
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8045–8056
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

8045

Learning Interpretable Relationships between Entities, Relations and
Concepts via Bayesian Structure Learning on Open Domain Facts

Jingyuan Zhang, Mingming Sun, Yue Feng, Ping Li
Cognitive Computing Lab

Baidu Research
1195 Bordeaux Dr, Sunnyvale, CA 94089, USA

No. 10 Xibeiwang East Road, Beijing 100085, China
10900 NE 8th St, Bellevue, WA 98004, USA

{zhangjingyuan03,sunmingming01, v fengyue, liping11}@baidu.com

Abstract

Concept graphs are created as universal tax-
onomies for text understanding in the open do-
main knowledge. The nodes in concept graphs
include both entities and concepts. The edges
are from entities to concepts, showing that an
entity is an instance of a concept. In this paper,
we propose the task of learning interpretable
relationships from open domain facts to enrich
and refine concept graphs. The Bayesian net-
work structures are learned from open domain
facts as the interpretable relationships between
relations of facts and concepts of entities. We
conduct extensive experiments on public En-
glish and Chinese datasets. Compared to the
state-of-the-art methods, the learned network
structures help improving the identification of
concepts for entities based on the relations of
entities on both English and Chinese datasets.

1 Introduction

Concept graphs are created as universal taxonomies
for text understanding and reasoning in the open
domain knowledge (Dagan et al., 2010; Bowman
et al., 2015; Zamir et al., 2018; Huang et al., 2019;
Hao et al., 2019; Jiang et al., 2019). The nodes
in concept graphs include both entities and con-
cepts. The edges are from entities to concepts,
showing that an entity is an instance of a concept.
The task of extracting and building concept graphs
from user-generated texts has attracted a lot of
research attentions for a couple of decades (Fell-
baum, 1998; Wu et al., 2012; Shwartz et al., 2016;
Chang et al., 2018; Le et al., 2019; Lewis, 2019).
Most of these methods rely on high quality syn-
tactic patterns to determine whether an entity be-
longs to a concept. For example, given the pat-
tern “X is a Y ” or “Y , including X” appearing
in sentences, we can infer that the entity X is an
instance of the concept Y . These pattern-based
methods require that an entity and concept pair

co-occurs in sentences. However, due to the dif-
ferent expressions of a certain concept, an entity
and a concept may rarely appear in sentences to-
gether. We conduct a data analysis of millions of
sentences extracted from Wikipedia and discover
that only 10.61% of entity-concept pairs co-occur
in sentences out of more than six million of pairs
from the public Microsoft concept graph (https:
//concept.research.microsoft.com). We also
analyze Baidu Baike (http://baike.baidu.com)
and its corresponding concept graph. A similar
phenomenon is observed that only 8.56% entity-
concept pairs co-occur in sentences. Table 1 shows
the statistics for Wikipedia and Baidu Baike. With
such limitations, the existing approaches have diffi-
culties in helping build a complete concept graph
from open domain texts.

Dataset # Pairs # Sentences # Co-occurrence Percentage

Wikipedia 6,347,294 7,871,825 673,542 10.61%
Baike 3,229,301 9,523,183 276,485 8.56%

Table 1: Entity-concept pairs that co-occur in sentences
from Wikipedia (English) and Baidu Baike (Chinese).

Nowadays, the task of open domain informa-
tion extraction (OIE) has become more and more
important (Christensen et al., 2011; Wu and Weld,
2010; Etzioni et al., 2011; Mausam et al., 2012; Sun
et al., 2018b,a; Di et al., 2019; Rashed et al., 2019;
Liu et al., 2020a,b). OIE aims to generate entity
and relation level intermediate structures to express
facts from open domain sentences. These open
domain facts usually express natural languages as
triples in the form of (subject, predicate, object).
For example, given the sentence “Anderson, who
hosted Whose Line, is a winner of a British Com-
edy Award in 1991.”, two facts will be extracted.
They are (“Anderson”, “host”, “Whose Line”) and
(“Anderson”, “winner of a British Comedy Award”,
“1991”). The subject and object in a fact are both

https://concept.research.microsoft.com
https://concept.research.microsoft.com
http://baike.baidu.com
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Figure 1: The workflow of learning interpretable relationships from open domain facts for concept discovery.
fi = (si, ri, oi) represents a fact, where si and oi are both entities, and ri is a relation. We use ei to denote an
entity and ci to represent a concept.

entities. The open domain facts contain rich infor-
mation about entities by representing the subject or
object entities via different types of relations (i.e.,
groups of predicates).

It would be helpful for concept graph comple-
tion if we can take advantage of the relations in
open domain facts. We again take the above two
facts of “Anderson” as an instance. If we have ex-
plored the connections between relations of facts
and concepts, and learned that “host” and “winner
of a British Comedy Award” are associated with
an “English presenter” subject with a higher proba-
bility than a “Japanese presenter” subject, we can
infer that “Anderson” belongs to the “English pre-
senter” concept regardless of whether these two
co-appear in a sentence or not. In real-world open
domain corpus, however, the connections between
relations and concepts are not available to us.

