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Abstract

A recent advance in monolingual dependency
parsing is the idea of a treebank embedding
vector, which allows all treebanks for a par-
ticular language to be used as training data
while at the same time allowing the model to
prefer training data from one treebank over
others and to select the preferred treebank at
test time. We build on this idea by 1) intro-
ducing a method to predict a treebank vector
for sentences that do not come from a tree-
bank used in training, and 2) exploring what
happens when we move away from predefined
treebank embedding vectors during test time
and instead devise tailored interpolations. We
show that 1) there are interpolated vectors that
are superior to the predefined ones, and 2) tree-
bank vectors can be predicted with sufficient
accuracy, for nine out of ten test languages, to
match the performance of an oracle approach
that knows the most suitable predefined tree-
bank embedding for the test set.

1 Introduction

The Universal Dependencies project (Nivre et al.,
2016) has made available multiple treebanks for
the same language annotated according to the same
scheme, leading to a new wave of research which
explores ways to use multiple treebanks in mono-
lingual parsing (Shi et al., 2017; Sato et al., 2017;
Che et al., 2017; Stymne et al., 2018).

Stymne et al. (2018) introduced a treebank em-
bedding. A single model is trained on the concate-
nation of the available treebanks for a language,
and the input vector for each training token in-
cludes the treebank embedding which encodes the
treebank the token comes from. At test time, all
input vectors in the test set of the same treebank
are also assigned this treebank embedding vector.
Stymne et al. (2018) show that this approach is
superior to mono-treebank training and to plain

treebank concatenation. Treebank embeddings per-
form at about the same level as training on multiple
treebanks and tuning on one, but they argue that a
treebank embedding approach is preferable since it
results in just one model per language.

What happens, however, when the input sen-
tence does not come from a treebank? Stymne et al.
(2018) simulate this scenario with the Parallel Uni-
versal Dependency (PUD) test sets. They define
the notion of a proxy treebank which is the tree-
bank to be used for a treebank embedding when
parsing sentences that do not come from any of
the training treebanks. They empirically determine
the best proxy treebank for each PUD test set by
testing with each treebank embedding. However,
the question remains what to do with sentences for
which no gold parse is available, and for which we
do not know the best proxy.

We investigate the problem of choosing tree-
bank embedding vectors for new, possibly out-of-
domain, sentences. In doing so, we explore the
usefulness of interpolated treebank vectors which
are computed via a weighted combination of the
predefined fixed ones. In experiments with Czech,
English and French, we establish that useful inter-
polated treebank vectors exist. We then develop a
simple k-NN method based on sentence similarity
to choose a treebank vector, either fixed or interpo-
lated, for sentences or entire test sets, which, for 9
of our 10 test languages matches the performance
of the best (oracle) proxy treebank.

2 Interpolated Treebank Vectors

Following recent work in neural dependency pars-
ing (Chen and Manning, 2014; Ballesteros et al.,
2015; Kiperwasser and Goldberg, 2016; Zeman
et al., 2017, 2018), we represent an input token by
concatenating various vectors. In our experiments,
each word wi in a sentence S = (w1,...,wn) is a
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concatenation of 1) a dynamically learned word
vector, 2) a word vector obtained by passing the ki
characters of wi through a BiLSTM and 3), follow-
ing Stymne et al. (2018), a treebank embedding to
distinguish the m training treebanks:

e(i) = e1(wi)

◦ biLSTM(e2(chi,1), ..., e2(chi,ki))

◦ f
(1)

Stymne et al. (2018) use

f = e3(t
?) (2)

where t? ∈ 1, ...,m is the source treebank for sen-
tence S or if S does not come from one of the
m treebanks, a choice of one of these (the proxy
treebank). We change f during test time to

f =

m∑
t=1

αte3(t) (3)

where there are m treebanks for the language in
question and

∑m
t=1 αt = 1.

3 Data and Resources

For all experiments, we use UD v2.3 (Nivre et al.,
2018). We choose Czech, English and French as
our development languages because they each have
four treebanks (excluding PUD), allowing us to
train on three treebanks and test on a fourth. For
testing, we use the PUD test sets for languages
for which there are at least two other treebanks
with training data: Czech, English, Finnish, French,
Italian, Korean, Portuguese, Russian, Spanish and
Swedish. Following Stymne et al. (2018), we use
the transition-based parser of de Lhoneux et al.
(2017) with the token input representations as Eq. 1
above. Source code of our modified parser and
helper scripts to carry out the experiments are avail-
able online.1

