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Abstract

Most of recent work in cross-lingual word em-
beddings is severely Anglocentric. The vast
majority of lexicon induction evaluation dic-
tionaries are between English and another lan-
guage, and the English embedding space is se-
lected by default as the hub when learning in
a multilingual setting. With this work, how-
ever, we challenge these practices. First, we
show that the choice of hub language can sig-
nificantly impact downstream lexicon induc-
tion and zero-shot POS tagging performance.
Second, we both expand a standard English-
centered evaluation dictionary collection to in-
clude all language pairs using triangulation, and
create new dictionaries for under-represented
languages.1 Evaluating established methods
over all these language pairs sheds light into
their suitability for aligning embeddings from
distant languages and presents new challenges
for the field. Finally, in our analysis we iden-
tify general guidelines for strong cross-lingual
embedding baselines, that extend to language
pairs that do not include English.

1 Introduction
Continuous vectors for representing words (embed-
dings) (Turian et al., 2010) have become ubiquitous
in modern, neural NLP. Cross-lingual representations
(Mikolov et al., 2013) additionally represent words from
various languages in a shared continuous space, which
in turn can be used for Bilingual Lexicon Induction
(BLI). BLI is often the first step towards several down-
stream tasks such as Part-Of-Speech (POS) tagging
(Zhang et al., 2016), parsing (Ammar et al., 2016a),
document classification (Klementiev et al., 2012), and
machine translation (Irvine and Callison-Burch, 2013;
Artetxe et al., 2018b; Lample et al., 2018).

Often, such shared representations are learned with a
two-step process, whether under bilingual or multilin-
gual settings (hereinafter BWE and MWE, respectively).
First, monolingual word embeddings are learned over

1Available at https://github.com/antonisa/
embeddings.

large swaths of text. Such pre-trained word embed-
dings, such as the fastText Wikipedia vectors (Grave
et al., 2018), are available for many languages and are
widely used. Second, a mapping between the languages
is learned in one of three ways: in a supervised manner
if dictionaries or parallel data are available to be used
for supervision (Zou et al., 2013), under minimal su-
pervision e.g. using only identical strings (Smith et al.,
2017), or even in an unsupervised fashion (Zhang et al.,
2017; Conneau et al., 2018). Both in bilingual and mul-
tilingual settings, it is common that one of the language
embedding spaces is the target to which all other lan-
guages get aligned (hereinafter “the hub"). We outline
the details in Section 2.

Despite all the recent progress in learning cross-
lingual embeddings, we identify a major shortcoming
to previous work: it is by and large English-centric.
Notably, most MWE approaches essentially select En-
glish as the hub during training by default, aligning all
other language spaces to the English one. We argue
and empirically show, however, that English is a poor
hub language choice. In BWE settings, on the other
hand, it is fairly uncommon to denote which of the two
languages is the hub (often this is implied to be the tar-
get language). However, we experimentally find that
this choice can greatly impact downstream performance,
especially when aligning distant languages.

This Anglocentricity is even more evident at the eval-
uation stage. The lexica most commonly used for evalu-
ation are the MUSE lexica (Conneau et al., 2018) which
cover 45 languages, but with translations only from and
into English. Alternative evaluation dictionaries are also
very English- and European-centric: (Dinu and Baroni,
2014) report results on English–Italian, (Artetxe et al.,
2017) on English–German and English–Finnish, (Zhang
et al., 2017) on Spanish–English and Italian–English,
and (Artetxe et al., 2018a) between English and Italian,
German, Finnish, Spanish, and Turkish. We argue that
cross-lingual word embedding mapping methods should
look beyond English for their evaluation benchmarks
because, compared to all others, English is a language
with disproportionately large available data and rela-
tively poor inflectional morphology e.g., it lacks case,
gender, and complex verbal inflection systems (Aronoff

and Fudeman, 2011). These two factors allow for an

https://github.com/antonisa/embeddings
https://github.com/antonisa/embeddings
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overly easy evaluation setting which does not neces-
sarily generalize to other language pairs. In light of
this, equal focus should instead be devoted to evalua-
tion over more diverse language pairs that also include
morphologically rich and low-resource languages.

With this work, we attempt to address these short-
comings, providing the following contributions:

• We show that the choice of the hub when evaluating
on diverse language pairs can lead to significantly
different performance for iterative refinement meth-
ods that use a symbolic-based seed dictionary (e.g.,
by more than 10 percentage points for BWE over
distant languages). We also show that often En-
glish is a suboptimal hub for MWE.

• We identify some general guidelines for choosing
a hub language which could lead to stronger perfor-
mance; less isometry between the hub and source
and target embedding spaces mildly correlates with
performance, as does typological distance (a mea-
sure of language similarity based on language fam-
ily membership trees). For distant languages, mul-
tilingual systems should be preferred over bilingual
ones if the languages share alphabets, otherwise a
bilingual system based on monolingual similarity
dictionaries is preferable.

• We provide resources for training and evaluation
on language pairs that do not include English.
We outline a simple triangulation method with
which we extend the MUSE dictionaries to an ad-
ditional 4704 lexicons covering 50 languages (for
a total of 4900 dictionaries, including the original
English ones), and we present results on a subset
of them. We also create new evaluation lexica for
under-resourced, under-represented languages us-
ing Azerbaijani, Belarusian, and Galician as our
test cases. Finally, we provide recipes for creat-
ing such dictionaries for any language pair with
available parallel data.

2 Cross-Lingual Word Embeddings and
Lexicon Induction

Bilingual Word Embeddings In the supervised
BWE setting of Mikolov et al. (2013), given two lan-
guages L = {l1, l2} and their pre-trained row-aligned
embeddings X1,X2, respectively, a transformation ma-
trix M is learned such that:

M = arg min
M∈Ω

‖X1 −MX2‖ .

The set Ω can potentially impose a constraint over M ,
such as the very popular constraint of restricting it to
be orthogonal (Xing et al., 2015). Previous work has
empirically found that this simple formulation is com-
petitive with other more complicated alternatives (Xing
et al., 2015). The orthogonality assumption ensures
that there exists a closed-form solution through Singular

Value Decomposition (SVD) of X1X
T
2 .2 Note that in

this case only a single matrix M needs to be learned,
because ‖X1 −MX2‖ =

∥∥∥M−1X1 − X2
∥∥∥, while at the

same time a model that minimizes ‖X1 −MX2‖ is as
expressive as one minimizing ‖M1X1 −M2X2‖, with
half the parameters.

In the minimally supervised or even the unsupervised
setting, Zhang et al. (2017) and Conneau et al. (2018)
reframe the task as an adversarial game, with a gener-
ator aiming to produce a transformation that can fool
a discriminator. However, the most popular methods
follow an iterative refinement approach (Artetxe et al.,
2017). Starting with a seed dictionary (e.g. from iden-
tical strings (Zhou et al., 2019) or numerals) an initial
mapping is learned in the same manner as in the super-
vised setting. The initial mapping, in turn, is used to
expand the seed dictionary with high confidence word
translation pairs. The new dictionary is then used to
learn a better mapping, and so forth the iterations con-
tinue until convergence. The same iterative approach is
followed by Artetxe et al. (2018a), with one important
difference that allows their model (VecMap) to handle
language pairs with different alphabets: instead of iden-
tical strings, the seed dictionary is constructed based on
the similarity of the monolingual similarity distributions
over all words in the vocabulary.3

Multilingual Word Embeddings In a multilingual
setting, the simplest approach is to use BWE and align
all languages into a target language (the hub). In this
case, for N languages L = {l1, l2, . . . , lN} on has to
learn N − 1 bilingual mappings (Ammar et al., 2016b).
Rather than using a single hub space, Heyman et al.
(2019) propose an incremental procedure that uses an
Incremental Hub Space (IHS): each new language is
included to the multilingual space by mapping it to all
languages that have already been aligned (e.g. language
l3 would be mapped to the aligned space of {l1, l2}).

Alternatively, all mappings could be learned jointly,
taking advantage of the inter-dependencies between any
two language pairs. Importantly, though, there is no
closed form solution for learning the joint mapping,
hence a solution needs to be approximated with gradient-
based methods. The main approaches are:

• Multilingual adversarial training with pseudo-
randomized refinement (Chen and Cardie, 2018,
MAT+MPSR): a generalization of the adversarial
approach of Zhang et al. (2017); Conneau et al.
(2018) to multiple languages, also combined with
an iterative refinement procedure.4

• Unsupervised Multilingual Hyperalign-
ment (Alaux et al., 2019, UMH): an approach

2We refer the reader to Mikolov et al. (2013) for details.
3We refer the reader to Artetxe et al. (2018a) for details.
4MAT+MPSR has the beneficial property of being as com-

putationally efficient as learning O(N) mappings (instead of
O(N2)). We refer the reader to Chen and Cardie (2018) for
exact details.
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which maps all languages to a single hub space,5

but also enforces good alignments between all
language pairs within this space.

Even though the architecture and modeling approach
of all MWE methods are different, they share the same
conceptual traits: one of the language spaces remains
invariant and all other languages are effectively mapped
to it. In all cases, English is by default selected to be
the hub. The only exception is the study of triplets
alignments in (Alaux et al., 2019), where Spanish is
used as the Spanish–French–Portuguese triplet hub.

Lexicon Induction One of the most common down-
stream evaluation tasks for the learned cross-lingual
word mappings is Lexicon Induction (LI), the task of
retrieving the most appropriate word-level translation
for a query word from the mapped embedding spaces.
Specialized evaluation (and training) dictionaries have
been created for multiple language pairs. Of these, the
MUSE dictionaries (Conneau et al., 2018) are most of-
ten used, providing word translations between English
(En) and 48 other high- to mid-resource languages, as
well as on all 30 pairs among 6 very similar Romance
and Germanic languages (English, French, German,
Spanish, Italian, Portuguese).

Given the mapped embedding spaces, the translations
are retrieved using a distance metric, with Cross-Lingual
Similarity Scaling (Conneau et al., 2018, CSLS) as the
most commonly used in the literature. Intuitively, CSLS
decreases the scores of pairs that lie in dense areas, in-
creasing the scores of rarer words (which are harder to
align). The retrieved pairs are compared to the gold stan-
dard and evaluated using precision at k (P@k, evaluating
how often the correct translation is within the k retrieved
nearest neighbors of the query). Throughout this work
we report P@1, which is equivalent to accuracy; we
provide P@5 and P@10 results in the Appendix.

3 New LI Evaluation Dictionaries

The typically used evaluation dictionaries cover a nar-
row breadth of the possible language pairs, with the
majority of them focusing in pairs with English (as
with the MUSE or Dinu et al. (2015) dictionaries) or
among high-resource European languages. Glavaš et al.
(2019), for instance, highlighted Anglocentricity as an
issue, creating and evaluating on 28 dictionaries be-
tween 8 languages (Croatian, English, Finnish, French,
German, Italian, Russian, Turkish) based on Google
Translate. In addition, Czarnowska et al. (2019) focused
on the morphology dimension, creating morphologi-
cally complete dictionaries for 2 sets of 5 genetically
related languages (Romance: French, Spanish, Italian,
Portuguese, Catalan; and Slavic: Polish, Czech, Slo-
vak, Russian, Ukrainian). In contrast to these two (very
valuable!) works, our method for creating dictionaries

5Note that Alaux et al. (2019) use the term pivot to refer
to what we refer to as the hub language.