In this paper, we propose the task of learning
interpretable relationships between entities, rela-
tions and concepts from open domain facts to help
enriching and refining concept graphs. Learning
Bayesian networks (BNs) from data has been stud-
ied extensively (Heckerman et al., 1995; Koivisto
and Sood, 2004; Scanagatta et al., 2015; Niinimaki
et al., 2016) in the last few decades. The BNs
formally encode probabilistic connections in a cer-
tain domain, yielding a human-oriented qualitative
structure that facilitates communication between a
user and a system incorporating the probabilistic
model. Specifically, we apply the Bayesian net-
work structure learning (BNSL) (Chow and Liu,
1968; Yuan et al., 2011; Yuan and Malone, 2013)
to discover meaningful relationships between en-
tities, relations and concepts from open domain
facts. The learned network encodes the dependen-

cies from the relations of entities in facts to the
concepts of entities, leading to the identification
of more entity-concept pairs from open domain
facts for the completion of concept graphs. Fig-
ure 1 illustrates the proposed workflow of learning
interpretable relationships from open domain facts.

We summarize our contributions as follows:

• We propose the task of learning interpretable
relationships between entities, relations and con-
cepts from open domain facts, which is impor-
tant for enriching and refining concept graphs.

• We build the BNSL model to discover meaning-
ful network structures that express the connec-
tions from relations of entities in open domain
facts to concepts of entities in concept graphs.

• Experimental results on both English and Chi-
nese datasets reveal that the learned interpretable
relationships help identify concepts for entities
based on the relations of entities, resulting in a
more complete concept graph.

2 Related Work

Concept Graph Construction. Concept graph
construction has been extensively studied in the
literature (Fellbaum, 1998; Ponzetto and Strube,
2007; Banko et al., 2007; Suchanek et al., 2007;
Wu et al., 2012; Shwartz et al., 2016; Chang et al.,
2018; Le et al., 2019; Lewis, 2019). Notable works
toward creating open domain concept graphs from
scratch include YAGO (Suchanek et al., 2007) and
Probase (Wu et al., 2012). In addition, a wide va-
riety of methods (Nakashole et al., 2012; Weeds
et al., 2014; Roller et al., 2014; Shwartz et al., 2016;
Roller et al., 2018; Chang et al., 2018; Le et al.,
2019; Lewis, 2019) are developed to detect the
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hypernymy between entities and concepts for a
more complete concept graph. Distributional repre-
sentations of entities and concepts are learned for
good hypernymy detection results (Weeds et al.,
2014; Roller et al., 2014; Chang et al., 2018; Lewis,
2019). In contrast to distributional methods, path-
based algorithms (Nakashole et al., 2012; Shwartz
et al., 2016; Roller et al., 2018; Le et al., 2019) are
proposed to take advantage of the lexico-syntactic
paths connecting the joint occurrences of an entity
and a concept in a corpus. Most of these meth-
ods require the co-occurrence of entity and concept
pairs in sentences for the graph completion task.
However, due to the different expressions of a cer-
tain concept, an entity and a concept may rarely
appear in one sentence together. With such limita-
tions, the existing methods in the literature cannot
deal with those non co-occurring entity concept
pairs, leading to an incomplete concept graph.

Open Domain Information Extraction. Open
domain information extraction (OIE) has attracted
a lot of attention in recent years (Wu and Weld,
2010; Christensen et al., 2011; Etzioni et al., 2011;
Mausam et al., 2012; Pal and Mausam, 2016; Yahya
et al., 2014; Sun et al., 2018b,a; Roy et al., 2019;
Liu et al., 2020a,b). It extracts facts from open
domain documents and expresses facts as triples
of (subject, predicate, object). Recently, a neural-
based OIE system Logician (Sun et al., 2018b,a;
Liu et al., 2020a,b) is proposed. It introduces a uni-
fied knowledge expression format SAOKE (symbol
aided open knowledge expression) and expresses
the most majority information in natural language
sentences into four types of facts (i.e., relation,
attribute, description and concept). Logician is
trained on a human labeled SAOKE dataset using
a neural sequence to sequence model. It achieves
a much better performance than traditional OIE
systems in Chinese language and provides a set
of open domain facts with much higher quality to
support upper-level algorithms. Since the subject
and object in a fact are both entities, the open do-
main facts contain rich information about entities
by representing the subjects or objects via different
types of relations (i.e., groups of predicates). It
can help the task of concept graph completion by
making full use of the relations in open domain
facts. In this paper, we leverage the high-quality
facts of Logician as one dataset in the experiment.