4 Are Interpolated Treebank Vectors
Useful?

We attempt to ascertain how useful interpolated
treebank embedding vectors are by examining the
labelled attachment score (LAS) of trees parsed
with different interpolated treebank vectors. For
each of our three development languages, we train
multi-treebank parsing models on the four com-
binations of three of the four available treebanks
and we test each model on the development sets

1https://github.com/jowagner/
tbev-prediction

Figure 1: LAS in the treebank vector weight
space (m = 3) for cs cltt+fictree+pdt on
cs cac-dev with the second seed.

of all four treebanks, i. e. three in-domain parsing
settings and one out-of-domain setting.2

Sincem = 3 and
∑m

t=1 αt = 1, all treebank vec-
tors lie in a plane and we can visualise LAS results
in colour plots. As the treebank vectors can have
arbitrary distances, we plot (and sample) in the
weight space Rm. We include the equilateral trian-
gle spanned by the three fixed treebank embedding
vectors in our plots. Points outside the triangle can
be reached by allowing negative weights αt < 0.

We obtain treebank LAS and sentence-level LAS
for 200 weight vectors sampled from the weight
space, including the corners of the triangle, and
repeat with different seeds for parameter initial-
isation and training data shuffling. Rather than
sampling at random, points are chosen so that they
are somewhat symmetrical and evenly distributed.

Figure 1 shows the development set LAS
on cs cac-dev for a model trained on
cs cltt+fictree+pdt with the second seed.
We create 432 such plots for nine seeds, four
training configurations, four development sets
and three languages. The patterns vary with
each seed and configuration. The smallest
LAS range within a plot is 87.8 to 88.3
(cs cac+cltt+pdt on cs pdt with the sev-
enth seed). The biggest LAS range is 59.7 to 76.8
(fr gsd+sequoia+spoken on fr spoken
with the fifth seed).

The location of the fixed treebank vectors e3(t)
are at the corners of the triangle in each graph. For
in-domain settings one or two corners usually have
LAS close to the highest LAS in the plot. The

2An in-domain example is testing a model trained
on cs cac+cltt+fictree on cs cac, and an out-of-
domain example is testing the same model on cs pdt.

https://github.com/jowagner/tbev-prediction
https://github.com/jowagner/tbev-prediction
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Figure 2: LAS in the treebank vector weight space
(m = 3) for sentence 2 of en partut-dev (28 to-
kens) with en ewt+gum+lines and our first seed.

best LAS scores (black circles), however, are often
located outside the triangle, i. e. negative weights
are needed to reach it.

Turning to sentence-level LAS, Figure 2 shows
the LAS for an individual example sentence rather
than an entire development set. This sentence is
taken from en partut-dev and is parsed with a
model trained on en ewt+gum+lines. For this
28-token sentence, LAS can only change in steps of
1/28 and 34 of the 200 treebank embedding weight
points share the top score. Negative weights are
needed to reach these points outside the triangle.

Over all development sentences and parsing
models, an interpolated treebank vector achieves
highest LAS for 99.99% of sentences: In 78.07%
of cases, one of the corner vectors also achieves the
highest LAS and in the remaining 21.92%, inter-
polated vectors are needed. It is also worth noting
that, for 39% of sentences, LAS does not depend
on the treebank vectors at all, at least not in the
weight range explored.

Often, LAS changes from one side to another
side of the graph. The borders have different orien-
tation and sharpness. The fraction of points with
highest LAS varies from few to many. The same
is true for the fraction of points with lowest LAS.
Noise seems to be low. Most data points match
the performance of their neighbours, i. e. the scores
are not sensitive to small changes of the treebank
weights, suggesting that the observed differences
are not just random numerical effects.

This preliminary analysis suggests that useful in-
terpolated treebank vectors do exist. Our next step
is to try to predict them. In all subsequent experi-
ments, we focus on the out-of-domain setting, i. e.
each multi-treebank model is tested on a treebank

not included in training.

5 Predicting Treebank Vectors

We use k-nearest neighbour (k-NN) classification
to predict treebank embedding vectors for an indi-
vidual sentence or a set of sentences at test time.
We experiment with 1) allocating the treebank vec-
tor for an input sentence using the k most similar
training sentences (se-se), and 2) allocating the
treebank vector for a set of input sentences using
the most similar training treebank (tr-tr).