Pt:

En:

Cs:

trabalho

job work

prácu praca
práca

práce
pracovní

Figure 1: Transitivity example (Portuguese→ English
→ Czech).

for low-resource languages (§3.1) leverages resources
that are available for about 300 languages. In addition,
we propose a simple triangulation process (§3.2), that
makes it possible to create dictionaries for arbitrary lan-
guage pairs, given that dictionaries into a pivot language
(usually English) are available for both languages.

3.1 Low-Resource Language Dictionaries
Our approach for constructing dictionaries is straight-
forward, inspired by phrase table extraction techniques
from phrase-based MT (Koehn, 2009). This is an au-
tomatic process, and introduces some degree of noise.
Rather than controlling this through manual inspection,
which would be impossible for all language pairs, we
rely on fairly simple heuristics for controlling the dic-
tionaries’ quality.

The first step is collecting publicly available parallel
data between English and the low-resource language of
interest. We use data from the TED (Qi et al., 2018),
OpenSubtitles (Lison and Tiedemann, 2016), WikiMa-
trix (Schwenk et al., 2019), bible (Malaviya et al., 2017),
and JW300 (Agić and Vulić, 2019) datasets.6 This re-
sults in 354k, 53k, and 623k English-to-X parallel sen-
tences for Azerbaijani (Az), Belarusian (Be), and Gali-
cian (Gl) respectively.7 We align the parallel sentences
using fast_align (Dyer et al., 2013), and extract sym-
metrized alignments using the gdfa heuristic (Koehn
et al., 2005). In order to ensure that we do not ex-
tract highly domain-specific word pairs, we only use the
TED, OpenSubtitles, and WikiMatrix parts for word-
pair extraction. Also, in order to control for quality,
we only extract word pairs if they appear in the dataset
more than 5 times, and if the symmetrized alignment
probability is higher than 30% in both directions.

With this process, we end up with about 6k, 7k, and
38k word pairs for Az–En, Be–En, and Gl–En respec-
tively. Following standard conventions, we sort the word
pairs according to source-side frequency, and use the
intermediate-frequency ones for evaluation, typically us-
ing the [5000–6500) rank boundaries. The same process
can be followed for any language pair with a sufficient
volume of parallel data (needed for training a reasonably
accurate word alignment model).8

6Not all languages are available in all these datasets.
7The anglocentricity in this step is by necessity – it is

hard to find a large volume of parallel data in a language pair
excluding English.

8In fact, we can produce similar dictionaries for a large
number of languages, as the combination of the recently cre-
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Greek Italian Bridged Greek–Italian Lexicon
word tag word tag Match Greek Italian

ειρηνικός M;NOM;SG pacifico M;SG M;SG ειρηνικός pacifico, pacifici, pacifica
ειρηνική F;NOM;SG pacifici M;PL F;SG ειρηνική pacifica, pacifico, pacifici
ειρηνικό Neut;NOM;SG pacifica F;SG SG ειρηνικό pacifica, pacifico, pacifici
ειρηνικά Neut;NOM;PL PL ειρηνικά pacifici, pacifica, pacifico

Table 1: Triangulation and filtering example on Greek–Italian. All words are valid translations of the English word
‘peaceful’. We also show filtered-out translations.

3.2 Dictionaries for all Language Pairs through
Triangulation

Our second method for creating new dictionaries is
inspired by phrase table triangulation ideas from the
pre-neural MT community (Wang et al., 2006; Levin-
boim and Chiang, 2015). The concept can be easily
explained with an example, visualized in Figure 1. Con-
sider the Portuguese (Pt) word trabalho which, ac-
cording to the MUSE Pt–En dictionary, has the words
job and work as possible En translations. In turn, these
two En words can be translated to 4 and 5 Czech (Cs)
words respectively. By utilizing the transitive property
(which translation should exhibit) we can identify the set
of 5 possible Cs translations for the Pt word trabalho.
Following this simple triangulation approach, we cre-
ate 4,704 new dictionaries over pairs between the 50
languages of the MUSE dictionaries.9 For consistency,
we keep the same train and test splits as with MUSE, so
that the source-side types are equal across all dictionar-
ies with the same source language.

Triangulating through English (which is unavoid-
able, due to the relative paucity of non-English-centric
dictionaries) is suboptimal – English is morphologi-
cally poor and lacks corresponding markings for gen-
der, case, or other features that are explicitly marked
in many languages. As a result, several inflected forms
in morphologically-rich languages map to the same En-
glish form. Similarly, gendered nouns or adjectives
in gendered languages map to English forms that lack
gender information. For example, the MUSE Greek–
English dictionary lists the word peaceful as the trans-
lation for all ειρηνικός, ειρηνική, ειρηνικό, ειρηνικά,
which are the male, female, and neutral (singular and
plural) inflections of the same adjective. Equivalently,
the English–Italian dictionary translates peaceful into
either pacifico, pacifici, or pacifica (male sin-
gular, male plural, and female singular, respectively;
see Table 1). When translating from or into English
lacking context, all of those are reasonable translations.
When translating between Greek and Italian, though,
one should at least take number into account (gram-

ated JW300 and WikiMatrix datasets provide an average of
more than 100k parallel sentences in 300 languages. Before
publication, we plan to create these dictionaries and make
them publicly available, along with the corresponding code.

9Available at https://github.com/antonisa/
embeddings.

matical gender is a more complicated matter: it is not
uncommon for word translations to be of different gram-
matical gender across languages).

Hence, we devise a filtering method for removing bla-
tant mistakes when triangulating morphologically rich
languages. We rely on automatic morphological tagging
which we can obtain for most of the MUSE languages,
using the StanfordNLP toolkit (Qi et al., 2020).10 The
morphological tagging uses the Universal Dependen-
cies feature set (Nivre et al., 2016) making the tagging
comparable across almost all languages. Our filtering
technique iterates through the bridged dictionaries: for a
given source word, if we find a target word with the ex-
act same morphological analysis, we filter out all other
translations with the same lemma but different tags. In
the case of feature mismatch (for instance, Greek uses 2
numbers, 4 cases and 3 genders while Italian has 2 num-
bers, 2 genders, and no cases) or if we only find a partial
tag match over a feature subset, we filter out transla-
tions with disagreeing tags. We ignore the grammatical
gender and verb form features, as they are not directly
comparable cross-lingually. Coming back to our Greek–
Italian example, this means that for the form ειρηνικός

we would only keep pacifico as a candidate transla-
tion (we show more examples in Table 1).

Our filtering technique removes about 60.4% of the
entries in 2964 of the 4900 dictionaries.11 Unsurpris-
ingly, we find that bridged dictionaries between mor-
phologically rich languages require a lot more filter-
ing. For instance more than 80% of the entries of the
Urdu-Greek dictionary get filtered out. On average, the
languages with more filtered entries are Urdu (62.4%),
Turkish (61.1%), and German (58.6%). On the other
hand, much fewer entries are removed from dictionaries
with languages like Dutch (36.2%) or English (38.1%).
Naturally, this filtering approach is restricted to lan-
guages for which a morphological analyzer is available.
Mitigating this limitation is beyond the scope of this
work, although it is unfortunately a common issue. For
example, Kementchedjhieva et al. (2019) manually cor-
rected five dictionaries (between English and German,
Danish, Bulgarian, Arabic, Hindi) but one needs to rely

10The toolkit has since been renamed to Stanza. See https:
//stanfordnlp.github.io/stanfordnlp/.

11Due to the lack of morphological analysis tools, we were
unable to filter dictionaries in the following 11 languages: aze,
bel, ben, bos, lit, mkd, msa, sqi, tam, tha, tel.

https://github.com/antonisa/embeddings
https://github.com/antonisa/embeddings
https://stanfordnlp.github.io/stanfordnlp/
https://stanfordnlp.github.io/stanfordnlp/
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src Target
Az Be Cs En Es Gl Pt Ru Sk Tr µbest µEn

Az – 17.2En 35.1Es 35.7Es 48.0Tr 32.7Ru 41.5En 29.8Pt 31.7Cs 32.0Pt 33.7 31.7
Be 14.1Cs – 35.9Tr 29.9Pt 39.5En 25.8Es 34.4Es 41.1Gl 30.7Ru 20.4Pt 30.2 28.8
Cs 6.9 Es 9.3 Ru – 61.0Es 60.5En 27.9Pt 57.8En 45.9Pt 71.2En 35.8Sk 41.8 41.2
En 17.9Es 18.4Es 50.2Es – 77.5Ru 36.3Es 72.3Sk 43.3Pt 40.4Tr 41.9Pt 44.2 42.7
Es 12.1En 10.1Ru 47.4Pt 74.6Sk – 37.5Es 83.1Gl 41.9Tr 40.0Es 38.6Sk 42.8 41.4
Gl 5.5 En 3.6 Az 26.5Tr 43.2Es 60.8Tr – 52.9Cs 23.8Tr 26.8Cs 19.7Cs 29.2 27.7
Pt 5.8 Pt 8.6 Sk 47.2Gl 71.3En 88.1Pt 37.1Es – 38.0Es 38.7Es 38.1En 41.4 40.4
Ru 8.7 Es 12.8Az 50.3Gl 55.5Tr 54.8Cs 23.0Pt 52.4En – 45.5Tr 27.0Be 36.7 35.9
Sk 4.0 Be 10.9Ru 72.5Be 55.6Tr 53.9En 28.4En 52.0Es 44.0Gl – 28.5En 38.9 37.9
Tr 12.1Sk 9.0 Az 41.8Ru 51.1Cs 55.0En 18.4Tr 51.6En 34.6En 29.4Es – 33.7 33.0

µbest 9.7 11.1 45.2 53.1 59.8 29.7 55.3 38.0 39.4 31.3 37.3
µEn 9.1 9.9 43.3 51.0 59.3 28.2 54.9 36.5 37.7 30.8 36.0

Table 2: Lexicon Induction performance (measured with P@1) over 10 languages (90 pairs). In each cell, the
superscript denotes the hub language that yields the best result for that language pair. µbest: average using the best
hub language. µEn: average using the En as the hub. The lightly shaded cells are the language pairs where a bilingual
VecMap system outperforms MAT+MSPR; in heavy shaded cells both MUSEs and VecMap outperform MAT+MSPR.

on automated annotations in order to scale to all lan-
guages. Our method that uses automatically obtained
morphological information combined with the guide-
lines proposed by Kementchedjhieva et al. (2019) (e.g.
removing proper nouns from the evaluation set) scales
easily to multiple languages, allowing us to create more
than 4 thousand dictionaries.

4 Lexicon Induction Experiments
The aim of our LI experiments is two-fold. First, the
differences in LI performance show the importance of
the hub language choice with respect to each evaluation
pair. Second, as part of our call for moving beyond
Anglo-centric evaluation, we also present LI results
on several new language pairs using our triangulated
dictionaries.

4.1 Methods and Setup
We train and evaluate all models starting with pre-
trained Wikipedia FastText embeddings for all lan-
guages (Grave et al., 2018). We focus on the minimally
supervised scenario which only uses similar character
strings between any languages for supervision in order
to mirror the hard, realistic scenario of not having anno-
tated training dictionaries between the languages. We
learn MWE with the MAT+MPSR method using the pub-
licly available code,12 aligning several language subsets
varying the hub language. We decided against compar-
ing to the incremental hub (IHS) method of Heyman
et al. (2019), because the order in which the languages
are added is an additional hyperparameter that would
explode the experimental space.13 We also do not com-
pare to UMH, as we consider it conceptually similar to
MAT+MPSR and no code is publicly available. For BWE

12https://github.com/ccsasuke/umwe
13We refer the reader to Table 2 from Heyman et al. (2019)

which compares to MAT+MPSR, and to Table 7 of their appendix
which shows the dramatic influence of language order.

experiments, we use MUSEs14 (MUSE, semisupervised)
and VecMap15 systems, and we additionally compare
them to MAT+MPSR for completeness.