Bayesian Network Structure Learning.
Learning a Bayesian network structure from real-

world data is a well-motivated but computationally
hard task (Heckerman et al., 1995; Koivisto and
Sood, 2004; de Campos et al., 2009; Malone
et al., 2011; Scanagatta et al., 2015; Niinimaki
et al., 2016). A Bayesian network specifies a
joint probability distribution of a set of random
variables in a structured fashion. A key component
in this model is the network structure, a directed
acyclic graph on the variables, encoding a set
of conditional independence assertions. Several
exact and approximate algorithms are developed
to learn optimal Bayesian networks (Chow and
Liu, 1968; Koivisto and Sood, 2004; Singh and
Moore, 2005; Silander and Myllymäki, 2006; Yuan
et al., 2011; Yuan and Malone, 2013). Some exact
algorithms (Koivisto and Sood, 2004; Singh and
Moore, 2005; Silander and Myllymäki, 2006) are
based on dynamic programming to find the best
Bayesian network. In 2011, an A? search algorithm
is introduced (Yuan et al., 2011) to formulate the
learning process as a shortest path finding problem.
However, these exact algorithms are inefficient due
to the full evaluation of an exponential solution
space. In this paper, we consider the Chow-Liu
tree building algorithm (Chow and Liu, 1968) to
approximate the underlying relationships between
entities, relations and concepts as a dependency
tree. This method is very efficient when there are
large numbers of variables.

3 Finding Interpretable Relationships

We formulate the relationships between entities,
relations, and concepts as follows:

• Entities are associated with a set of relations that
represent the behaviors and attributes of entities;

• A concept is defined by a set of relations. The
instances of a concept are those entities that as-
sociate with the corresponding set of relations.

In concept graphs, a concept is associated with a
set of entities which share some common behaviors
or attributes. However, the essence of a concept is
a set of relations, and entities which associate with
these relations automatically become the instance
of the concept. So our formulation of the relation-
ships between entities, relations and concepts can
be illustrated by Figure 2.

In the closed domain, a knowledge base has a
predefined ontology and the relationships in Fig-
ure 2 are already known. For example, DBPe-
dia (Auer et al., 2007) builds a knowledge graph
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Figure 2: Relationships of entities, relations and concepts.

from Wikipedia to encode the relationships be-
tween entities and relations in the forms of facts.
The relationships between relations and concepts
are represented in the ontology structure of DBPe-
dia, where each concept is associated with a group
of relations.

However, in the open domain, a predefined on-
tology does not exist, and hence the components
in Figure 2 may not be associated with each other.
For instance, given an open domain concept graph,
we can discover the relationships between entities
and concepts. Given the open domain corpus/facts,
we can find the relationships between entities and
relations. But the relationships between open do-
main concepts and relations are not available, to
our knowledge. In this paper, we aim to find the
connection between open domain relations and con-
cepts, so that we can provide interpretations to the
question “why the entity is associated with those
concepts in open domain”.

3.1 Problem Formulation
Suppose we have a set of entities E =
{e1, · · · , em}, a set of relations R = {r1, · · · , rp},
a set of concepts C = {c1, · · · , cq}, and a set of
observed triplets O = {(e, r, c)}. Here E and C
are from a concept graph G. R is from a set of facts
F = {f1, · · · , fn} extracted from a text corpus D.
A triplet (e, r, c) is observed means that the entity
e with relation r and concept of c is found in above
data sources. Given a set of observations O with
N samples, the Bayesian network can be learned
by maximizing the joint probability p(O):

p(O) =
∏

(e,r,c)∈O

p((e, r, c))

=
∏

(e,r,c)∈O

p(c|(e, r)) · p(r|e) · p(e)

=
∏

(e,r,c)∈O

p(c|r) · p(r|e) · p(e)

where p(c|(e, r)) = p(c|r) is due to our Bayesian
network assumption (see Figure 2). By learning
with the observed triplets with above model, we can
infer the missing triplets, especially give interpret-
able relationship between entities and concepts.

Since p(r|e) can be approximated by the infor-
mation from OIE corpus, the core of the above
problem becomes to learn the part of the network
of p(c|e). The difficulty of learning p(c|e) is the
unknown structure of the Bayesian network. Due
to sparsity of real-world knowledge base, the target
network would be sparse. But the sparse structure
must be known beforehand for probability learning.

In this paper, we employ the Bayesian Network
Structure Learning (BNSL) technique to explore
the connections between relations and concepts.
Due to the large number of variables (i.e., entities,
relations and concepts) in open domain facts and
concept graphs, we develop an approximate algo-
rithm to learn the network structure.

3.2 The Proposed Approximate Algorithm

Due to the sparsity of the relationships between
relations and concepts, we decompose the problem
into several sub-problems, with each sub-problem
containing only one concept variable. Then for
each concept variable, we identify possible related
relations and apply a BNSL algorithm to discover
the network structure between them. Finally, we
use the learned network for concept discovery. The
procedure is shown in Algorithm 1. We will state
the key steps in detail in the next sub-sections.