We will first explain the se-se case. For each
input sentence, we retrieve from the training data
the k most similar sentences and then identify the
treebank vectors from the candidate samples that
have the highest LAS. To compute similarity, we
represent sentences either as tf-idf vectors com-
puted over character n-grams, or as vectors pro-
duced by max-pooling over a sentence’s ELMo
vectors (Peters et al., 2018) produced by averaging
all ELMo biLM layers.3

We experiment with k = 1, 3, 9. For many sen-
tences, several treebank vectors yield the optimal
LAS for the most similar retrieved sentence(s), and
so we try several tie-breaking strategies, including
choosing the vector closest to the uniform weight
vector (i. e. each of the three treebanks is equally
weighted), re-ranking the list of vectors in the tie
according to the LAS of the next most similar sen-
tence, and using the average LAS of the k sentences
retrieved to choose the treebank vector. Three tree-
bank vector sample sizes were tried:

1. fixed: Only the three fixed treebank vectors,
i. e. the corners of the triangle in Fig. 1.

2. αt ≥ 0: Negative weights are not used in the
interpolation, i. e. only the 32 points inside or
on the triangle in Fig. 1.

3. any: All 200 weight points shown in Fig. 1.

When retrieving treebanks (tr-tr), we use the
average of the treebank’s sentence representation
vectors as the treebank representation and we nor-
malise the vectors to the unit sphere as otherwise
the size of the treebank would dominate the loca-
tion in vector space.

We include oracle versions of each k-NN model
in our experiments. The k-NN oracle method is
different from the normal k-NN method in that the
test data is added to the training data so that the
test data itself will be retrieved. This means that a

3We use ELMoForManyLangs (Che et al., 2018).
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Model (se-se) Lang Avg LAS
Learning Weights Cs En Fr
random fixed 82.5 73.4 72.1
random αt ≥ 0 82.6 73.9 72.5
random any 82.4 73.3 72.1
k-NN fixed 82.6 74.6 73.8
k-NN αt ≥ 0 82.6 74.7 73.8
k-NN any 82.6 74.4 73.7
oracle k-NN fixed 84.1 77.8 77.1
oracle k-NN αt ≥ 0 84.2 79.3 78.6
oracle k-NN any 85.5 81.0 80.2

Table 1: Development set LAS with per sentence tree-
bank vectors

k-NN oracle with k = 1 knows exactly what tree-
bank vector is best for each test item while a basic
k-NN model has to predict the best vector based
on the training data. In the tr-tr setting, our
k-NN classifier is selecting one of three treebanks
for the fourth test treebank. In the oracle k-NN set-
ting, it selects the test treebank itself and parses the
sentences in that treebank with its best-performing
treebank vector. When the treebank vector sample
space is limited to the vectors for the three training
treebanks (fixed), this method is the same as the
best-proxy method of Stymne et al. (2018).

6 Results

The development results, averaged over the four
development sets for each language, are shown in
Tables 1 and 2.4 As discussed above, upper bounds
for k-NN prediction are calculated by including an
oracle setting in which the query item is added to
the set of items to be retrieved, and k restricted to 1.
We are also curious to see what happens when an
equal combination of the three fixed vectors (uni-
form weight vector) is used (equal), and when
treebank vectors are selected at random.

Table 1 shows the se-se results. The top sec-
tion shows the results of randomly selecting a sen-
tence’s treebank vector, the middle section shows
the k-NN results and the bottom section the oracle
k-NN results. The k-NN predictor clearly outper-
forms the random predictor for English and French,
but not for Czech, suggesting that the treebank vec-
tor itself plays less of a role for Czech, perhaps due
to high domain overlap between the treebanks. The

4To reduce noise from random initialisation, we parse each
development set nine times with nine different seeds and use
the median LAS.

Model (tr-tr) Lang Avg LAS
Learning Weights Cs En Fr
proxy-best fixed 82.7 74.7 73.8
proxy-worst fixed 82.3 72.4 70.7
k-NN fixed 82.7 74.6 73.8
k-NN αt ≥ 0 82.7 74.6 73.8
k-NN any 82.7 74.5 73.8
oracle k-NN fixed 82.7 74.7 73.8
oracle k-NN αt ≥ 0 82.8 75.1 74.2
oracle k-NN any 82.9 75.1 74.3
equal n/a 82.7 74.8 72.9

Table 2: Development set LAS with one treebank vec-
tor for all input sentences

oracle k-NN results indicate not only the substan-
tial room for improvement for the predictor, but
also the potential of interpolated vectors since the
results improve as the sample space is increased
beyond the three fixed vectors.

Table 2 shows the tr-tr results. The first sec-
tion is the proxy treebank embedding of Stymne
et al. (2018) where one of the fixed treebank vec-
tors is used for parsing the development set. We
report the best- and worst-performing of the three
(proxy-best and proxy-worst). The k-NN
methods are shown in the second section of Ta-
ble 2. The first row of this section (fixedweights)
can be directly compared with the proxy-best.
For Czech and French, the k-NN method matches
the performance of proxy-best. For English, it
comes close. Examining the per-treebank English
results, k-NN predicts the best proxy treebank for
all but en partut, where it picks the second best
(en gum) instead of the best (en ewt).