We compare the statistical significance of the perfor-
mance difference of two systems using paired bootstrap
resampling (Koehn, 2004). Generally, a difference of
0.4–0.5 percentage points evaluated over our lexica is
significant with p < 0.05.

Experiment 1 We first focus on 10 languages of
varying morphological complexity and data availability
(which affects the quality of the pre-trained word embed-
dings): Azerbaijani (Az), Belarusian (Be), Czech (Cs),
English (En), Galician (Gl), Portuguese (Pt), Russian
(Ru), Slovak (Sk), Spanish (Es), and Turkish (Tr). The
choice of these languages additionally ensures that for
our three low-resource languages (Az, Be, Gl) we in-
clude at least one related higher-resource language (Tr,
Ru, Pt/Es respectively), allowing for comparative anal-
ysis. Table 2 summarizes the best post-hoc performing
systems for this experiment.

Experiment 2 In the second setting, we use a set
of 7 more distant languages: English, French (Fr),
Hindi (Hi), Korean (Ko), Russian, Swedish (Sv), and
Ukrainian (Uk). This language subset has large variance
in terms of typology and alphabet. The best performing
systems are presented in Table 3.

4.2 Analysis and Takeaways

MWE: English is rarely the best hub language In
multilingual settings, we conclude that the standard
practice of choosing English as the hub language is
sub-optimal. Out of the 90 evaluation pairs from our 10-
language experiment (Table 2) the best hub language
is English in only 17 instances (less than 20% of the

14https://github.com/facebookresearch/MUSE
15https://github.com/artetxem/vecmap

https://github.com/ccsasuke/umwe
https://github.com/facebookresearch/MUSE
https://github.com/artetxem/vecmap
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Source Target
En Fr Hi Ko Ru Sv Uk µbest µEn

En – 76.3Ru 23.9Uk 10.4Fr 42.0Uk 59.0Hi 28.3Ru 40.0 38.5
Fr 74.0Uk – 19.0Ru 7.5Sv 40.8Ru 51.8En 28.8En 37.0 36.4
Hi 31.4Fr 26.9Ru – 2.1En 14.6Uk 17.3En 10.5Fr 17.1 16.2
Ko 17.7Sv 13.6Sv 2.4Fr – 7.9En 7.2Ru 3.6Fr 8.8 7.9
Ru 53.4Ko 51.7Ko 15.3Uk 5.2En – 41.3Uk 56.3Ko 37.2 36.2
Sv 52.7Uk 48.2Ko 17.7Ru 5.1Uk 33.2Fr – 24.1Ru 30.2 29.2
Uk 41.4Ru 44.0Hi 14.4Sv 2.6En 59.7Hi 36.8Ko – 33.2 32.4

µbest 45.1 43.5 15.5 5.5 33.0 35.6 25.3 29.1
µEn 42.7 42.5 14.5 5.1 32.4 34.9 24.5 28.1

Table 3: Lexicon Induction performance (P@1) over MWEs from 7 typologically distant languages (42 pairs). The
lightly shaded cells are the only language pairs where a bilingual MUSE system outperforms MAT+MSPR; in heavy
shaded cells a bilingual VecMap (but not MUSEs) system outperform MAT+MSPR.

time). In fact, the average performance (over all evalu-
ation pairs) when using En as the hub (denoted as µEn)
is 1.3 percentage points worse than the optimal (µbest).
In our distant-languages experiment (Table 3) English
is the best choice only for 7 of the 42 evaluation pairs
(again, less than 20% of the time). As before, using En
as the hub leads to an average drop of one percentage
point in performance aggregated over all pairs, com-
pared to the averages of the optimal selection. The rest
of this section attempts to provide an explanation for
these differences.

Expected gain for a hub language choice As vividly
outlined by the superscript annotations in Tables 2 and 3,
there is not a single hub language that stands out as the
best one. Interestingly, all languages, across both exper-
iments, are the best hub language for some evaluation
language pair. For example, in our 10-languages ex-
periment, Es is the best choice for about 20% of the
evaluation pairs, Tr and En are the best for about 17%
each, while Gl and Be are the best for only 5 and 3
language pairs respectively.

Clearly, not all languages are equally suited to be
the hub language for many language pairs. Hence, it
would be interesting to quantify how much better one
could do by selecting the best hub language compared
to a random choice. In order to achieve this, we define
the expected gain Gl of using language l as follows.
Assume that we are interested in mapping N languages
into the shared space and pm

l is the accuracy16 over a
specified evaluation pair m when using language l as
the hub. The random choice between N languages will
have an expected accuracy equal to the average accuracy
when using all languages as hub:

E[pm] =

∑
l pm

l

N
.

The gain for that evaluation dataset m when using
language l as hub, then, is gm

l = pm
l − E[pm]. Now, for

a collection of M evaluation pairs we simply average
their gains, in order to obtain the expected gain for using

16This could be substituted with any evaluation metric.
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Figure 2: Expected gain Gl for the MWE experiments.

language l as the hub:

Gl = E[gl] =

∑
m gm

l

M
.

The results of this computation for both sets of ex-
periments are presented in Figure 2. The bars marked
‘overall’ match our above definition, as they present
the expected gain computed over all evaluation language
pairs. For good measure, we also present the average
gain per language aggregated over the evaluation pairs
where that language was indeed the best hub language
(‘when best’ bars). Perhaps unsurprisingly, Az seems
to be the worst hub language choice among the 10 lan-
guages of the first experiment, with an expected loss
(negative gain) of -0.4. This can be attributed to how dis-
tant Az is from all other languages, as well as to the fact
that the Az pre-trained embeddings are of lower quality
compared to all other languages (as the AzWikipedia
dataset is significantly smaller than the others). Sim-
ilarly, Hi and Sv show expected loss for our second
experiment.

Note that English is not a bad hub choice per se –
it exhibits a positive expected gain in both sets of ex-
periments. However, there are languages with larger
expected gains, like Es and Gl in the 10-languages ex-
periment that have a twice-as-large expected gain, while
Ru has a 4 times larger expected gain in the distant-
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languages experiment. Of course, the language subset
composition of these experiments could possibly impact
those numbers. For example, there are three very related
languages (Es, Gl, Pt) in the 10 languages set, which
might boost the expected gain for that subset; however,
the trends stand even if we compute the expected gain
over a subset of the evaluation pairs, removing all pairs
that include Gl or Pt. For example, after removing all
Gl results, Es has a slightly lower expected gain of 0.32,
but is still the language with the largest expected gain.

Identifying the best hub language for a given evalu-
ation set The next step is attempting to identify po-
tential characteristics that will allow us make educated
decisions with regards to choosing the hub language,
given a specific evaluation set. For example, should one
choose a language typologically similar to the evalu-
ation source, target, or both? Or should they use the
source or the target of the evaluation set as the hub?

Our first finding is that the best performing hub lan-
guage will very likely be neither the source nor the target
of the evaluation set. In our 10-languages experiments,
a language different than the source and the target yields
the best accuracy for over 93% of the evaluation sets,
with the difference being statistically significant in more
than half such cases. Similarly, in the distant-languages
experiment, there is only a single instance where the
best performing hub language is either the source or
the target evaluation language (for Fr–Ru), and for the
other 97% of cases the best option is a third language.
This surprising pattern contradicts the mathematical
intuition discussed in Section 2 according to which a
model learning a single mapping (keeping another word
embedding space fixed) is as expressive as a model that
learns two mappings for each of the languages. Instead,
we find that in almost all cases, learning mappings for
both language spaces of interest (hence rotating both
spaces) leads to better BLI performance compared to
when one of the spaces is fixed.

Our second finding is that the LI performance cor-
relates with measures of distance between languages
and language spaces. The typological distance (dgen)
between two languages can be approximated through
their genealogical distance over hypothesized language
family trees, which we obtain from the URIEL typo-
logical database (Littell et al., 2017). Also, Patra et al.
(2019) recently motivated the use of Gromov-Hausdroff

(GH) distance as an a priori estimation of how well two
language embedding spaces can be aligned under an
isometric transformation (an assumption most methods
rely on). The authors also note that vector space GH
distance correlates with typological language distance.

We find that there is a positive correlation between
LI performance and the genealogical distances between
the source–hub and target–hub languages. The average
(over all evaluation pairs) Pearson’s correlation coeffi-
cient between P@1 and dgen is 0.49 for the distant lan-
guages experiment and 0.38 for the 10-languages one.
A similar positive correlation of performance and the
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Figure 3: The Lexicon Induction accuracy generally
correlates positively with the GH distance of the source
and target language vector spaces to the hub language.

sum of the GH distances between the source–hub and
target–hub spaces. On our distant languages experiment,
the correlation coefficient between P@1 and GH is 0.45,
while it is slightly lower (0.34) for our 10-languages
experiment. Figure 3 shows two high correlation exam-
ples, namely Gl–En and En–Hi.

BWE: The hub matters for distant languages
MUSEs implements a provably direction-independent
closed form solution of the Procrustes problem, and we
confirm empirically that the hub choice does not affect
the outcome (we provide complete results on MUSEs in
Table 7 in the Appendix). Similarly, because VecMap
uses symmetric re-weighting and produces bidirectional
dictionaries at its final step, the results are not dependent
on the training direction. However, obtaining good per-
formance with such methods requires the orthogonality
assumption to hold, which for distant languages is rarely
the case (Patra et al., 2019). In fact, we find that the
gradient-based MAT+MPSR method in a bilingual setting
over typologically distant languages exhibits better per-
formance than MUSEs or VecMap. Across Table 2, in
only a handful of examples (shaded cells) do VecMap or
MUSEs systems outperform MAT+MPSR for BWE (with
the majority being among En, Es, Gl, and Pt, all related
high-resource languages).

In the 7 distant languages setting, however, the results
are different: VecMap outperforms MUSEs and the mul-
tilingual MAT+MPSR in the vast majority of the language
pairs. The difference is more stark when the languages
of the pair use completely different alphabets, where the
same-character strings heuristic for bootstrapping the
initial dictionary mapping fails. Instead, the monolin-
gual similarity approach employed by VecMap is defi-
nitely more appropriate for settings such as those posed
by languages like Korean or Hindi. This highlights the
importance of actually evaluating and reporting results
on such language pairs.

On the one hand, we find that when aligning distant
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Results on Az–Cs Average

Bilingual Az Cs 25.8with hub: 22.7 29.1

Trilingual Az, Cs, +hub:
Be En Es Gl

28.221.6 28.5 31.8 23.0
Pt Ru Sk Tr

29.6 27.4 30.4 32.9

Trilingual Az, hub:Cs, +extra:
En Es Pt Ru Tr 30.830.1 30.1 33.2 27.1 33.7

Multilingual (10 languages)
Az Be Cs En Es

33.933.7 34.0 32.3 34.5 35.1
Gl Pt Ru Sk Tr

34.0 34.8 34.5 32.9 33.7

Results on Ru–Uk Average

Bilingual Ru Uk 57.5with hub: 58.0 57.0

Trilingual Be, Ru, Uk with hub:
Be Ru Uk 58.859.2 58.9 58.4

Trilingual Ru, Uk, +hub:
Az Cs En Es Fr Hi Tr 57.857.4 58.5 58.4 58.3 58.0 57.0 57.2

Multilingual Be, Ru, Uk, +hub:
Cs En Es Gl Ko Pt Sv 58.158.0 58.1 58.5 58.8 57.0 58.3 58.2

Multilingual Ru, Uk, En, Fr, Hi, Ko, Sv, with hub:
En Fr Hi Ko Ru Sv Uk 55.655.3 56.1 55.8 56.3 55.3 55.3 54.9

Table 4: Comparison of bilingual, trilingual, and multilingual systems for distant (left) and related (right) languages.
Multilinguality boosts performance significantly on distant languages.