3.2.1 Sub-problem Construction
Given a concept c ∈ C, we first collect all its enti-
ties Ec ⊂ E from the concept graph. Then we can
obtain a set of facts Fc that contain these entities.
Since an entity can appear in a fact as a subject or
an object, we split the facts Fc into subject-view
facts Fc,s and object-view facts Fc,o. If we make
use of all the relations under the subject or object
view, it would be inefficient or event impossible to
learn the sparse network structure with a large num-
ber of relation variables. Hence, based on the facts,
we select possible related relations to the concept c
to reduce the complexity of the problem.

3.2.2 Relation Selection
There are various strategies which can be applied
for the relation selection. We can assume that a
relation is highly related to the concept if it appears
many times in the fact set Fc. In this way, we can
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Algorithm 1: BNSL for concept discovery
Input: Texts D and a concept graph G.
Output: Valid entity-concept pairs.
/* OIE step: */

1 Extract open domain facts F from D;
/* Concept discovery step: */

2 for each concept c ∈ C do
3 Get entities Ec of this concept;
4 Select facts Fc including Ec;

/* Subject view step: */
5 Split Fc into subject-view facts Fc,s;
6 Select top K relations Rc,s from Fc,s;
7 Get entity-relation data Xc,s;

/* Object view step: */
8 Repeat step 5 to get object-view Fc,o;
9 Repeat step 6 to get Rc,o from Fc,o;

10 Repeat step 7 to get Xc,o;
/* BNSL training step: */

11 Feed Xc,s and Xc,o into BNSL;
12 Get a network structure Sc for c;
13 end for
/* BNSL prediction step: */

14 Predict on new entities;
15 Return valid entity-concept pairs;

count the frequencies of relations for each view
and select the top K as the most relevant ones
with a concept. We call it TF selection since we
measure the relevance of a relation according to its
frequency. We can also select relations according
to the TFIDF measurement (Wu et al., 2008). For
each view, we select the most relevant K relations
for the concept c. We denote them as Rc,s ⊂ R
for the subject-view facts and Rc,o ⊂ R for the
object-view facts. In summary, for each concept,
we construct two sub-problems for the BNSL task.
One is from the subject view and the other is from
the object view. Under each view, the sub-problem
contains one concept and at most K relations. The
goal is to learn a network structure from the concept
and corresponding relations.

3.2.3 Data Observations
Given a sub-problem for a concept c, we first ob-
tain the corresponding data observations and then
feed them as the input of BNSL for interpretable
relationship discoveries. For each concept, we can
learn a Bayesian network structure from its top
subject-view or object view relations. The data
observations Xc,s with TF relation selection for
the subject-view of the concept c are generated as

follows: for each entity e ∈ Ec, we use 1 to be
the concept observation, meaning that the entity e
is an instance of concept c. We use the times of
the subject e and a top relation r ∈ Rc,s appearing
together in facts Fc,s as a relation observation for
e and r. The K relation observations and the con-
cept observation together become the positive data
observations for c. In order to learn meaningful
network structures, we generate an equal number
of negative data observations for c. We first ran-
domly sample the same number of entities from
Ec′ = {ei : ei ∈ E \ Ec} as negative entities of c.
We use 0 as the concept observation for negative
entities. Then for each negative entity e′, we count
the times of the subject e′ and a relation r ∈ Rc,s

appearing in all the collected facts as a relation ob-
servation for e′ and r. The K relation observations
and the concept observation together become the
negative data observations for c. Xc,s consists of
both the positive and negative data observations.
Similarly, we can obtain the data observations Xc,o

for the object view.

3.2.4 Network Structure Learning

In this paper, we employ the widely-used Chow-
Liu tree building algorithm (Chow and Liu, 1968)
as the BNSL method. This algorithm approximates
the underlying distributions of variables as a de-
pendency tree, which is a graph where each node
only has one parent and cycles are not allowed. It
will first calculate the mutual information between
each pair of nodes (i.e., variables), and then take
the maximum spanning tree of that matrix as the ap-
proximation. While this will only provide a rough
approximation of the underlying data, it provides
good results for many applications (Suzuki, 2010;
Tavassolipour et al., 2014; Hassan-Moghaddam
and Jovanovic, 2018; Ding et al., 2019), especially
when you need to know the most important influ-
encer on each variable. In addition, this algorithm
becomes extremely efficient when it deals with to
a large number of variables.

