese-English parallel corpus is marked with Chinese as the main language,
supplemented the parallel EDUs by English.

Due to the marked Chinese-English alignment corpus has many contents, and experiments are mainly
for EDUs, this paper mainly introduces the annotation principle of EDU in corpus. After practical
operation and analysis, the following three points are obtained:

1) The meaning of English and Chinese sentences. According to the logical semantic relations, the
corresponding relations of the adjacent EDUs in the alignment corpus can be found respectively, and the
relationship is used to divide and align English-Chinese corpus.

2) Structure. Combined with the structure of Chinese language and English language, the order of
subject-verb-object in English-Chinese is consistent, and the translation of some noun clauses and adver-
bial clauses are also consistent, so it is possible to find out the corresponding words in English-Chinese
so as to find the corresponding sentence components in English-Chinese for division.

3) Following the punctuation clues. In the translated English corpus, the punctuation in English is
mostly consistent with that in Chinese. And according to the distribution of punctuation, the meaning of
the text and the translated English EDUs can be more clearly inferred.

There are 100 documents, 513 paragraphs, 899 Chinese sentences,1281 English sentences and 2153
Chinese-English EDU pairs which have been effectively marked. The Chinese EDU average length is
11 words, while the English EDU average length is 20 words. In the paper, the preset program is used
to automatically find the parent node information of English EDUs, and the search is carried out in the
automatic syntactic analysis tree of Stanford. The method of search is to look up the words from the
beginning and the end of the English clauses successively until a common parent node is found in the
syntactic tree. By the way of making statistics on the information of parent node which can be found, it
is not difficult to find that the main syntactic structure which can make Chinese EDUs corresponding to
English clauses are S!VP!NP!PP etc. The syntactic structure and occurrence frequency correspond-
ing to English EDUs are shown in Figure1 From Figure1 we can see most of EDU.s syntactic tag are
S and VP, which is consistent with the definition of our EDU.

2.3 Tagging Strategies and Consistency
Two senior students of Chinese department carried out annotation training under the guidance of the
project supervisor. 20 parallel paragraphs were randomly selected from the Xinhua daily to mark training
corpus. We developed a platform for EDU annotation. The annotation training is mainly composed of
three stages: 1) The tutor demonstrates the annotation of 10 documents, and explains the main annotation
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Figure 1: Syntactic structure distribution of the EDUs

strategies, the annotation method and the operation of the annotation platform; 2) Two students mark the
remaining 20 documents respectively; 3) Two students respectively proofread the 60 documents marked
by themselves with the tutor, and the proofreading was completed in three times, mainly discussing the
existing problems and the strategies and methods of correction and annotation. On this basis, the two
students annotated the whole corpus together.

In the annotation, we employ left to right segment and alignment method. Consistency is a major
criterion of annotation quality. The alignment EDUs annotation evaluation should take into account the
recognition consistency and alignment consistency. So, the consistency of Chinese annotation, English
annotation, and Chinese-English alignment annotation of the two annotators are considered:

Chinese consistency: the consistency of two annotators on the same Chinese text.
English consistency: the consistency of two annotators on the same English text.
Chinese-English alignment consistency: the consistency of Chinese annotation on the same text by

two annotators and the consistency of corresponding English alignment annotation.
We use Method1 and Method2 to compute the consistency.
Method1: computes the consistency of all possible annotations. There are punctuation marks at the

recognition positions of Chinese EDUs, and punctuation marks that may be used as recognition marks.
The recognition of EDUs in English is not based on punctuation, any space can be calculated as the
recognition mark.

Method2: calculating the consistency of intersection (A HB) in all (A U B). Sentence Posi-
tion="X1...X2 | Y1...Y2", calculate the case that A and B mark the same position of recognition. Com-
pared with method 1, this method is more accurate and can unify the evaluation criteria of Chinese and
English EDUs recognition.

Chinese consistency English consistency Chinese-English alignment consistency
Method1 0.972 0.992 –
Method2 0.968 0.930 0.909

Table 1: The consistency of EDUs annotation for Chinese and English

As shown in Table 1, recognition alignment shows good consistency, with Chinese alignment up to
0.972/0.968, English alignment up to 0.992/0.930. Even under the strictest circumstances of Method2,
Chinese-English alignment up to the consistency rate of 0.909.