The oracle k-NN results are shown in the third
section of Table 2.5 Although less pronounced than
for the more difficult se-se task, they indicate
that there is still some room for improving the vec-
tor predictor at the document level if interpolated
vectors are considered.

Our equal method, that uses the weights (1⁄3,
1⁄3, 1⁄3), is shown in the last row of Table 2. It is
the overall best English model. Our best model
for Czech is a tr-tr model which just selects
from the three fixed treebank vectors. For French,
the best is a tr-tr model which selects from in-
terpolated vectors with positive weights. For the
PUD languages not used in development, we se-

5Recall that the first method in this section, oracle
fixed, is the same method as proxy-best.
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lan-
lan- proxy ge- guage-
guage m worst best neric specific
cs 4 81.6 82.5 82.5 82.5
en 4 76.4 82.9 80.7† 81.7†

es 2 76.1 80.3 80.3 –
fi 2 52.5 80.6 80.5 –
fr 4 74.9 78.6 78.6 78.6
it 3 84.4 85.5 85.5 –
ko 2 35.5 43.9 44.0 –
pt 2 74.6 77.4 77.6 –
ru 3 82.6 83.7 82.9 –
sv 2 73.7 74.7 74.7 –

Table 3: PUD Test Set Results: Statistically signifi-
cant differences between proxy-best and our best
method are marked with †

lect the hyper-parameters based on average LAS
on all 12 development sets. The resulting generic
hyper-parameters are the same as those for the best
French model: tr-tr with interpolated vectors
and positive weights.6

The PUD test set results are shown in Table 3.
For nine out of ten languages we match the oracle
method proxy-best within a 95% confidence
interval.7 For Russian, the treebank vector of the
second-best proxy treebank is chosen, falling 0.8
LAS points behind. Still, this difference is not sig-
nificant (p=0.055). For English, the generic model
also picks the second-best proxy treebank.8

7 Conclusion

In experiments with Czech, English and French, we
investigated treebank embedding vectors, exploring
the ideas of interpolated vectors and vector weight
prediction. Our attempts to predict good vector
weights using a simple regression model yielded
encouraging results. Testing on PUD languages,
we match the performance of using the best fixed
treebank embedding vector in nine of ten cases
within the bounds of statistical significance and in
five cases exactly match it.

6While the k-NN models selected for final testing use char-
n-gram-based sentence representations, ELMo representations
are competitive.

7Statistical significance is tested with udapi-python
(https://github.com/udapi/udapi-python).

8For Korean PUD, LAS scores are surprisingly low given
that development results on ko gsd and ko kaist are
above 76.5 for all seeds. A run with a mono-treebank model
confirms low performance on Korean PUD. According to a re-
viewer, there are known differences in the annotation between
the Korean UD treebanks.

On the whole, it seems that our predictor is not
yet good enough to find interpolated treebank vec-
tors that are clearly superior to the basic, fixed vec-
tors and that we know to exist from the oracle runs.
Still, we think it is encouraging that performance
did not drop substantially when the set of candidate
vectors was widened (αt ≥ 0 and ‘any’). We do not
think the superior treebank vectors found by the or-
acle runs are simply noise, i. e. model fluctuations
due to varied inputs, because the LAS landscape
in the weight vector space is not noisy. For indi-
vidual sentences, LAS is usually constant in large
areas and there are clear, sharp steps to the next
LAS level. Therefore, we think that there is room
for improvement for the predictor to find interpo-
lated vectors which are better than the fixed ones.
We plan to explore other methods to predict tree-
bank vectors, e. g. neural sequence modelling, and
to apply our ideas to the related task of language
embedding prediction for zero-shot learning.

Another area for future work is to explore what
information treebank vectors encode. The previous
work on the use of treebank vectors in mono- and
multi-lingual parsing suggests that treebank vectors
encode information that enables the parser to select
treebank-specific information where needed while
also taking advantage of treebank-independent in-
formation available in the training data. The type
of information will depend on the selection of tree-
banks, e. g. in a polyglot setting the vector may
simply encode the language, and in a monolingual
setting such as ours it may encode annotation or
domain differences between the treebanks.

Interpolating treebank vectors adds a layer of
opacity, and, in future work, it would be interesting
to carry out experiments with synthetic data, e. g.
varying the number of unknown words, to get a bet-
ter understanding of what they may be capturing.

Future work should also test even simpler strate-
gies which do not use the LAS of previous parses to
gauge the best treebank vector, e. g. always picking
the largest treebank.
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Uresova, Jenna Kanerva, Stina Ojala, Anna Mis-
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