Since both the subject and object views reflect
some properties of entities, we can concatenate the
subject-view relations and object-view relations
together for a more complete representation of en-
tities. The concatenated data can be forwarded into
BNSL for a more comprehensive result of inter-
pretable relationship discovery. Given q concept
variables and K relevant relations for each concept,
the number of parameters in BNSL is at most q×K.
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3.2.5 Prediction
After we learn a network structure for each concept,
we can learn the concept of a new entity e easily.
We first identify the open domain facts with e as
its subject or object, and then feed the observation
of relations for a concept c into the network to cal-
culate the probability of p(c|e). We still use the
open domain entity “Anderson” and its two facts
introduced in Section 1 as an example to show how
BNSL works. Assume we have two open domain
concepts, “English presenter” and “Japanese pre-
senter”. Given the entity “Anderson” and its open
domain relations “host” and “winner of a British
Comedy Award” as input of BNSL, the output is
the probabilities that “Anderson” belongs to each
concept. BNSL will predict a higher probability for
“Anderson” having the concept “English presenter”
than having “Japanese presenter”.

4 Experiments

With the learned relationship between relations and
concepts from BNSL, we indirectly associate en-
tities with their concepts and give interpretations
to the question “why the entity is associated with
those concepts in open domain”. The hypernymy
detection task aims to identify concepts for entities
in open domain. It is helpful for us to evaluate the
quality of the learned relationships from BNSL. In
this section, we conduct extensive experiments to
evaluate the performance of BNSL.

4.1 Data Description

We test the performance of our proposed method
on two public datasets, one is in English and the
other is in Chinese. For the English dataset, we
use 15 million high-precision OIE facts1, the Mi-
crosoft concept graph2 and 7.87 million Wikipedia
sentences3 for our experiments. Since there are
more than 5 million concepts in the English dataset
and most of them have few entities, we focus on
those concepts with more than 50 entities in the
experiments. For the Chinese dataset, we use sen-
tences and the corresponding facts4 in (Sun et al.,
2018b). The concept graph is also built by Baidu
Baike. Table 2 shows the statistics of the concept

1http://reverb.cs.washington.edu
2https://concept.research.microsoft.

com/Home/Download
3https://www.kaggle.com/mikeortman/

wikipedia-sentences
4https://ai.baidu.com/broad/download?

dataset=saoke

Concept
Graphs

Dataset # entities # concepts # overlaps % overlaps

English 12,501,527 5,376,526 613,454 27.10%
Chinese 9,230,727 3,245 475,507 48.14%

Facts
Dataset # facts # subjects # objects # predicates

English 14,728,268 1,396,793 1,698,028 664,746
Chinese 37,309,458 624,632 550,404 10,145

Table 2: Statistics of concept graphs and facts.

graphs and open domain facts.
In open domain facts, each mention of a sub-

ject or object is considered as an open domain en-
tity. So we naturally map an entity in open domain
facts and concept graphs by the same mention. In
Table 2, the column “# of overlap” is about the
number of fact entities appearing in the concept
graph and the last column is the percentage of fact
entities in the concept graph. With the predicates
as relations for the open domain facts, we build
the Bayesian network structure learning method to
bridge the gap between relations in open domain
facts and concepts in the concept graph.

4.2 Experimental Setting

In the experiment, we compare with the state-of-
the-art model HypeNet (Shwartz et al., 2016) for
hypernymy detection. HypeNet improves the de-
tection of entity-concept pairs with an integrated
path-based and distributional method. An entity
and a concept must appear together in a sentence
so that HypeNet can extract lexico-syntactic depen-
dency paths for training and prediction. However,
only less than 11% of entity-concept pairs co-occur
in Wikipedia sentences in reality (Table 1). There-
fore, we compare BNSL with HypeNet only on the
entity-concept pairs that co-appear in sentences.

In addition, we compare BNSL with recurrent
neural networks (RNNs). We apply attention-based
Bi-LSTM (Zhou et al., 2016) and derive three
versions of RNNs as baseline methods, RNN(f),
RNN(sen) and RNN(e). RNN(f) determines the
concepts of an entity according to the facts contain-
ing the entity, while RNN(sen) by the sentences
containing the co-appearance of an entity and a
concept. Specifically, each entity in RNN(f) is rep-
resented by its associated facts. Each fact is a se-
quence of subject, predict and object. Each subject,
predict and object vector is fed in sequence into
RNN(f), resulting a fact embedding vector. The
averaged fact vector becomes the entitys feature
for concept classification.

Similar to HypeNet, RNN(sen) requires the
entity-concept pairs co-appearing in sentences. Dif-

http://reverb.cs.washington.edu
https://concept.research.microsoft.com/Home/Download
https://concept.research.microsoft.com/Home/Download
https://www.kaggle.com/mikeortman/wikipedia-sentences
https://www.kaggle.com/mikeortman/wikipedia-sentences
 https://ai.baidu.com/broad/download?dataset=saoke
 https://ai.baidu.com/broad/download?dataset=saoke
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ferent from RNN(sen), RNN(e) focuses on sen-
tences containing the entity only. Based on the
sentences, RNN(e) aims to learn which concept an
entity belongs to. We follow HypeNet and RNN
to use pre-trained GloVe embeddings (Pennington
et al., 2014) for initialization. Besides, we compare
BNSL with traditional support vector machines
(SVM) with linear kernel. The input features for
SVM and BNSL are the same, i.e., the top K rela-
tions for each concept. Here we set K = 5.