It is worth noting under the Method1, English consistency is better than Chinese, with 0.992 >0.972.
Under the Method2, Chinese better than English, this is because the consistency in the calculation,
Chinese punctuation only for limited computation, but the English is for any Spaces.
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Figure 2: LSTM memory cell

However, the reality is that Chinese alignment is better than English with the same alignment evalua-
tion criteria. This can be shown under Method2 (0.968 >0.930), because Chinese recognition is marked
by punctuation, which is relatively easy. However, English recognition is not marked by punctuation,
and it is easy to recognition incorrectly. Therefore, Method2 can more accurately reflect the difference
in bilingual alignment effect compared with Method1.

3 The Model of EDU Recognition based on Bi-LSTM-CRF

In this section, we introduced the Bi-LSTM-CRF model we used, which is the combination of CRF and
Bi-LSTM and have been used in several NLP task.

3.1 CRF
CRF is extension of both Hidden Markov Models and Maximum Entropy Model (Lafferty et al., 2001).
It often solves some NLP problems, such as word recognition and image recognition. EDUs recognition
is a sequence labeling problem. One solution is that it can assign each word in the sentence with label
Y (word is EDU boundary) or N (word is not EDU boundary). CRF is a sequence labelling model with
flexible feature space. Therefore, with given feature set and labeled training data, the CRF model solve
EDUs recognition task. The model is defined as Eq. (1):

p(Y |X) =
1

Z(X)
exp(

∑
k

λkfk) (1)

In Eq. (1), Z(X) is a probability normalization factor conditioned on X. λk is the corresponding weight
of the feature set. fk is the input sequence sentences, and Y is the output label of Y or N.

3.2 Bi-LSTM
RNN is a model suitable for sequence data, which uses previous and current state to determine the
final output. However, in practical applications, RNN has only short-term memory because the gradient
vanishing and exploding problem. Hochreiter and Schmidhuber(1997) propose LSTM network ,a variant
of RNN to solve this problem.

Figure2 illustrates a single LSTM memory cell. We can see that it contains input, forget and output
gate. The gates determine the current information, in a certain proportion or discarded, transferred to the
next moment. Through the gate, LSTM can remove or add information to the cellular state. Therefore,
they can solution the data long range dependencies problem.

LSTM memory cell is implemented as the Eq.(2): As shown in Eq. (2), the logistic sigmoid function
is denoting as �. it is the input gate. ct is cell vectors. it decides the information will be stored in ct
. ft is forgot gate, and it decides the information can through from the previous cell. ot is output gate,

Proceedings of the 19th China National Conference on Computational Linguistics, pages 1068-1078,  
Hainan, China, October 30 - Novermber 1, 2020. (c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

CC
L2
02
0



Computational Linguistics

it=(Wiixt+bii+Whih(t-1)+bhi)

ft=(Wifxt+bif+Whfh(t-1)+bhf)

gt=tanh(Wigxt+big+Whgh(t-1)+bhg)  （2）
ot=(Wioxt+bio+Whoh(t-1)+bho)

ct=ftc(t-1)+itgt

ht=ottanh(ct)

it decides the information output to the current hidden state ht. W is the weight matrix, and b is bias
vectors of each gate. They are learned during training. Cdenotes the vector concatenation. For sequence
tagging task, Graves and Jjrgen utilize a bidirectional LSTM(Bi-LSTM) network. Bi-LSTM is extended
on the basis of LSTM, and it contains two difference direction layers. The sequence h = (h1h2......hn)
of the Bi-LSTM layer is obtained past and future input features by the forward and backward LSTM.
The LSTM allows more context dependent information than LSTM.

3.3 Bi-LSTM-CRF

We describe our Bi-LSTM-CRF models in details. Figure 3 shows the Bi-LSTM-CRF framework. As
we can see from Figure 3, there are input layer, embedding layer, Bi-LSTM layer, CRF layer and output
layer. First, words in sentences and their features are vectorized. Secondly, the Bi-LSTM model is fed
with feature vectors to learn contextual features from the forward and backward directions. Then, Bi-
LSTM output result is input to CRF layer. Finally, the CRF layer predicts the globally optimal clause
sequence. In addition, to reduce the influence of overfitting, we add a dropout layer at ends of the
Bi-LSTM model.

…… …… ……

Input Text

Word Embedding POS Syntactic 

L S T M

L S T M

C1

L S T M

L S T M

C2

L S T M

L S T M
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……

N N Y N Y
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Figure 3: The framework of Bi-LSTM-CRF Model
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Bi-LSTM-CRF expands the CRF layer on the basis of Bi-LSTM. The performance of CRF model in
sequence annotation tasks has been verified. In this model, the Bi-LSTM through Bi-LSTM layer makes
full use of past and future information, and CRF layer make use of tag in-formation. So, this model can
predict the current tag by incorporate the advantage of Bi-LSTM and CRF.

