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Abstract

While deep learning has transformed the nat-
ural language processing (NLP) field and im-
pacted the larger computational linguistics
community, the rise of neural networks is
stained by their opaque nature: It is challeng-
ing to interpret the inner workings of neural
network models, and explicate their behavior.
Therefore, in the last few years, an increas-
ingly large body of work has been devoted to
the analysis and interpretation of neural net-
work models in NLP.

This body of work is so far lacking a common
framework and methodology. Moreover, ap-
proaching the analysis of modern neural net-
works can be difficult for newcomers to the
field. This tutorial aims to fill this gap and in-
troduce the nascent field of interpretability and
analysis of neural networks in NLP.

The tutorial will cover the main lines of anal-
ysis work, such as structural analyses using
probing classifiers, behavioral studies and test
suites, and interactive visualizations. We will
highlight not only the most commonly applied
analysis methods, but also the specific limita-
tions and shortcomings of current approaches,
in order to inform participants where to focus
future efforts.

1 Tutorial Description

Deep learning has transformed the NLP field
and impacted the larger computational linguistics
community. Neural networks have become
the preferred modeling approach for various
tasks, from language modeling, through mor-
phological inflection and syntactic parsing, to
machine translation, summarization, and reading
comprehension.

The rise of neural networks is, however, stained
by their opaque nature. In contrast to earlier
approaches that made use of manually crafted
features, it is more challenging to interpret the

inner workings of neural network models, and
explicate their behavior. Therefore, in the last
few years, an increasingly large body of work has
been devoted to the analysis and interpretation of
neural network models in NLP.

The topic has so far been represented in two
dedicated workshops (Blackbox 2018 and 2019)
and was recently established as a track in the
main *CL conferences. Due to these recent
developments, methods for the analysis and inter-
pretability of neural networks in NLP are so far
lacking a common framework and methodology.
Moreover, approaching the analysis of modern
neural networks can be difficult for newcomers
to the field, since it requires both a familiarity
with recent work in neural NLP and with analysis
methods which are not yet standardized. This
tutorial aims to fill this gap and introduce the
nascent field of interpretability and analysis of
neural networks in NLP.

The tutorial will cover the main lines of analy-
sis work, mostly drawing on the recent TACL sur-
vey by Belinkov and Glass (2019).1 In particu-
lar, we will devote a large portion to work aiming
to find linguistic information that is captured by
neural networks, such as probing classifiers (Hup-
kes et al., 2018; Adi et al., 2017; Conneau et al.,
2018a,b; Tenney et al., 2019b, inter alia), con-
trolled behavior studies on language modelling
(Gulordava et al., 2018; Linzen et al., 2016a; Mar-
vin and Linzen, 2018) or inference tasks (Poliak
et al., 2018a,b; White et al., 2017; Kim et al., 2019;
McCoy et al., 2019; Ross and Pavlick, 2019),
psycholinguistic methods (Ettinger et al., 2018;
Chrupała and Alishahi, 2019), layerwise analyses
(Peters et al., 2018; Tenney et al., 2019a), among
other methods (Hewitt and Manning, 2019; Zhang

1A comprehensive bibliography is found in the accom-
panying website of the survey: https://boknilev.
github.io/nlp-analysis-methods/.

https://blackboxnlp.github.io
https://blackboxnlp.github.io/2018
https://boknilev.github.io/nlp-analysis-methods/
https://boknilev.github.io/nlp-analysis-methods/
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and Bowman, 2018; Shi et al., 2016). We will also
present various interactive visualization methods
such as neuron activations (Karpathy et al., 2015;
Dalvi et al., 2019), attention mechanisms (Bah-
danau et al., 2014; Strobelt et al., 2018), and
saliency measures (Li et al., 2016; Murdoch et al.,
2018; Arras et al., 2017), including a walkthrough
on how to build a simple attention visualization.
Next, we will discuss the construction and use
of challenge sets for fine-grained evaluation in
the context of different tasks (Conneau and Kiela,
2018; Wang et al., 2018; Isabelle and Kuhn, 2018;
Sennrich, 2017, inter alia). Finally, we will re-
view work on generating adversarial examples in
NLP, focusing on the challenges brought upon by
the discrete nature of textual input (Papernot et al.,
2016b; Ebrahimi et al., 2018; Jia and Liang, 2017;
Belinkov and Bisk, 2018, inter alia). A detailed
outline is provided in Section 3.

Throughout the tutorial, we will highlight not
only the most commonly applied analysis meth-
ods, but also the specific limitations and shortcom-
ings of current approaches. By the end of the tuto-
rial, participants will be better informed where to
focus future research efforts.