Test Hub Test Hub
src trg src trg

Az–Cs 22.7 29.1 Gl–Pt 53.5 53.6
Az–En 13.2 20.7 Pt–Gl 39.0 36.7
Az–Tr 30.1 30.1 Uk–Ru 61.6 61.8

Table 5: The hub is important for BWE between distant
languages with MAT+MPSR.

languages with MAT+MPSR, the difference between hub
choices can be significant – in Az–En, for instance,
using En as the hub leads to more than 7 percentage
points difference compared to using Az. We show some
examples in Table 5. On the other hand, when aligning
typologically similar languages, the difference is less
pronounced. For example, we obtain practically similar
performance for Gl–Pt, Az–Tr, or Uk–Ru when using
either the source or the target language as the hub. Note,
though, that non-negligible differences could still occur,
as in the case of Pt–Gl. In most cases, it is the case
that the higher-resourced language is a better hub than
the lower-resourced one, especially when the number of
resources differ significantly (as in the case of Az and
Be against any other language). Since BWE settings are
not our main focus, we leave an extensive analysis of
this observation for future work.

Bi-, tri-, and multilingual systems This part of our
analysis compares bilingual, trilingual, and multilin-
gual systems, with a focus on the under-represented
languages. Through multiple experiments (complete
evaluations are listed in the Appendix) we reach two
main conclusions. On one hand, when evaluating on
typologically distant languages, one should use as many
languages as possible. In Table 4 we present one such
example with results on Az–Cs under various settings.
On the other hand, when multiple related languages

Transfer from En Transfer from Pt
Hub Es Pt Gl Hub Es Gl

En 38.7 21.8 19.4 En 48.4 32.9
Es 26.5 16.1 28.5† Es 41.4 25.5†

Pt 28.1 25.7 15.6 Pt 44.3† 36.5
Gl 35.4 22.8 23.1 Gl 48.1 23.8
Be 35.6 30.5 13.2
Ru 28.6† 30.6 18.2 †: best train-test hub
Sk 24.2 30.2† 14.6 for LI.

Table 6: The choice of hub can significantly affect down-
stream zero-shot POS tagging accuracy.

are available, one can achieve higher performance with
multilingual systems containing all related languages
and one more hub language, rather than learning di-
verse multilingual mappings using more languages. We
confirm the latter observation with experiments on the
Slavic (Be, Ru, Uk) and Iberian (Es, Gl, Pt) clusters,
and present an example (Ru–Uk) in Table 4.

5 Downstream Task Experiments

Differences in BLI performance do not necessarily trans-
late to differences in other downstream tasks that use
the aligned embeddings, so Glavaš et al. (2019) advo-
cate for actual evaluation on such tasks. We extend our
analysis to an example downstream task of zero-shot
POS tagging using the aligned embeddings for select
language pairs. We show that indeed the choice of the
hub language can have dramatic impact. Using Uni-
versal Dependencies data (Nivre et al., 2016) we train
simple bi-LSTM POS taggers on En and Pt using the
respective embeddings produced from each MAT+MPSR
run, and evaluate the zero-shot performance on Gl and
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Es.17 Although all taggers achieve consistent accura-
cies > 95% on English and Portuguese regardless of
the original En or Pt embeddings, the zero-shot perfor-
mance on the test languages, as shown in Table 6, varies
widely. For instance, using the embeddings produced
from using Pt as a hub, we obtain the highest zero-shot
accuracy on Gl (36.5%), while using the ones from the
Gl hub lead to significantly worse performance (23.8%).
It should be noted that the best hub for POS-tagging
does not always coincide with the best hub for LI, e.g.
the best LI hub for Pt–Gl is Es, which leads to 11 per-
centage points worse Gl POS tagging performance than
the best system. In fact, for the language pairs that
we studied we observe no correlation between the two
tasks performance as we vary the hub (with an average
Spearman’s rank correlation ρ = 0.08).

6 Conclusion
With this work we challenge the standard practice in
learning cross-lingual word embeddings. We empiri-
cally show that the choice of the hub language is an
important parameter that affects lexicon induction per-
formance in both bilingual (between distant languages)
and multilingual settings. More importantly, we hope
that by providing new dictionaries and baseline results
on several language pairs, we will stir the community
towards evaluating all methods in challenging scenarios
that include under-represented language pairs. Towards
this end, our analysis provides insights and general direc-
tions for stronger baselines for non-Anglocentric cross-
lingual word embeddings. The problem of identifying
the best hub language, despite our analysis based on the
use of typological distance, remains largely unsolved.
In the future, we will investigate a hub language rank-
ing/selection model a la Lin et al. (2019).
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A Does evaluation directionality matter?
We also explored whether there are significant differ-
ences between the evaluated quality of aligned spaces,
when computed on both directions (src–trg and trg–src).
We find that the evaluation direction indeed matters a
lot, when the languages of the evaluation pair are very
distant, in terms of morphological complexity and data
availability (which affects the quality of the original em-
beddings). A prominent example, from our European-
languages experiment, are evaluation pairs involving
Az or Be. When evaluating on the Az–XX and Be–XX
dictionaries, the word translation P@1 is more than 20
percentage points higher than when evaluating on the
opposite direction (XX-Az or XX-Be). For example,
Es–Az has a mere P@1 of 9.9, while Az–Es achieves
a P@1 of 44.9. This observation holds even between
very related languages (cf. Ru–Be: 12.8, Be–Ru: 41.1
and Tr–Az: 8.4, Az–Tr: 32.0), which supports our hy-
pothesis that this difference is also due to the quality of
the pre-trained embeddings. It is important to note that
such directionality differences are not observed when
evaluating distant pairs with presumably high-quality
pre-trained embeddings e.g. Tr–Sk or Tr–Es; the P@1
for both directions is very close.

B Complete results for all experiments
Here we provide complete evaluation results for our
multilingual experiments. Table 7 presents the P@1
of the bilingual experiments using MUSE, and Table 8
presents accuracy using VecMap. Tables 9–14 present
P@1, P@5, and P@10 respectively, for the experiment
on the 10 European languages. Similarly, results on the
distant languages experiment are shown in Tables 15, 16,
and 17.
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Table 7: BWE results (P@1) with MUSE

Source
Target

Az Be Cs En Es Gl Pt Ru Sk Tr

Az – 4.8 21.4 23.6 32.6 13.6 26.7 10.4 15.0 31.8
Be 4.0 – 26.1 3.8 12.3 9.3 11.3 42.0 23.1 2.9
Cs 2.6 5.4 – 57.1 55.5 11.9 52.3 44.7 71.2 31.6
En 12.2 2.5 47.3 – 79.3 32.0 72.9 39.7 34.3 40.6
Es 7.8 2.4 45.0 76.7 – 37.1 83.4 38.9 34.3 38.2
Gl 2.7 1.8 14.0 38.5 61.2 – 53.3 11.4 12.9 8.5
Pt 2.9 2.3 44.9 72.2 88.7 36.3 – 33.7 33.7 34.6
Ru 1.7 12.0 48.6 50.2 49.4 6.6 46.8 – 44.6 21.1
Sk 0.3 5.2 71.8 48.0 46.4 9.3 44.4 43.2 – 21.2
Tr 10.8 0.3 35.8 48.0 50.9 3.5 45.9 26.9 20.3 –

Source
Target

En Fr Hi Ko Ru Sv Uk

En – 80.3 17.9 9.5 39.7 60.0 25.9
Fr 76.6 – 11.9 5.1 38.0 52.4 26.8
Hi 24.2 17.0 – 0.4 3.1 3.3 2.3
Ko 12.4 7.1 0.4 – 2.5 2.2 0.6
Ru 50.2 47.3 3.2 1.6 – 35.8 58.8
Sv 53.3 47.8 5.2 2.3 27.8 – 19.9
Uk 37.4 40.3 4.1 0.3 60.7 30.2 –

Table 8: BWE results (P@1) with VecMap

Source
Target

Az Be Cs En Es Gl Pt Ru Sk Tr

Az – 15.86 32.43 32.38 37.81 28.48 37.29 26.58 29.38 28.71
Be 14.41 – 35.31 32.74 43.67 30.56 36.58 43.49 30.0 20.77
Cs 6.78 8.65 – 57.45 56.75 35.66 54.09 44.59 73.49 34.75
En 20.12 18.06 46.41 – 69.91 40.83 63.5 40.13 40.19 37.7
Es 11.66 8.9 45.09 69.49 – 39.37 81.19 40.52 40.7 39.89
Gl 5.34 2.44 29.14 46.11 58.44 – 51.64 26.57 28.53 22.47
Pt 6.72 6.97 43.48 66.21 85.68 41.17 – 38.29 39.81 36.61
Ru 8.06 10.33 52.43 59.03 59.29 29.87 55.55 – 49.93 27.73
Sk 2.92 9.26 70.16 56.73 52.35 36.62 50.96 45.47 – 31.23
Tr 14.2 9.74 42.37 45.51 50.21 28.06 49.11 32.33 34.57 –

Source
Target

En Fr Hi Ko Ru Sv Uk

En – 69.82 35.0 19.2 40.56 56.49 23.63
Fr 68.44 – 28.27 15.53 38.18 49.71 26.95
Hi 44.61 38.52 – 14.01 20.39 26.26 14.72
Ko 32.69 18.32 12.93 – 11.72 18.45 7.21
Ru 59.24 55.18 21.65 10.65 – 47.58 55.12
Sv 51.94 46.92 27.46 12.66 34.29 – 26.96
Uk 42.61 47.82 17.92 5.21 57.64 43.23 –
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Table 9: All results from the European-languages MWE experiment: P@1 (part 1).