4 Experiment Results

4.1 Experiment Setting

The input layers of our models are the input text. We give the vector representations of words, Part of
speech (POS) and Syntactic. Word embeddings are pretrained using skip-n-gram, a variation of word2vec
(Mikolov et al.,2013) that sensitive to the order of word. These embeddings are adjusted during train-
ing. We find improvements using pretrained word embeddings. For English, the embedding dimension
we used is 200. For Chinese, we use pre-trained vector files from People’s Daily News, the embed-
ding dimension is 300(Li et al,2018). We use dropout training to avoid the model depending on one
representation too strongly, and find it is import to result.

POS is the process of marking a word as nouns, verbs, adjectives, adverbs, etc. POS is used in
many NLP task and proved very useful. Syntactic is the component that takes input sentence and give
the grammatical tree structure of sentence, which is widely used to understanding written language,
discourse parsing et al. For example, syntactic can output the phrases tag of words. We use Stanford
coreNLP (Mikolov et al.,2013) to get POS and syntactic feature, it can give the POS and syntactic tag of
each word. In this paper, we use parent phrase tag as syntactic feature simplify.

The task of EDUs recognition is giving a tag to every word in a sentence. A single EDU could span
several words in a sentence. Sentences can represent in the Y(Yes) or N (No) format, where each word
is labeled as Y label if the word is the end of EDU, and as N label if it is the beginning or inside of EDU
word.

We exploit standard training methods for our model. Using AdaGrad(Duchi,2011) as stochastic gra-
dient decent. Calculate derivatives from standard back propagation (Goller and Kuchler, 2002). In order
to prevent over fitting, we regularize our model using dropout method (Srivastava et al.,2014), and fixed
rate 0.5 for dropout layer. We obtain improvements after using dropout.

We set the initial AdaGrad learning rate as 0.01. The dimension of pre-trained word embed-ding is
set as 200. The dimension of LSTM hidden state as 200.The W and b are randomly initialized with a
uniform distribution in the range (-0.01, 0.01). We use publicly available 200-dimensional embeddings
trained for English, there are total 40000 words. We use 300-dimensional embeddings for Chinese, there
are total 355989 words. The Bi-LSTM units set 256, epoch set 200. In our experiment, for Chinese
EDUs recognition, there are total 12 581 words, 32 POS tags and 29 syntactic tags. For English, there
are total 4 106 words, 47 POS tags and 29 syntactic tags.

4.2 Experiment Results

In this section, EDU recognition is carried out in our Chinese-English alignment corpus. There are total
of 100 documents, 513 paragraphs and 2 153 EDUs were involved. The recognition of English word is
42 122 in total, among which there are 2 153 positive labels. The ratio of positive and negative examples
is 19.6:1 for English. Overall, the average length of the English EDUs is about 20 words, while the
Chinese EDUs is 11 words. The experiment splits instances into 10 parts, and use 8 parts for training,
1 part for verification and 1 part for testing. The features we used are word embedding, POS tag and
syntactic tag. The recognition results of Chinese words boundary are indicated in Table 2.

In Table 2, the best results are highlighted bold for each metric. From Table 2, we can see that by
combining Bi-LSTM, pretrained embedding, and CRF on the top of the framework, our Bi-LSTM-CRF
model outperforms best of all. We obtain the satisfactory results with the F1 93.4 % and R 94.4 % by
using Bi-LSTM-CRF model.

Table 3 shows the English EDUs recognition result. For the purpose of comparison, we list Li.s (Li
et al, 2012) Maxent model results together with ours CRF and Bi-LSTM, especially our Bi-LSTM-CRF
model results for comparison. The best F1 is 94.4% using Bi-LSTM-CRF model.
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Model P R F1
Li.s Maxent 87.4 93.6 90.4

CRF 86.7 96 91.1
Bi-LSTM 95.4 89.8 92.5

Bi-LSTM-CRF 92.3 94.4 93.4

Table 2: Chinese EDU words boundary recognition results

Model P R F1
Li.s Maxent 86.5 78.7 82.4

CRF 87.4 91 89.1
Bi-LSTM 94.0 91.9 92.9

Bi-LSTM-CRF 95.5 93.4 94.4

Table 3: English EDU words boundary recognition results

Figure 4 comprise the result of F1 between Chinese and English for different models. We can see the
best model is Bi-LSTM-CRF model, by joint decoding label sequence can benefit the final performance
of neural network models, followed by Bi-LSTM and CRF. The reason is that EDUs recognition is
sequence tag task, Bi-LSTM and CRF classifier perform better than traditional Maxent classifier.