During testing, all methods are evaluated on the
same testing entities. we calculate the accuracy,
precision, recall and F1-score over the prediction
results for evaluation. We split the data into 80% of
training and 20% of testing. For English, the total
numbers of training and testing data are 504,731
and 123,880, respectively; whereas for Chinese, the
numbers are 5,169,220 and 1,289,382, respectively.

4.3 Performance Evaluation

In this section, we show the evaluation performance
on the task of concept discovery with the learned
interpretable relationships from open domain fact.
Table 3 and Table 4 list the results for co-occurred
and non co-occurred entity-concept pairs in sen-
tences respectively. In the tables, (s) and (o) mean
the performance only under the subject and the ob-
ject view, respectively. RNN(f), BNSL and SVM
present the prediction performance with the con-
catenation of both the subject and object views. As
is mentioned in the previous section, we can use
TF or TFIDF for the most relevant relation selec-
tion. We test both strategies for BNSL and SVM.
For the English dataset, TFIDF performs much bet-
ter than TF while the result is the opposite for the
Chinese dataset. In this section, we analyze the
results of BNSL and SVM with TFIDF for the En-
glish dataset. For the Chinese dataset, we report
the performance of BNSL and SVM with TF. We
will show more results for the relation selection in
the next section.

For the co-occurred entity-concept pairs in sen-
tences, BNSL(s) performs the best for both datasets.
Surprisingly, SVM performs much better than Hy-
peNet with an improvement of around 10% on ac-
curacy for both datasets as is shown in Table 3. In
addition, SVM achieves better results compared to
RNN(sen). The reason that HypeNet or RNN(sen)
cannot perform well may be that the information
expressed from the sentences are too diverse. Hy-
peNet or RNN(sen) cannot capture meaningful pat-

terns from sentences for the task of concept dis-
covery. Since RNN(e) further ignores the concept
information during the sentence collection step, it
cannot perform well compared with RNN(sen). In
contrast, information extracted from open domain
facts are much more concentrated about concepts.
Furthermore, the most relevant relations associ-
ated with entities help filtering out noise. There-
fore, SVM can achieve a much better result than
sentence-based baselines.

Though SVM does well on the co-occurred data,
BNSL outperforms SVM with all the four evalu-
ation metrics. By learning interpretable relation-
ships between relations and concepts, BNSL cap-
tures the most important knowledge about con-
cepts and further exploits their dependencies to
help improve the concept discovery task. However,
the concatenation of subject and object views for
BNSL cannot help improve the performance for
both datasets. Similar phenomena can be observed
for RNN(f) and SVM. Specifically, the results un-
der the subject view are usually better than those
of the object view, implying that when people nar-
rate facts, they may pay more attention to selecting
suitable predicate for subjects, rather for objects.
Table 4 lists the performances of RNN(e), RNN(f),
SVM and BNSL on non co-occurred data. We can
observe a similar trend compared to the results on
co-occurred data.

Since HypeNet and BNSL make use of different
information sources (natural language sentences
for HypeNet and open domain facts for BNSL),
we try to ensemble them to improve the perfor-
mance further. We first train HypeNet and BNSL
independently. Then we can obtain prediction prob-
abilities of entity-concept pairs from HypeNet and
BNSL separately. We select the probabilities with
higher values as the final predictions. The last row
in Table 3 shows the performance of ensembling
HypeNet and BNSL. We denote it as B + H. It
can be seen that B + H achieves the best accuracy,
recall and F1-scores on the co-occurred data. It re-
veals that interpretable relationships extracted from
open domain facts are complementary to natural
language sentences in helping concept discovery.
Studying meaningful knowledge from open domain
facts provides an alternative perspective to build
concept graphs and this paper starts the first trial.

4.4 Analysis on the Relation Selection
Relation selection helps reducing the complexity of
BNSL. In this section, we first evaluate how differ-
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Dataset English Chinese
Method Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score
HypeNet 69.64% 75.09% 69.74% 72.31% 76.57% 87.17% 71.22% 78.39%

RNN(sen) 77.18% 80.74% 78.62% 79.67% 71.90% 72.85% 84.35% 78.18%
RNN(e) 67.77% 77.09% 61.62% 68.49% 57.67% 61.19% 79.53% 69.16%
RNN(s) 73.38% 80.35% 70.39% 75.04% 64.93% 64.02% 94.13% 76.21%
RNN(o) 70.95% 79.81% 65.46% 71.93% 64.97% 64.08% 94.01% 76.21%
RNN(f) 70.01% 79.08% 64.25% 70.90% 49.55% 61.23% 42.81% 49.95%
SVM(s) 76.68% 74.82% 88.93% 81.26% 85.06% 90.01% 84.33% 87.07%
SVM(o) 74.81% 72.72% 89.14% 80.10% 51.86% 57.54% 73.87% 64.69%