Test Hub language
µAz Be Cs En Es Gl Pt Ru Sk Tr

Az–Be 13.7 12.6 14.2 17.2 16.4 13.9 15.0 15.6 14.5 15.8 14.9
Az–Cs 33.7 34.0 32.3 34.5 35.1 34.0 34.8 34.5 32.9 33.7 33.9
Az–En 31.1 34.7 32.8 32.6 35.7 34.2 33.6 33.6 34.0 33.2 33.5
Az–Es 42.7 46.6 45.2 46.1 44.9 44.4 44.9 43.3 46.1 48.0 45.2
Az–Gl 25.9 27.2 29.0 26.5 29.0 24.7 27.2 32.7 31.5 25.9 28.0
Az–Pt 37.5 41.5 39.3 41.5 39.8 39.0 39.8 41.5 38.5 40.0 39.8
Az–Ru 27.9 27.1 27.1 27.4 27.7 29.0 29.8 26.3 26.3 28.5 27.7
Az–Sk 28.8 30.1 31.7 29.1 30.4 30.4 28.8 28.5 29.5 30.4 29.8
Az–Tr 29.8 30.8 32.0 30.1 31.3 30.8 32.0 31.1 32.0 31.8 31.2
Be–Az 10.4 13.3 14.1 13.0 11.9 12.7 12.4 13.0 13.3 13.0 12.7
Be–Cs 30.5 31.6 33.3 33.0 30.8 31.6 32.5 32.2 33.0 35.9 32.5
Be–En 24.8 26.5 27.8 27.8 28.2 24.8 29.9 28.2 26.5 25.6 27.0
Be–Es 36.4 38.1 36.4 39.5 35.5 38.1 39.0 37.0 36.1 34.4 37.0
Be–Gl 24.4 24.4 22.9 24.9 25.8 22.6 24.9 23.5 22.6 24.4 24.0
Be–Pt 33.2 33.2 32.7 33.7 34.4 31.7 33.9 31.7 31.9 31.4 32.8
Be–Ru 40.9 40.9 40.6 40.3 40.0 41.1 39.1 38.9 39.7 40.0 40.1
Be–Sk 30.1 27.7 30.7 27.4 28.6 29.2 28.9 30.7 27.7 27.4 28.8
Be–Tr 17.7 17.2 18.9 19.9 17.4 18.9 20.4 18.7 16.9 18.4 18.5
Cs–Az 3.5 4.6 4.9 6.0 6.9 4.9 3.7 4.9 4.0 6.0 4.9
Cs–Be 8.6 7.8 8.6 8.6 8.8 7.8 8.8 9.3 9.3 8.6 8.6
Cs–En 59.7 60.5 59.4 59.2 61.0 60.4 60.1 59.7 60.2 58.8 59.9
Cs–Es 59.0 59.1 57.5 60.5 59.2 58.7 58.9 59.6 59.1 57.6 58.9
Cs–Gl 27.1 26.9 27.1 27.6 27.0 21.4 27.9 27.1 26.5 26.1 26.5
Cs–Pt 56.9 55.6 55.4 57.8 55.5 56.9 55.6 57.3 56.1 54.1 56.1
Cs–Ru 44.2 45.5 45.5 45.0 45.5 45.3 45.9 45.0 45.2 45.9 45.3
Cs–Sk 69.8 69.8 70.2 71.2 70.6 70.2 70.4 69.7 68.4 70.2 70.0
Cs–Tr 35.3 35.2 34.6 35.1 34.7 34.7 35.1 35.0 35.8 34.2 35.0
En–Az 15.8 17.7 16.6 17.5 17.9 16.9 17.5 16.1 16.6 17.2 17.0
En–Be 16.4 15.1 17.6 14.9 18.4 17.4 15.6 17.1 15.9 16.4 16.5
En–Cs 49.2 49.0 47.6 47.4 50.2 49.8 50.1 48.3 48.8 49.3 49.0
En–Es 76.3 77.5 77.2 77.0 76.8 76.5 76.6 77.5 77.3 76.6 76.9
En–Gl 35.0 35.8 36.0 35.2 36.3 31.9 35.9 36.2 35.3 35.0 35.3
En–Pt 71.3 71.8 71.3 72.1 71.5 72.0 71.0 71.5 72.3 71.3 71.6
En–Ru 42.5 43.3 42.7 40.8 43.1 43.3 43.3 41.3 41.4 42.8 42.4
En–Sk 38.7 39.6 40.2 38.0 40.4 39.3 38.5 38.6 36.8 40.4 39.0
En–Tr 40.5 41.7 41.3 41.6 39.4 40.9 41.9 41.0 41.3 40.9 41.0
Es–Az 8.4 10.8 9.0 12.1 10.5 10.5 10.8 9.6 11.8 11.8 10.5
Es–Be 9.9 7.2 8.5 9.3 7.5 9.9 9.9 10.1 9.1 8.8 9.0
Es–Cs 45.3 46.0 44.2 43.4 45.8 45.5 47.4 46.3 45.4 44.7 45.4
Es–En 73.0 74.5 73.8 73.2 74.0 74.1 73.1 73.5 74.6 73.6 73.7
Es–Gl 37.1 37.0 37.1 36.9 37.5 33.7 36.8 37.0 36.8 36.7 36.7
Es–Pt 82.1 82.9 82.7 83.0 83.1 83.1 82.5 83.0 82.9 83.0 82.8
Es–Ru 41.4 41.5 41.2 39.4 41.3 41.9 40.9 40.3 40.2 41.9 41.0
Es–Sk 37.0 39.2 38.8 37.4 40.0 39.2 39.5 39.5 35.2 38.8 38.5
Es–Tr 37.5 38.0 37.7 38.2 37.6 37.8 38.4 37.8 38.6 37.9 38.0
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Table 10: All results from the European-languages MWE experiment: P@1 (part 2).

Test Hub language
µAz Be Cs En Es Gl Pt Ru Sk Tr

Gl–Az 4.0 4.6 4.3 5.5 5.0 4.1 5.2 4.7 4.8 5.0 4.7
Gl–Be 3.6 3.0 2.4 3.0 3.0 2.4 3.0 2.4 1.2 3.0 2.7
Gl–Cs 23.2 25.7 25.0 23.8 26.5 23.0 25.6 25.4 25.6 26.5 25.0
Gl–En 40.3 41.8 41.9 39.6 43.2 40.8 41.5 41.9 41.6 42.1 41.5
Gl–Es 60.0 60.5 60.1 59.9 60.4 59.0 60.0 60.3 59.6 60.8 60.1
Gl–Pt 52.5 52.5 52.9 52.0 52.0 50.4 52.5 51.9 52.1 52.0 52.1
Gl–Ru 22.5 22.7 22.9 21.7 23.3 21.9 23.7 22.7 22.5 23.8 22.8
Gl–Sk 26.0 26.3 26.8 25.6 26.4 23.4 25.5 25.1 23.2 26.4 25.5
Gl–Tr 18.5 19.3 19.7 18.6 17.8 18.3 18.9 19.2 19.4 17.6 18.7
Pt–Az 3.8 4.7 5.8 5.0 5.0 3.2 5.8 5.0 5.5 4.7 4.8
Pt–Be 7.3 5.3 7.3 7.3 6.1 7.1 6.8 6.1 8.6 7.1 6.9
Pt–Cs 45.5 47.0 46.3 45.0 45.5 47.2 45.5 46.7 46.5 45.6 46.1
Pt–En 69.9 70.9 70.2 71.3 71.1 70.5 70.6 71.3 70.6 70.8 70.7
Pt–Es 87.4 88.1 87.7 87.6 88.0 87.4 88.1 87.8 87.6 88.1 87.8
Pt–Gl 35.7 36.9 36.3 36.3 37.1 32.7 36.0 35.9 35.2 36.4 35.8
Pt–Ru 37.4 37.7 36.4 36.5 38.0 38.0 36.2 37.0 37.1 37.4 37.2
Pt–Sk 37.6 37.0 37.3 36.7 38.7 37.7 38.3 37.9 33.6 38.0 37.3
Pt–Tr 36.5 37.4 37.2 38.1 35.9 36.4 35.5 37.2 36.2 36.3 36.7
Ru–Az 5.0 6.4 6.2 7.8 8.7 7.3 7.5 7.3 6.7 7.5 7.0
Ru–Be 12.8 9.9 10.7 11.5 11.2 11.0 11.5 12.3 11.0 11.8 11.4
Ru–Cs 49.2 50.0 49.2 50.1 49.7 50.3 50.3 49.8 50.1 50.1 49.9
Ru–En 53.6 53.8 54.4 52.7 54.7 55.5 54.8 52.0 54.5 55.5 54.1
Ru–Es 53.7 53.4 54.8 54.5 52.3 53.5 54.0 53.2 53.9 51.2 53.4
Ru–Gl 20.9 21.3 22.1 22.3 22.9 17.2 23.0 21.8 21.7 21.9 21.5
Ru–Pt 50.4 50.3 50.4 52.4 51.1 51.1 49.6 49.8 51.0 47.6 50.4
Ru–Sk 45.0 44.7 44.7 45.2 45.2 44.7 44.3 43.7 43.7 45.5 44.7
Ru–Tr 25.9 27.0 26.2 26.9 26.0 25.9 26.1 25.6 26.8 24.7 26.1
Sk–Az 2.8 4.0 1.5 3.7 2.1 2.8 3.4 3.1 1.8 3.4 2.9
Sk–Be 10.2 7.5 9.9 9.4 9.6 8.3 10.4 10.9 10.9 9.1 9.6
Sk–Cs 71.4 72.5 70.9 70.8 70.5 71.1 71.3 70.6 71.0 71.4 71.1
Sk–En 54.8 55.0 54.0 52.9 55.4 54.7 54.8 54.6 53.0 55.6 54.5
Sk–Es 52.5 51.6 52.2 53.9 52.3 52.0 50.4 50.5 51.5 51.1 51.8
Sk–Gl 27.0 27.3 27.2 28.4 27.8 20.6 26.2 26.0 27.0 27.0 26.4
Sk–Pt 49.3 50.3 48.2 50.4 52.0 49.2 49.1 48.7 48.5 47.7 49.3
Sk–Ru 43.8 43.4 43.5 43.2 43.7 44.0 42.8 42.9 41.2 43.4 43.2
Sk–Tr 28.2 27.5 27.2 28.5 27.1 26.1 26.2 27.6 27.4 26.0 27.2
Tr–Az 9.8 12.1 10.1 11.1 10.1 11.4 11.4 10.8 12.1 11.1 11.0
Tr–Be 9.0 4.8 8.7 8.1 7.8 7.5 8.1 6.9 7.5 7.2 7.6
Tr–Cs 40.3 41.6 40.3 41.6 41.6 40.8 41.6 41.8 40.9 39.2 41.0
Tr–En 51.1 49.3 51.1 50.2 50.4 48.5 50.5 50.2 50.7 50.1 50.2
Tr–Es 53.8 53.6 55.0 55.0 52.5 53.0 54.6 52.9 54.1 53.3 53.8
Tr–Gl 17.0 17.3 17.3 15.9 16.8 11.6 17.5 17.1 17.1 18.4 16.6
Tr–Pt 50.1 50.1 51.4 51.6 49.3 48.9 48.7 49.9 50.5 49.5 50.0
Tr–Ru 34.0 34.3 32.3 34.6 34.3 33.6 33.2 32.0 33.0 32.9 33.4
Tr–Sk 27.5 29.2 27.9 28.5 29.4 27.7 27.9 27.5 25.2 27.9 27.9
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Table 11: All results from the European-languages MWE experiment: P@5 (part 1).