Figure 4 shows that English EDUs recognition result is higher than Chinese using Bi-LSTM or Bi-
LSTM-CRF, the reason is that the pretrained embedding of Chinese words are more than English, with
Chinese 35 598 where English 4 000, the two is 10 times difference. But for using Maxent or CRF
model, Chinese EDUs identification F1 is higher than English.

4.3 The contribution of features
In order to investigate the contribution of the features, we give experiments specifically targeted at fea-
tures for EDUs recognition. Table 4 shows the performance of P, R, F1 for Chinese separately using
different feature, and Table 5 gives the results of English.

Features P R F1
Word Embedding 65.2 88.6 75.1

POS 70.1 80.2 74.8
Syntactic 81.1 82.1 81.6

Word Embedding +POS 76.7 90.7 83.1
Word Embedding +POS+ Syntactic 92.3 94.4 93.4

Table 4: The different feature result for Chinese

Table 4 and Table 5 show that syntactic feature outperform than other features, the F1 can reach 81.6%
and 81.8% for Chinese and English. The reason is that both in Chinese and English, most EDU word
syntactic labels contain IP and VP syntactic, while word with syntactic NP, PP and LCP are not EDU
boundary. Syntactic information is highly related with EDUs recognition than other information. The
combine of all features performance best both in Chinese and English, that means the more information
used, the better the results.

POS is the commonly used in NLP task, from the results, we find it is also useful for EDU recognition.
As shown in Table 5, only using word embedding feature, we can get F1 80.4% for English. We also
find that word embedding feature is useful than syntactic feature for English, mainly because Chinese
word is sparing. And Chinese EDUs boundary usually have punctuation, which have IP tag, so syntactic
feature is useful than word embedding feature for Chinese.

According to the results, we know that using word embedding, POS and syntactic feature together, we
can get best result, it proves the effectiveness of our features.
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Figure 4: Comparison of F1 between Chinese and English for different models

Features P R F1
Word Embedding 87.4 74.5 80.4

POS 71.2 79.8 75.3
Syntactic 80.2 83.5 81.8

Word Embedding +POS 90.4 87.1 88.7
Word Embedding +POS+ Syntactic 95.5 93.4 94.4

Table 5: The different feature result for English

4.4 Discussion

There are about 6% EDUs recognition error, and we discuss the reason as follows. There are two cases of
errors: one is negative instances are recognized as positive instances. The other is positive instances are
recognized as negative instances. From the recognition consistency compute method of section 2.3, we
notice the punctuation plays an important role in EDUs recognition, especially in Chinese. For example,
if the front words of comma are the subject of the sentence, therefore the position of this comma is not
EDU boundary. But when using our model, the syntactic of the words is IP, which may lead to mistake
recognition.

In EDUs recognition, it is difficult to distinguish EDUs from complex sentence structure. For example,
if you believe that "3,±�§ªu( In...After that, finally) "is a connective that expresses the relation
of succession. It can be considered as an EDU. However, traditional grammar generally analyzes it as
an adverbial, a part of the syntactic structure. This is transition between textual structure and syntactic
structure. We currently follow the traditional grammar, leaving the analysis of this situation to the syn-
tactic structure. For the automatic alignment of Chinese and English EDUs, we found that most of EDUs
are sequence alignment, only about 4% of EDUs adjusted sequentially when from Chinese to English.
So, for EDUs alignment, the main problem is EDUs recognition, which is influence on the result of auto-
matic alignment EDUs. The difficulty of EDUs alignment is that EDUs does not correspond and adjust
in order, which needs further research.

This paper only does Chinese and English EDUs recognition respectively, but does not do Chinese-
English EDUs alignment. Once EDUs are identified, the next step is to align, and since EDUs are
basically one-to-one, EDUs alignment can be turned into a machine translation or classification problem.
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5 Related Work

Due to the emergence of discourse corpus, there have been a lot of researches on the recognition of
English discourse. One of the corpora which are widely used is Rhetorical Structure Theory Discourse
Treebank (RSTDT) building by Carlson et al. (2003), the other is Penn Discourse Treebank (PDTB)
annotated by PDTB Research Group (2007). The RST represents a discourse as a tree, with phrases or
clauses as EDU. PDTB adopts the predicate-argument view, with two spans as its arguments.