SVM 77.43% 74.38% 92.00% 82.25% 86.07% 90. 86% 85.22% 87.95%
BNSL(s) 86.03% 82.89% 95.07% 88.56% 87.54% 92.40% 86.21% 89.20%
BNSL(o) 86.22% 84.52% 92.76% 88.45% 49.03% 56.79% 61.10% 58.86%

BNSL 84.79% 81.87% 94.08% 87.55% 87.37% 92.32% 86.00% 89.05%
B + H 91.27% 91.15% 93.75% 92.43% 87.88% 86.01% 95.18% 90.36%

Table 3: Performance on the co-occurred data. The best results are in bold.

Dataset English Chinese
Method Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score
RNN(e) 63.94% 67.38% 52.09% 58.75% 53.82% 51.84% 95.06% 67.09%
RNN(s) 73.83% 74.61% 71.12% 72.82% 55.18% 52.55% 97.49% 68.29%
RNN(o) 73.74% 77.05% 66.56% 71.42% 55.34% 52.64% 97.47% 68.36%
RNN(f) 72.36% 75.53% 65.02% 69.88% 51.82% 51.63% 42.45% 46.59%
SVM(s) 71.94% 66.48% 86.91% 75.34% 90.03% 86.73% 94.30% 90.36%
SVM(o) 65.82% 61.55% 81.70% 70.21% 51.14% 50.39% 85.37% 63.37%

SVM 71.62% 65.62% 89.16% 75.60% 90.91% 88.11% 94.37% 91.14%
BNSL(s) 85.97% 82.15% 91.42% 86.54% 92.47% 90.12% 95.23% 92.60%
BNSL(o) 82.27% 78.36% 88.48% 83.11% 51.52% 50.70% 74.63% 60.38%

BNSL 84.78% 80.77% 90.74% 85.47% 92.39% 90.05% 95.15% 92.53%

Table 4: Performance on the non co-occurred data. The best results are in bold.

ent relation selection strategies will influence the
performance of BNSL and SVM methods. Table 5
is the performance of TF and TFIDF relation selec-
tion on the entire data for both English and Chinese.
We observe that TFIDF selection performs better
on English while TF is better on Chinese. However,
BNSL always outperforms SVM regardless of the
views or the relation selections. In addition, since
SVM performs much better than the neural net-
work based HypeNet and RNN, we try to ensemble
it with BNSL to improve the performance further.
We consider the prediction probabilities of SVM
as a new variable and incorporate it into BNSL for
network structure learning. We denote the model
as BNSL + SVM. For comparison, we ensemble
SVM with BNSL by taking the results of BNSL
as one new feature dimension to SVM. We name
it as SVM + BNSL. It can be seen from Table 5
that the ensemble of BNSL and SVM outperforms
single models on both datasets. Especially, BNSL +

SVM does better than SVM + BNSL, revealing that
BNSL has a better capability of exploring mean-
ingful knowledge from other sources.

Furthermore, we evaluate how BNSL performs
with different numbers of relations. Figure 3 shows
the results of BNSL(s) by setting relation numbers
from 1 to 20. TFIDF relation selection is used for
the English dataset and TF for Chinese. We can
observe that BNSL performs best when we select
the top 5 relations and the results become stable
with more than 5 relations.
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Figure 3: BNSL(s) with different numbers of relations.
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Relation Selection TF Selection TFIDF Selection

Dataset Method Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

English

SVM(s) 58.19% (10) 55.17% (10) 87.43% (6) 67.65% (11) 72.38% (10) 67.28% (10) 87.12% (10) 75.93% (11)

BNSL(s) 71.57% (5) 67.93% (5) 81.70% (10) 74.19% (6) 86.00% (2) 82.24% (2) 91.82% (2) 86.77% (2)

SVM + BNSL(s) 71.62% (4) 68.36% (4) 80.48% (11) 73.93% (7) 82.04% (7) 78.31% (6) 88.63% (7) 83.15% (7)

BNSL + SVM(s) 78.46% (1) 80.55% (1) 75.04% (12) 77.70% (3) 88.36% (1) 86.48% (1) 90.94% (4) 88.65% (1)

SVM(o) 55.07% (12) 52.91% (12) 92.29% (1) 67.26% (12) 66.65% (12) 62.64% (12) 82.48% (12) 71.21% (12)

BNSL(o) 71.14% (7) 65.68% (7) 88.54% (5) 75.42% (4) 82.64% (5) 78.99% (5) 88.95% (6) 83.67% (6)

SVM + BNSL(o) 66.84% (9) 61.65% (9) 89.07% (3) 72.87% (8) 78.27% (9) 74.79% (8) 85.28% (11) 79.70% (9)