Test Hub language
µAz Be Cs En Es Gl Pt Ru Sk Tr

Az–Be 26.0 22.5 26.5 26.0 26.5 25.2 25.7 26.0 25.7 25.7 25.6
Az–Cs 53.4 54.8 53.7 57.5 54.8 55.9 55.6 54.5 53.2 54.8 54.8
Az–En 44.7 48.0 47.6 45.7 45.9 47.4 46.8 46.3 46.1 47.2 46.6
Az–Es 60.1 62.6 60.7 62.6 60.7 60.4 60.7 62.4 61.8 62.9 61.5
Az–Gl 38.3 37.7 40.1 41.4 38.9 35.8 40.1 41.4 38.9 39.5 39.2
Az–Pt 52.8 55.3 55.3 56.3 55.8 55.3 55.8 57.8 55.3 56.8 55.7
Az–Ru 45.2 46.5 46.8 48.1 49.2 47.3 48.4 45.5 46.8 50.0 47.4
Az–Sk 43.9 46.1 47.0 48.3 49.2 48.3 49.2 48.3 46.7 46.7 47.4
Az–Tr 45.2 49.1 51.3 49.1 46.7 48.7 49.1 49.4 49.6 49.4 48.8
Be–Az 20.6 20.6 23.4 23.2 24.6 22.0 22.9 24.9 22.3 24.6 22.9
Be–Cs 44.5 44.8 47.6 48.5 46.5 47.9 48.7 46.8 45.7 47.9 46.9
Be–En 42.3 42.3 42.7 41.5 44.4 42.7 42.3 42.7 41.0 43.2 42.5
Be–Es 50.4 53.0 54.2 53.3 50.4 53.6 54.4 51.0 54.2 52.4 52.7
Be–Gl 38.8 36.5 37.7 38.8 38.0 36.5 38.3 38.0 38.6 37.7 37.9
Be–Pt 49.5 50.8 52.8 51.5 52.0 50.0 49.0 49.0 50.5 49.5 50.5
Be–Ru 53.0 53.2 52.1 51.8 53.8 52.7 53.0 53.0 53.2 51.8 52.8
Be–Sk 43.8 40.1 44.7 43.5 41.6 43.8 44.4 43.5 40.1 43.5 42.9
Be–Tr 33.4 33.2 34.6 37.8 32.2 34.4 36.9 33.4 33.2 32.2 34.1
Cs–Az 10.3 11.2 11.2 13.8 14.1 11.8 12.1 10.6 11.2 12.6 11.9
Cs–Be 14.8 15.5 15.5 16.3 16.3 16.6 16.1 16.1 14.8 15.8 15.8
Cs–En 75.6 76.4 75.1 75.7 76.2 76.9 76.1 75.8 75.9 76.0 76.0
Cs–Es 75.5 75.3 74.1 76.5 75.9 74.9 74.3 75.5 75.9 74.1 75.2
Cs–Gl 40.8 41.8 43.0 43.7 43.1 36.5 42.1 42.6 42.1 41.2 41.7
Cs–Pt 72.9 74.1 72.2 74.3 73.1 73.7 72.7 73.8 72.7 71.6 73.1
Cs–Ru 64.5 64.4 63.6 63.9 63.9 64.5 64.9 64.5 64.3 65.5 64.4
Cs–Sk 81.7 82.9 83.2 82.8 82.5 83.0 83.2 82.7 81.6 82.7 82.6
Cs–Tr 56.2 56.0 55.1 57.1 56.4 54.2 54.9 55.5 54.9 53.8 55.4
En–Az 28.3 29.1 30.3 29.9 28.9 29.2 30.2 29.1 28.8 30.6 29.4
En–Be 32.8 28.3 34.0 31.5 34.0 34.5 30.3 32.8 33.3 32.8 32.4
En–Cs 74.7 74.9 73.4 74.5 76.1 76.5 74.8 75.1 73.8 75.5 74.9
En–Es 88.9 89.5 88.8 89.3 89.1 89.3 89.1 89.3 89.0 89.1 89.1
En–Gl 49.0 50.4 50.5 50.4 51.3 47.8 50.9 51.4 49.1 50.7 50.1
En–Pt 86.0 86.6 86.2 86.6 86.2 86.4 86.3 86.3 86.4 85.8 86.3
En–Ru 68.0 68.1 68.2 66.0 68.6 69.6 68.7 67.7 67.4 68.2 68.1
En–Sk 62.3 62.7 62.5 60.8 62.5 62.1 63.5 62.7 59.9 63.2 62.2
En–Tr 63.6 62.6 64.3 62.4 62.4 63.8 63.8 63.0 63.2 63.2 63.2
Es–Az 16.3 16.9 16.9 17.5 18.4 17.8 17.2 17.2 19.0 18.1 17.5
Es–Be 16.8 15.5 17.1 18.9 16.3 18.9 18.7 17.1 18.1 16.5 17.4
Es–Cs 64.4 65.7 63.5 65.2 66.1 65.5 65.9 66.0 65.8 65.9 65.4
Es–En 85.2 86.3 86.0 85.5 85.8 85.5 85.8 86.1 86.0 86.0 85.8
Es–Gl 45.6 46.0 45.7 46.1 46.4 43.2 45.9 45.7 45.8 46.2 45.7
Es–Pt 90.8 91.1 90.7 91.3 91.4 91.1 91.3 90.7 90.9 90.9 91.0
Es–Ru 61.5 62.5 61.4 62.5 62.1 61.7 62.2 60.8 61.6 62.9 61.9
Es–Sk 57.9 59.1 58.7 58.5 59.1 57.8 58.1 57.6 57.0 58.5 58.2
Es–Tr 57.0 57.4 57.2 56.7 55.0 56.3 56.3 55.5 56.6 56.5 56.5
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Table 12: All results from the European-languages MWE experiment: P@5 (part 2).

Test Hub language
µAz Be Cs En Es Gl Pt Ru Sk Tr

Gl–Az 8.4 9.0 8.8 9.8 9.6 10.0 9.7 9.4 9.2 9.7 9.4
Gl–Be 7.3 6.1 6.1 6.7 6.7 6.7 7.9 6.1 6.1 7.3 6.7
Gl–Cs 41.8 42.1 43.0 42.3 44.5 40.2 42.5 42.5 42.0 43.0 42.4
Gl–En 56.8 57.4 58.6 56.3 59.7 57.6 57.2 57.8 56.7 58.1 57.6
Gl–Es 68.3 68.8 68.1 68.8 68.6 67.9 68.3 68.8 68.2 68.8 68.5
Gl–Pt 63.9 64.3 63.4 64.1 63.2 62.8 63.4 64.0 63.7 63.9 63.7
Gl–Ru 40.2 39.8 39.3 39.6 39.5 37.0 40.0 39.5 39.3 40.8 39.5
Gl–Sk 41.6 42.4 41.1 41.9 43.7 38.5 41.0 41.4 39.2 41.5 41.2
Gl–Tr 33.5 33.4 34.9 33.9 33.3 29.4 32.4 32.6 34.0 31.5 32.9
Pt–Az 8.7 11.1 10.2 12.5 11.1 10.2 10.5 9.9 12.0 11.1 10.7
Pt–Be 14.4 12.1 14.4 17.4 14.1 15.9 14.9 14.9 14.9 14.6 14.8
Pt–Cs 65.6 66.6 64.7 65.8 66.5 66.6 65.9 66.3 65.5 65.1 65.9
Pt–En 81.3 82.1 82.0 82.1 81.9 82.0 81.5 81.7 81.5 82.0 81.8
Pt–Es 92.1 92.6 92.4 92.1 92.0 91.8 92.4 92.4 92.0 92.3 92.2
Pt–Gl 45.4 46.4 46.2 46.9 46.8 43.5 45.8 45.4 45.2 46.7 45.8
Pt–Ru 57.6 57.8 57.7 58.7 58.1 58.5 57.0 57.5 57.6 57.6 57.8
Pt–Sk 57.2 56.9 57.0 57.8 56.6 55.4 56.6 56.8 53.1 56.4 56.4
Pt–Tr 53.9 54.8 54.2 56.3 53.3 53.6 52.7 54.5 54.4 54.6 54.2
Ru–Az 12.0 15.6 15.9 15.6 15.9 14.8 15.4 14.2 14.2 15.9 15.0
Ru–Be 20.1 18.3 20.6 20.1 20.9 20.6 20.6 20.9 21.1 20.4 20.4
Ru–Cs 65.7 65.0 65.1 64.7 65.0 66.7 66.1 65.8 65.1 65.5 65.5
Ru–En 72.8 73.0 73.9 72.0 73.8 73.5 72.7 72.3 72.9 73.5 73.0
Ru–Es 70.1 69.8 69.7 71.3 69.2 70.3 71.2 68.8 70.7 68.4 69.9
Ru–Gl 36.1 35.9 36.1 36.8 37.1 30.9 36.5 36.6 35.9 35.3 35.7
Ru–Pt 66.8 66.8 67.0 69.3 67.9 67.6 65.8 66.6 67.3 65.2 67.0
Ru–Sk 61.1 62.6 61.4 61.1 62.0 61.8 61.8 60.9 59.8 61.6 61.4
Ru–Tr 48.0 48.0 47.6 49.9 47.1 47.5 48.0 46.0 47.0 47.4 47.7
Sk–Az 7.7 9.2 7.1 9.5 7.4 8.3 8.9 8.9 8.3 8.6 8.4
Sk–Be 17.4 16.7 18.5 18.2 17.7 18.5 18.2 19.3 19.3 18.5 18.2
Sk–Cs 82.1 82.1 81.3 81.6 82.1 82.4 81.6 81.6 81.3 81.9 81.8
Sk–En 70.7 71.7 71.3 69.6 71.2 71.4 71.5 70.9 70.3 71.4 71.0
Sk–Es 69.2 69.7 70.2 71.2 70.1 68.8 70.0 68.6 69.2 69.4 69.6
Sk–Gl 43.4 43.3 42.9 45.1 43.7 36.0 42.9 42.0 43.0 42.7 42.5
Sk–Pt 68.2 67.5 67.5 68.7 69.9 67.6 66.1 67.6 66.7 66.7 67.7
Sk–Ru 59.2 58.1 58.2 58.8 59.4 59.5 58.8 58.5 57.5 59.5 58.8
Sk–Tr 47.2 48.7 47.6 48.7 47.1 46.7 48.2 47.8 46.7 46.2 47.5
Tr–Az 19.5 22.2 19.9 21.2 20.9 20.9 20.5 19.5 21.9 20.2 20.7
Tr–Be 17.1 12.3 16.2 17.1 16.8 15.6 16.5 16.5 16.2 16.2 16.1
Tr–Cs 61.6 62.1 60.1 61.8 62.4 61.9 61.6 61.5 61.4 60.1 61.4
Tr–En 68.0 68.2 68.1 67.2 67.8 67.5 69.6 67.7 67.9 67.2 67.9
Tr–Es 69.8 69.0 70.4 70.5 68.0 69.2 70.5 69.4 69.8 69.5 69.6
Tr–Gl 30.5 30.7 31.1 30.0 30.4 23.6 31.4 31.1 29.7 30.7 29.9
Tr–Pt 67.1 66.9 66.9 67.9 66.5 65.9 65.2 67.1 67.5 66.6 66.8
Tr–Ru 55.4 55.9 54.0 55.4 55.3 55.1 55.1 53.0 52.9 53.5 54.6
Tr–Sk 48.2 49.9 48.9 49.7 48.7 47.8 48.9 48.1 44.2 47.7 48.2
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Table 13: All results from the European-languages MWE experiment: P@10 (part 1).