Due to the EDUs in RST consecutive annotation, the EDUs automatic identification on RSTDT is also
called EDUs recognition, and now there is much research on it and the results are ideal, more represen-
tative research results include: Soricut and Marcus (2003) adopt statistics method for recognition, the
F1 of EDUs recognition on the automatic syntax tree and standard syntax tree are 83.1% and 84.7%.
Hernault et al. (2010) give a discourse recognition model based on sequential data annotation. They use
lexical and syntactic features get the F1 94%, which is close to 98% of the F1 of manually. According
to the above we can know that recogni-tion accuracy of EDUs on RSTDT is relatively high, and there
is little room for further improvement. For the un-sequential annotation of arguments on PDTB, not all
the discourse is covered. So, some researchers propose to replace the whole argument with the argu-
ment center in the recognition of argument (Wellner B. and Pustejovsky J,2007; Elwell R. and Baldridge
J.,2008; Wellner B,2009). And other researches put forward to the point of identifying sentences that
contain arguments (Prasad et al.,2010), the recognition accuracy of Arg1 and Arg2 are 65% and 85%
(Xu F.,2013). Braund et al.(2017) research whether syntax help discourse segmentation, the results show
that dependency information is less useful than expected, but they provide a fully scalable, robust model
that only relies on part-of-speech information, and show that it performs well across languages in the
absence of any gold-standard annotation.

Deep learning method has made breakthroughs in many NLP tasks in recent years. Among them,
Cyclic Neural Network (RNN) is a typical sequence marking model, and it is proposed by Goller and
Kuchler(1996). However, RNN is limited by gradient disappearance and gradient ex-plosion, Hochreiter
and Schmidhuber (1997) come up with the variation of RNN which is named Long Short-Term Memory
(LSTM). Because it only gets one-way contextual information, Graves and Schmidhuber (2005) raise the
Bi-directional Long Short-Term Memory (Bi-LSTM), and applied it to speech identification. Bi-LSTM
can effectively utilize past and future features in a specific time range. On the other hand, Conditional
Random Field (CRF) algorithm which is put forward by Lafferty et al.(2001) has been widely applied in
NLP recent years. In sequence marking tasks, CRF can take into account the anteroposterior dependence
between adjacent la-bels of output. Considering the above reasons, there are some studies attempting
to combine Bi-LSTM and CRF to build model for sequence data (Ji Me et al.,2018). Bi-LSTM and
CRF hybrid model were first applied to the sequence labeling task of NLP by Huang et al. (2015), Ma
and Hovy(2016) focus Bi-LSTM, CRF and CNN models and apply them to sequence marking tasks.
Bi-LSTM-CRF model is applied in identifying biomedicine named entity (Greenberg et al.,2018), The
effectiveness of the model in sequence marking tasks is gradually verified.

There are few discourse corpora in Chinese to mark EDU information (Zhang et al.2014;Li et
al.,2014). At present, the task of EDU recognition is few referred. Zhang et al (2014) only identified
the relation, but no relevant result about argument identification. Li et al. (2014) research on Chinese
EDUs recognition based on comma, and Chinese EDUs recognition result can reach 90%. Ge Haizhu
et al. (2019) proposes a Chinese EDU recognition approach based on theme-rheme theory, which can
pay more attention on the internal structure of EDU, and the F1 score is 89.96%. However, limited by
bilingual corpus, there is no EDUs recognition of both Chinese and English research.

6 Conclusion

The discourse alignment corpus of Chinese-English is annotated in this paper. The corpus has a complete
EDU definition, annotation method, quality assurance and available scale. The corpus we annotated in
this paper is the basic task of EDUs recognition. Then we developed an EDUs recognition system
using Bi-LSTM-CRF model. Our neural model achieved satisfactory results for Chinese and English
EDU recognition. To our knowledge, we are among the first to develop an effective neural network-
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based approach to recognize EDUs for both Chinese and English. We input word embedding, POS and
syntactic feature to our model in order to improve the result. By incorporating these features, our model
can extract EDUs automatically and high quality. The F1 can reach 93.4% and 94.4% for Chinese and
English separately, which is reaching the practical using. This model can also be generalized to solve
other problems. In the future, we will improve the effect of recognition Chinese and English EDUs, then
try to automatic align them.
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