BNSL + SVM(o) 77.02% (2) 73.10% (2) 85.50% (7) 78.81% (1) 84.16% (4) 81.49% (3) 88.40% (9) 84.80% (4)

SVM 57.38% (11) 54.36% (11) 92.05% (2) 68.35% (10) 72.15% (11) 66.46% (11) 89.45% (5) 76.26% (10)

BNSL 71.26% (6) 66.77% (6) 84.63% (9) 74.65% (5) 84.78% (3) 80.89% (4) 91.09% (3) 85.69% (3)

SVM + BNSL 68.31% (8) 63.71% (8) 85.09% (8) 72.86% (9) 78.70% (8) 73.99% (9) 88.50% (8) 80.60% (8)

BNSL + SVM 75.84% (3) 70.60% (3) 88.58% (4) 78.57% (2) 82.22% (6) 76.50% (7) 93.03% (1) 83.96% (5)

Chinese

SVM(s) 89.80% (8) 86.91% (8) 93.73% (5) 90.19% (8) 74.58% (8) 67.98% (6) 92.95% (8) 78.53% (8)

BNSL(s) 92.23% (5) 90.24% (5) 94.71% (1) 92.42% (5) 75.01% (6) 67.90% (8) 94.88% (1) 79.16% (6)

SVM + BNSL(s) 93.31% (4) 93.13% (4) 93.52% (8) 93.32% (4) 76.37% (3) 69.62% (3) 93.55% (6) 79.83% (3)

BNSL + SVM(s) 95.56% (1) 97.36% (1) 93.65% (7) 95.47% (1) 77.54% (2) 70.64% (2) 94.27% (4) 80.76% (2)

SVM(o) 51.16% (12) 50.71% (12) 82.58% (9) 62.84% (10) 50.55% (12) 50.33% (12) 84.65% (10) 63.12% (10)

BNSL(o) 51.39% (10) 50.96% (10) 73.85% (11) 60.31% (12) 50.79% (10) 50.55% (10) 72.37% (12) 59.53% (12)

SVM + BNSL(o) 51.33% (11) 50.82% (11) 82.41% (10) 62.87% (9) 50.66% (11) 50.39% (11) 84.73% (9) 63.20% (9)

BNSL + SVM(o) 51.72% (9) 51.18% (9) 74.54% (12) 60.69% (11) 50.97% (9) 50.68% (9) 72.98% (11) 59.82% (11)

SVM 90.35% (7) 87.69% (7) 93.88% (4) 90.68% (7) 74.68% (7) 67.95% (7) 93.45% (7) 78.68% (7)

BNSL 92.15% (6) 90.16% (6) 94.62% (2) 92.34% (6) 75.12% (5) 68.08% (5) 94.61% (2) 79.18% (5)

SVM + BNSL 93.61% (3) 93.55% (3) 93.68% (6) 93.61% (3) 76.33% (4) 69.57% (4) 93.60% (5) 79.82% (4)

BNSL + SVM 95.46% (2) 96.59% (2) 94.25% (3) 95.40% (2) 77.68% (1) 70.77% (1) 94.32% (3) 80.87% (1)

Table 5: Performance of relation selections on the entire data. The results are reported as “value + (rank)”.

4.5 Analysis with missing information

In reality, the open domain facts or co-occurring
sentences associated with entity-concept pairs are
usually missing, making the input information for
concept discovery extremely sparse. In this section,
we study how BNSL performs with the sparse input.
Given a set of entities, we first extract the corre-
sponding facts (or sentences) under each concept.
For both datasets, we get around 30 million entity-
concept pairs for testing and more than 97% do not
have the corresponding fact information with the
top K relations, making the prediction of BNSL
very challenging. Furthermore, both datasets have
a large number of fine-grained concepts, making
the task more difficult. For the missing data, we
feed an empty fact or sentence into BNSL and other
models for training and testing. Also, we observe
that RNN does not performs as well compared with
other methods and in particular RNN(sen) performs
the worst when the input is extremely sparse.

In Figure 4, we report the improvement of F1-
score over RNN(sen). We can observe that Hy-
peNet, SVM and BNSL can achieve much better
performance, showing their robustness with miss-
ing values. In addition, B + H can still achieve the
best result. It further confirms that open domain
facts and natural language sentences are comple-
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Figure 4: F1-score improvement on RNN(sen).

mentary to each other even when there is a large
portion of missing information.

5 Conclusion

In this paper, we investigate the task of learning in-
terpretable relationships between entities, relations
and concepts from open domain facts to help en-
riching and refining concept graphs. The Bayesian
network structures are learned from open domain
facts as the discovered meaningful dependencies
between relations of facts and concepts of entities.
Experimental results on an English dataset and a
Chinese dataset reveal that the learned network
structures can better identify concepts for entities
based on the relations of entities from open do-
main facts, which will further help building a more
complete concept graph.
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