Test Hub language
µAz Be Cs En Es Gl Pt Ru Sk Tr

Az–Be 31.1 27.1 30.8 31.4 31.9 31.1 29.8 30.3 32.2 31.1 30.7
Az–Cs 60.3 62.5 60.8 62.7 63.6 61.4 62.7 61.1 60.3 63.6 61.9
Az–En 49.3 51.1 52.6 50.5 49.5 50.7 51.4 50.3 50.1 50.7 50.6
Az–Es 63.8 65.7 65.4 67.1 65.2 66.3 68.0 64.6 66.6 67.4 66.0
Az–Gl 42.6 42.6 45.1 45.1 43.8 39.5 45.1 43.8 42.6 43.8 43.4
Az–Pt 58.5 61.2 62.7 62.5 61.5 61.7 61.0 61.2 61.7 62.5 61.5
Az–Ru 50.8 52.7 52.9 50.8 54.0 53.2 54.3 51.6 51.9 54.5 52.7
Az–Sk 48.9 52.0 53.0 52.0 53.9 54.2 53.0 52.4 51.7 51.7 52.3
Az–Tr 53.3 55.5 56.7 57.0 55.0 55.3 55.7 56.5 57.0 56.7 55.9
Be–Az 25.7 25.4 29.7 28.5 29.4 26.8 27.7 28.2 26.8 28.0 27.6
Be–Cs 50.7 51.0 52.1 51.3 51.8 53.8 52.7 51.8 50.7 51.8 51.8
Be–En 46.6 48.7 50.0 46.2 48.3 50.9 46.2 48.3 46.2 47.9 47.9
Be–Es 54.7 57.3 58.7 58.7 56.2 57.9 57.9 55.9 58.5 57.9 57.4
Be–Gl 47.0 45.2 44.6 46.1 43.8 41.4 43.5 43.8 44.3 42.9 44.3
Be–Pt 55.3 55.8 57.0 57.8 57.0 56.5 55.8 54.5 55.5 56.0 56.1
Be–Ru 56.3 56.3 56.1 56.1 56.9 56.1 56.3 56.3 56.9 55.5 56.3
Be–Sk 48.0 45.6 48.3 47.7 48.0 48.6 49.8 48.6 46.2 48.0 47.9
Be–Tr 38.3 40.5 41.5 43.2 40.3 40.3 41.8 41.5 40.3 38.3 40.6
Cs–Az 13.8 14.9 15.5 16.1 17.5 14.9 15.8 14.1 14.9 15.5 15.3
Cs–Be 18.9 17.9 19.2 19.9 19.4 19.9 19.9 19.2 17.9 19.2 19.1
Cs–En 80.2 80.5 79.8 80.0 80.1 81.0 80.2 80.5 80.5 81.1 80.4
Cs–Es 80.1 79.6 78.8 80.0 79.9 79.4 79.9 79.3 80.2 79.0 79.6
Cs–Gl 47.2 48.0 47.9 49.9 49.3 42.4 48.2 48.3 49.1 47.1 47.7
Cs–Pt 77.5 78.7 77.5 78.3 77.1 77.7 76.9 77.7 76.9 76.8 77.5
Cs–Ru 70.1 70.3 69.1 69.6 69.4 70.7 69.6 69.5 69.5 70.5 69.8
Cs–Sk 85.5 85.6 85.7 85.2 84.9 85.1 86.2 85.2 84.9 85.6 85.4
Cs–Tr 63.2 62.7 62.5 63.5 62.7 62.5 62.7 63.4 62.6 61.6 62.7
En–Az 32.2 33.3 34.3 34.3 33.8 32.5 34.4 33.0 34.3 33.8 33.6
En–Be 38.5 34.0 40.4 39.0 40.0 41.2 38.7 38.2 38.7 38.5 38.7
En–Cs 81.2 81.1 79.9 80.7 81.9 82.5 80.6 80.7 80.7 81.5 81.1
En–Es 91.3 92.1 91.7 91.5 91.9 91.7 91.8 91.6 91.9 91.7 91.7
En–Gl 53.9 56.3 56.4 55.7 55.8 53.2 55.9 56.2 54.9 55.5 55.4
En–Pt 89.4 90.0 89.2 89.5 89.1 89.5 89.3 89.0 89.4 89.0 89.3
En–Ru 74.6 74.0 75.8 72.2 74.8 76.0 74.8 73.8 74.0 74.4 74.4
En–Sk 69.3 69.7 69.9 68.0 69.6 68.7 69.9 69.5 67.1 69.9 69.2
En–Tr 69.9 70.1 71.0 69.3 69.5 69.8 70.3 71.1 70.0 69.2 70.0
Es–Az 20.2 20.8 20.2 21.1 20.8 20.2 19.3 20.2 21.1 21.1 20.5
Es–Be 20.8 18.9 20.8 22.9 21.3 22.4 21.1 23.2 21.3 21.3 21.4
Es–Cs 70.5 70.7 70.8 70.9 71.0 71.1 71.3 71.8 72.2 70.9 71.1
Es–En 88.5 88.4 88.5 88.3 88.5 88.5 88.5 88.5 88.5 88.4 88.5
Es–Gl 49.5 49.4 49.4 49.8 50.0 46.0 49.6 49.6 49.4 50.2 49.3
Es–Pt 92.7 92.5 92.5 92.5 93.0 92.9 92.8 92.4 92.1 92.7 92.6
Es–Ru 67.5 67.1 67.4 68.9 67.4 67.6 67.8 66.8 68.7 68.5 67.8
Es–Sk 64.5 64.3 63.9 65.4 65.4 63.5 64.3 64.8 63.0 63.8 64.3
Es–Tr 63.6 63.8 64.3 62.7 61.6 62.6 63.7 62.2 63.8 61.7 63.0
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Table 14: All results from the European-languages MWE experiment: P@10 (part 2).

Test Hub language
µAz Be Cs En Es Gl Pt Ru Sk Tr

Gl–Az 11.5 11.2 11.1 12.5 12.6 12.3 13.1 12.1 12.5 12.3 12.1
Gl–Be 8.5 7.3 8.5 9.1 8.5 7.9 7.9 7.9 8.5 9.7 8.4
Gl–Cs 48.0 49.0 48.8 49.0 50.7 46.6 48.3 49.1 49.0 49.0 48.8
Gl–En 64.1 64.4 64.7 62.2 64.4 62.5 63.4 64.4 62.4 63.0 63.6
Gl–Es 71.3 71.5 71.5 72.1 71.7 71.1 71.0 71.6 71.4 72.5 71.6
Gl–Pt 66.9 67.1 67.4 67.6 67.5 67.7 67.1 67.6 66.8 68.1 67.4
Gl–Ru 46.7 46.5 45.9 45.0 46.3 42.8 45.8 44.8 44.7 45.7 45.4
Gl–Sk 48.2 48.1 47.2 48.5 48.8 45.3 47.6 46.7 45.5 48.2 47.4
Gl–Tr 39.7 39.3 39.3 39.1 38.2 35.9 38.8 38.9 38.3 38.0 38.5
Pt–Az 11.7 14.6 13.4 14.6 15.2 12.5 13.4 13.1 13.4 15.7 13.8
Pt–Be 18.9 17.2 18.2 21.0 18.7 20.2 18.7 19.7 18.4 18.7 19.0
Pt–Cs 71.6 72.0 70.6 71.7 71.7 72.0 71.5 71.9 71.2 70.7 71.5
Pt–En 84.0 84.3 84.1 85.1 84.2 84.9 84.1 83.9 84.7 84.3 84.4
Pt–Es 92.8 93.2 93.2 93.2 93.6 93.0 93.4 93.3 93.2 93.4 93.2
Pt–Gl 49.3 49.6 48.9 50.1 49.9 46.8 49.3 48.9 47.9 49.6 49.0
Pt–Ru 63.6 64.3 62.8 64.7 64.4 64.3 63.0 63.4 63.8 62.4 63.7
Pt–Sk 63.6 62.4 62.6 63.9 63.0 62.6 62.4 62.1 59.7 62.2 62.4
Pt–Tr 60.4 60.8 60.4 62.3 59.5 60.4 60.3 60.9 60.5 60.9 60.6
Ru–Az 15.4 17.0 18.7 20.1 18.4 18.4 19.0 17.9 17.3 19.8 18.2
Ru–Be 25.1 22.2 24.5 23.8 24.3 24.0 24.5 24.3 25.3 24.3 24.2
Ru–Cs 70.8 70.3 70.9 70.4 70.8 71.3 71.0 70.5 70.8 71.1 70.8
Ru–En 76.9 77.8 78.6 76.6 78.4 77.8 77.4 76.8 77.1 77.5 77.5
Ru–Es 75.2 75.2 75.3 76.3 75.6 75.3 76.3 74.8 76.4 74.5 75.5
Ru–Gl 43.1 42.2 42.1 43.3 43.5 37.1 41.9 41.7 41.3 40.5 41.7
Ru–Pt 72.6 71.8 72.6 74.5 72.5 72.6 71.5 71.5 72.2 70.2 72.2
Ru–Sk 65.5 66.8 66.3 66.5 66.3 66.4 67.0 66.5 64.7 66.9 66.3
Ru–Tr 56.1 56.2 55.2 57.7 56.8 57.0 56.1 54.8 57.3 54.8 56.2
Sk–Az 11.0 11.0 10.7 13.8 10.7 13.2 13.2 10.4 11.3 12.0 11.7
Sk–Be 23.2 20.8 21.1 22.1 21.1 22.9 22.7 22.9 23.4 22.1 22.2
Sk–Cs 85.1 85.5 84.6 84.4 85.3 85.9 85.6 84.9 85.0 85.0 85.1
Sk–En 74.5 76.3 76.6 73.9 75.7 76.0 75.6 75.4 75.3 75.8 75.5
Sk–Es 75.7 75.5 74.9 76.2 74.4 74.2 74.6 74.4 74.7 74.7 74.9
Sk–Gl 49.1 48.7 48.9 51.7 50.1 40.9 49.4 48.5 49.6 49.7 48.7
Sk–Pt 73.7 73.2 72.6 74.7 74.0 73.1 71.7 72.8 72.9 72.0 73.1
Sk–Ru 63.5 64.4 62.8 64.0 64.0 64.2 64.0 62.6 62.6 64.6 63.7
Sk–Tr 55.4 57.0 56.2 57.4 55.7 55.4 57.0 56.0 54.4 55.2 56.0
Tr–Az 22.9 24.6 23.9 23.2 23.6 24.9 23.6 23.2 24.6 24.9 23.9
Tr–Be 22.2 16.8 21.6 20.7 21.3 21.6 23.4 19.8 19.5 21.3 20.8
Tr–Cs 68.5 68.0 66.7 67.2 68.0 68.1 68.4 67.1 67.8 66.3 67.6
Tr–En 73.5 74.0 73.7 73.2 73.0 73.2 74.2 74.0 72.9 72.2 73.4
Tr–Es 74.4 74.0 74.6 75.5 73.2 73.8 74.6 74.7 74.8 74.4 74.4
Tr–Gl 36.1 36.6 35.9 36.4 35.9 29.7 36.7 36.7 35.0 36.8 35.6
Tr–Pt 72.2 71.8 71.8 72.8 71.3 71.4 70.8 71.8 72.4 72.1 71.8
Tr–Ru 61.3 61.8 60.0 61.8 61.7 61.8 60.5 60.0 59.5 59.9 60.8
Tr–Sk 55.4 56.8 56.8 57.0 56.2 54.9 56.4 55.8 51.6 55.4 55.6
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Table 15: All results from the distant languages MWE experiment (P@1).