2 Tutorial Type

This tutorial will cover cutting-edge research in in-
terpretability and analysis of modern neural NLP
models. The topic has not been previously covered
in *CL tutorials.

3 Outline

1. Introduction

2. Structural Analyses

(a) Methodology: Analysis by Probing
Classifiers

(b) Example Studies: Different Compo-
nents and Linguistic Phenomena

(c) Limitations

3. Behavioral Studies

(a) Background on Test Suites and Chal-
lenge Sets

(b) Types of Probing Tasks
(c) Experimental Designs
(d) Construction Methods
(e) Languages

4. Interaction and Visualization

(a) How Interaction can help and its limita-
tions

(b) Classification and Review of Related
Efforts

(c) Demo Walk-through: Simple Attention
Visualization

(d) Broader Perspectives and Opportunities

5. Other Methods

(a) Generating Explanations
(b) Psycholinguistic Methods
(c) Testing on Formal Languages

6. Conclusion

4 Prerequisites

We would assume acquaintance with core lin-
guistic concepts and basic knowledge of machine
learning and neural networks, such as covered in
most introductory NLP courses.

5 Reading List

In addition to the papers mentioned in
this proposal, a comprehensive bibliogra-
phy can be found in the following web-
site: https://boknilev.github.io/
nlp-analysis-methods/.

For trainees interested in reading important
studies before the tutorial, we recommend the
following: Belinkov and Glass (2019); Hupkes
et al. (2018); Tenney et al. (2019b); Linzen et al.
(2016b); Ettinger et al. (2018); Bahdanau et al.
(2014); Li et al. (2016); Sennrich (2017); Paper-
not et al. (2016a); Ebrahimi et al. (2018).

6 Names and Affiliations

Yonatan Belinkov, Postdoctoral Fellow, Harvard
University and MIT
email: belinkov@seas.harvard.edu
website: http://people.csail.mit.
edu/belinkov

Yonatan Belinkov is a Postdoctoral Fellow at
the Harvard School of Engineering and Applied
Sciences (SEAS) and the MIT Computer Science
and Artificial Intelligence Laboratory (CSAIL).
His research interests are in interpretability and
robustness of neural models of language. He
has done previous work in machine translation,
speech recognition, community question answer-
ing, and syntactic parsing. His research has been

https://boknilev.github.io/nlp-analysis-methods/
https://boknilev.github.io/nlp-analysis-methods/
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published at ACL, EMNLP, NAACL, CL, TACL,
ICLR, and NeurIPS. His PhD dissertation at MIT
analyzed internal language representations in deep
learning models. He co-organized or co-organizes
BlackboxNLP 2019, BlackboxNLP 2020, and the
WMT 2019 machine translation robustness task,
and serves as an area chair for the analysis and
interpretability track at ACL and EMNLP 2020.

Sebastian Gehrmann, Research Scientist,
Google AI
email: gehrmann@google.com
website: http://sebastiangehrmann.
com

Sebastian is research scientist at Google AI. He
received his PhD in 2020 from Harvard Univer-
sity. His research focuses on the development and
evaluation of controllable and interpretable mod-
els for language generation. By applying methods
from human-computer interaction and visualiza-
tion to problems in NLP, he develops interactive
interfaces that help with the interpretation and
explanation of neural networks. His research
has been published at ACL, NAACL, EMNLP,
CHI, and IEEE VIS. He received an honorable
mention at VAST 2018 and was nominated for
ACL best demo 2019 for his work on interactive
visualization tools. He co-organized INLG 2019
and served as an area chair in summarization for
ACL 2020.

Ellie Pavlick, Assistant Professor of Computer
Science, Brown University
email: ellie pavlick@brown.edu
website: http://cs.brown.edu/people/
epavlick

Ellie Pavlick is an Assistant Professor at Brown
University and a Research Scientist at Google.
She received her PhD in 2017 with her thesis on
modeling compositional lexical semantics. Her
current work focuses on computational models of
semantics and pragmatics, with a focus on build-
ing cognitively-plausible representations. Her re-
cent work has focused on “probing” distributional
models in order to better understand the linguistic
phenomena that are and are not encoded “for free”
via language modelling. Her work has been pub-
lished at ACL, NAACL, EMNLP, TACL, *SEM,
and ICLR, including two best paper awards at

*SEM 2016 and 2019. Ellie co-organized the 2018
JSALT summer workshop on building and eval-
uating general-purpose sentence representations.
She also served as area chair for ACL’s sentence-
level semantics track.
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