Test Hub language
µEn Fr Hi Ko Ru Sv Uk

En–Fr 75.1 75.3 75.2 75.8 76.3 75.5 75.4 75.5
En–Hi 20.9 23.5 21.0 21.4 23.5 21.4 23.9 22.2
En–Ko 9.2 10.4 9.1 9.8 9.8 10.1 10.0 9.8
En–Ru 41.8 42.0 41.8 41.5 42.0 41.8 42.0 41.8
En–Sv 57.0 57.5 59.0 56.6 57.8 57.6 58.4 57.7
En–Uk 26.9 27.5 26.9 26.9 28.3 27.8 26.2 27.2
Fr–En 72.5 72.0 71.6 72.7 72.9 73.4 74.0 72.7
Fr–Hi 18.7 16.0 14.8 17.3 19.0 17.8 17.5 17.3
Fr–Ko 6.9 6.7 5.8 5.5 5.8 7.5 6.0 6.3
Fr–Ru 39.9 38.3 40.3 40.4 40.8 40.0 39.6 39.9
Fr–Sv 51.8 49.3 50.5 51.1 49.4 48.2 51.8 50.3
Fr–Uk 28.8 27.0 27.8 28.5 28.7 27.7 26.1 27.8
Hi–En 27.8 31.4 27.9 28.6 30.4 29.3 29.3 29.3
Hi–Fr 25.6 23.1 25.1 23.3 26.9 25.5 24.2 24.8
Hi–Ko 2.1 1.7 1.3 1.6 1.6 1.4 1.8 1.6
Hi–Ru 13.9 14.2 14.3 13.6 14.3 13.5 14.6 14.0
Hi–Sv 17.3 16.8 16.3 15.9 17.0 15.9 16.6 16.6
Hi–Uk 10.3 10.5 9.1 9.1 9.8 9.5 9.6 9.7
Ko–En 15.1 16.6 15.2 17.0 16.6 17.7 16.4 16.4
Ko–Fr 11.9 10.2 10.9 10.9 12.6 13.6 10.8 11.6
Ko–Hi 1.8 2.4 1.2 1.6 2.0 1.8 2.0 1.9
Ko–Ru 7.9 6.6 6.0 5.7 6.9 6.8 7.3 6.7
Ko–Sv 6.8 6.6 5.9 5.9 7.2 5.6 7.2 6.5
Ko–Uk 3.5 3.6 3.4 3.2 3.5 3.5 3.1 3.4
Ru–En 50.2 53.2 52.2 53.4 52.5 52.6 52.1 52.3
Ru–Fr 51.1 49.6 50.7 51.7 51.0 50.6 50.3 50.7
Ru–Hi 14.6 15.0 12.0 14.6 13.3 14.8 15.3 14.2
Ru–Ko 5.2 4.6 4.4 3.6 4.3 4.1 5.0 4.4
Ru–Sv 40.7 40.9 40.1 41.0 39.8 36.7 41.3 40.1
Ru–Uk 55.3 56.1 55.8 56.3 55.3 55.3 54.9 55.6
Sv–En 51.2 51.1 52.3 51.9 52.0 50.7 52.7 51.7
Sv–Fr 47.9 45.7 46.8 48.2 47.1 46.6 47.4 47.1
Sv–Hi 17.2 16.3 15.0 16.0 17.7 15.9 17.0 16.4
Sv–Ko 4.9 4.2 4.0 3.8 5.0 4.0 5.1 4.4
Sv–Ru 31.5 33.2 32.4 33.0 31.8 30.2 31.8 32.0
Sv–Uk 22.4 23.8 23.0 23.5 24.1 21.0 21.9 22.8
Uk–En 39.5 40.8 40.3 40.7 41.4 40.2 40.2 40.4
Uk–Fr 43.6 42.3 44.0 43.3 43.0 43.3 40.6 42.9
Uk–Hi 13.8 13.8 12.8 12.8 12.7 14.4 13.0 13.3
Uk–Ko 2.6 2.5 2.4 2.0 2.0 2.4 2.6 2.4
Uk–Ru 59.4 58.9 59.7 58.7 59.1 58.4 58.6 59.0
Uk–Sv 35.8 35.5 35.8 36.8 35.4 32.7 35.1 35.3
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Table 16: All results from the distant languages MWE experiment (P@5).

Test Hub language
µEn Fr Hi Ko Ru Sv Uk

En–Fr 87.3 88.2 87.8 88.4 88.3 88.0 87.7 88.0
En–Hi 37.2 39.4 36.5 37.1 39.3 38.7 39.9 38.3
En–Ko 23.4 24.6 22.6 23.4 24.3 25.9 25.0 24.2
En–Ru 63.5 65.3 65.1 64.8 66.9 64.6 65.9 65.2
En–Sv 74.8 76.1 76.3 75.8 75.4 75.6 76.5 75.8
En–Uk 47.7 49.8 49.3 47.9 49.3 48.5 47.7 48.6
Fr–En 85.3 84.5 83.7 84.5 85.4 85.1 84.6 84.7
Fr–Hi 32.7 30.0 29.5 30.6 33.4 32.2 31.6 31.4
Fr–Ko 14.9 14.5 14.0 14.6 16.0 15.3 15.2 14.9
Fr–Ru 61.0 59.5 61.9 61.7 62.1 60.6 60.9 61.1
Fr–Sv 69.6 68.1 68.8 69.1 68.6 68.0 71.1 69.0
Fr–Uk 45.6 44.2 44.8 45.6 45.8 45.0 44.1 45.0
Hi–En 44.5 47.0 46.3 44.3 47.0 46.3 46.7 46.0
Hi–Fr 41.7 39.3 41.6 39.6 42.7 41.2 42.3 41.2
Hi–Ko 5.3 4.8 3.4 3.5 4.7 5.1 5.0 4.5
Hi–Ru 27.6 29.6 27.6 28.1 27.9 28.8 29.5 28.4
Hi–Sv 31.7 31.7 30.8 30.7 32.7 30.2 32.0 31.4
Hi–Uk 21.4 21.9 19.9 20.1 20.8 20.4 20.2 20.7
Ko–En 28.9 28.7 27.0 28.1 30.1 33.1 28.6 29.2
Ko–Fr 21.9 21.6 19.7 20.4 24.0 24.4 21.3 21.9
Ko–Hi 4.3 4.8 3.9 4.1 4.6 4.8 5.0 4.5
Ko–Ru 16.2 15.3 12.9 13.4 15.8 15.7 16.3 15.1
Ko–Sv 16.2 14.1 13.9 13.8 15.6 13.9 16.3 14.8
Ko–Uk 9.7 8.0 8.6 8.6 9.3 8.2 8.8 8.8
Ru–En 69.8 71.1 70.9 71.0 70.2 71.1 71.3 70.8
Ru–Fr 65.7 66.2 67.7 67.9 67.0 66.6 67.2 66.9
Ru–Hi 27.3 27.6 24.7 26.7 25.6 26.6 28.7 26.7
Ru–Ko 12.1 10.4 10.1 10.0 11.1 10.4 12.4 10.9
Ru–Sv 58.8 58.9 58.2 58.2 58.8 56.1 59.9 58.4
Ru–Uk 68.3 68.8 69.2 68.0 68.8 68.6 66.9 68.4
Sv–En 65.4 66.2 66.3 65.7 65.1 64.4 65.9 65.6
Sv–Fr 62.5 60.1 60.3 61.1 60.7 59.8 61.3 60.8
Sv–Hi 28.2 28.0 26.6 27.4 29.3 27.1 28.6 27.9
Sv–Ko 11.7 10.7 10.9 9.8 11.5 11.6 11.4 11.1
Sv–Ru 50.5 51.0 50.7 50.9 50.3 47.8 49.9 50.2
Sv–Uk 40.2 42.1 41.6 41.6 41.7 38.3 39.2 40.6
Uk–En 56.3 58.1 57.5 57.2 59.1 58.1 56.1 57.5
Uk–Fr 58.3 56.4 58.5 58.7 58.9 58.0 56.4 57.9
Uk–Hi 27.2 25.8 24.0 25.4 26.5 25.8 25.3 25.7
Uk–Ko 7.4 7.2 6.8 6.0 7.3 7.3 7.3 7.0
Uk–Ru 71.0 71.0 71.2 70.1 70.4 70.7 70.5 70.7
Uk–Sv 53.3 53.3 52.5 53.1 53.7 48.9 53.1 52.5
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Table 17: All results from the distant languages MWE experiment (P@10).

Test Hub language
µEn Fr Hi Ko Ru Sv Uk

En–Fr 90.8 91.3 90.1 91.0 91.1 91.1 90.7 90.9
En–Hi 44.0 45.9 43.3 43.1 45.0 45.2 45.6 44.6
En–Ko 31.1 31.5 28.4 30.5 31.6 33.7 32.1 31.3
En–Ru 70.1 71.7 71.0 70.7 72.4 71.1 72.3 71.3
En–Sv 80.0 81.1 80.9 80.4 80.8 80.4 81.2 80.7
En–Uk 55.3 57.5 56.5 55.2 57.4 56.4 54.6 56.1
Fr–En 87.6 87.8 86.6 87.7 88.0 87.9 88.0 87.6
Fr–Hi 39.1 35.3 35.5 36.5 38.6 38.1 38.5 37.4
Fr–Ko 20.1 18.4 18.4 19.6 20.3 19.4 19.7 19.4
Fr–Ru 67.1 65.9 68.1 67.5 66.8 66.8 67.4 67.1
Fr–Sv 74.4 73.3 74.2 74.8 73.3 73.3 75.5 74.1
Fr–Uk 51.7 49.7 51.3 51.8 52.0 51.2 49.9 51.1
Hi–En 50.0 52.3 53.0 50.8 52.7 51.7 52.3 51.8
Hi–Fr 49.0 45.5 46.8 46.8 48.3 48.1 48.9 47.6
Hi–Ko 7.9 7.2 5.1 5.1 6.4 6.6 7.2 6.5
Hi–Ru 34.5 35.3 34.5 34.7 33.6 35.3 36.3 34.9
Hi–Sv 38.0 37.5 36.1 37.9 38.9 36.3 38.5 37.6
Hi–Uk 27.3 27.6 25.8 25.4 26.2 25.9 25.5 26.3
Ko–En 34.2 34.3 32.3 35.2 37.1 38.4 35.4 35.3
Ko–Fr 27.0 25.9 23.7 24.6 28.5 30.1 26.4 26.6
Ko–Hi 6.2 6.9 5.6 6.0 6.7 6.7 6.9 6.4
Ko–Ru 21.2 19.3 16.4 18.2 20.4 20.9 20.8 19.6
Ko–Sv 20.9 18.1 17.8 17.5 21.1 18.4 20.6 19.2
Ko–Uk 12.9 12.1 11.5 11.3 12.6 12.0 11.7 12.0
Ru–En 74.9 75.8 75.4 75.5 75.5 76.2 75.6 75.6
Ru–Fr 71.8 72.5 73.0 72.2 72.7 72.7 72.6 72.5
Ru–Hi 33.0 32.9 30.1 32.1 31.9 32.1 34.6 32.4
Ru–Ko 17.2 14.6 13.2 13.5 15.9 15.0 16.7 15.2
Ru–Sv 64.7 64.7 63.6 64.6 64.2 62.5 64.6 64.1
Ru–Uk 73.3 72.8 73.1 72.0 73.1 72.9 71.7 72.7
Sv–En 69.5 70.4 71.0 70.6 70.9 69.3 70.0 70.2
Sv–Fr 67.0 64.2 65.0 65.3 65.5 64.2 65.7 65.3
Sv–Hi 33.6 32.6 32.0 30.9 33.3 31.9 33.2 32.5
Sv–Ko 15.7 14.7 14.0 12.9 15.7 14.9 15.6 14.8
Sv–Ru 57.2 56.4 56.5 56.2 56.4 53.8 56.4 56.1
Sv–Uk 47.5 47.9 47.7 47.7 48.5 44.8 46.4 47.2
Uk–En 61.6 63.4 62.9 62.2 63.5 62.7 61.1 62.5
Uk–Fr 63.5 62.4 63.9 63.4 64.3 63.5 61.9 63.3
Uk–Hi 32.7 32.3 28.6 30.2 31.7 31.5 30.7 31.1
Uk–Ko 10.6 10.2 9.5 8.7 10.1 10.4 10.2 10.0
Uk–Ru 74.5 73.8 74.1 73.9 74.5 74.1 73.9 74.1
Uk–Sv 59.1 58.8 58.8 58.7 59.3 55.2 57.8 58.2


