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Abstract

Variational Neural Machine Translation
(VNMT) is an attractive framework for
modeling the generation of target translations,
conditioned not only on the source sentence
but also on some latent random variables. The
latent variable modeling may introduce useful
statistical dependencies that can improve
translation accuracy. Unfortunately, learning
informative latent variables is non-trivial, as
the latent space can be prohibitively large,
and the latent codes are prone to be ignored
by many translation models at training time.
Previous works impose strong assumptions on
the distribution of the latent code and limit the
choice of the NMT architecture. In this paper,
we propose to apply the VNMT framework to
the state-of-the-art Transformer and introduce
a more flexible approximate posterior based
on normalizing flows. We demonstrate the
efficacy of our proposal under both in-domain
and out-of-domain conditions, significantly
outperforming strong baselines.

1 Introduction

Translation is inherently ambiguous. For a given
source sentence, there can be multiple plausible
translations due to the author’s stylistic preference,
domain, and other factors. On the one hand, the in-
troduction of neural machine translation (NMT)
has significantly advanced the field (Bahdanau
et al., 2015), continually producing state-of-the-art
translation accuracy. On the other hand, the exist-
ing framework provides no explicit mechanisms to
account for translation ambiguity.

Recently, there has been a growing interest in
latent-variable NMT (LV-NMT) that seeks to in-
corporate latent random variables into NMT to ac-
count for the ambiguities mentioned above. For
instance, Zhang et al. (2016) incorporated latent
codes to capture underlying global semantics of
source sentences into NMT, while Su et al. (2018)

proposed fine-grained latent codes at the word level.
The learned codes, while not straightforward to an-
alyze linguistically, are shown empirically to im-
prove accuracy. Nevertheless, the introduction of
latent random variables complicates the parameter
estimation of these models, as it now involves in-
tractable inference. In practice, prior work resorted
to imposing strong assumptions on the latent code
distribution, potentially compromising accuracy.

In this paper, we focus on improving Variational
NMT (VNMT) (Zhang et al., 2016): a family of
LV-NMT models that relies on the amortized vari-
ational method (Kingma and Welling, 2014) for
inference. Our contributions are twofold. (1) We
employ variational distributions based on normaliz-
ing flows (Rezende and Mohamed, 2015), instead
of uni-modal Gaussian. Normalizing flows can
yield complex distributions that may better match
the latent code’s true posterior. (2) We employ
the Transformer architecture (Vaswani et al., 2017),
including Transformer-Big, as our VNMT’s gen-
erator network. We observed that the generator
networks of most VNMT models belong to the
RNN family that are relatively less powerful as a
translation model than the Transformer.

We demonstrate the efficacy of our proposal
on the German-English IWSLT’14 and English-
German WMT’18 tasks, giving considerable im-
provements over strong non-latent Transformer
baselines, and moderate improvements over Gaus-
sian models. We further show that gains generalize
to an out-of-domain condition and a simulated bi-
modal data condition.

2 VNMT with Normalizing Flows

Background Let x and y be a source sentence
and its translation, drawn from a corpus D. Our
model seeks to find parameters θ that maximize the
marginal of a latent-variable model pθ(y, Z | x)
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where Z ∈ RD is a sentence-level latent code simi-
lar to (Zhang et al., 2016). VNMT models sidestep
the marginalization by introducing variational dis-
tributions and seek to minimize this function (i.e.,
the Evidence Lower Bound or ELBO):∑

(x,y)∈D

Eq(Z|x,y) [log pθ(y | x, Z)]

−KL (q(Z | x,y) || p(Z | x)) , (1)

where q(Z | x,y), p(Z | x) are the variational
posterior and prior distribution of the latent codes,
while p(y | x, Z) is a generator that models the
generation of the translation conditioned on the la-
tent code1. The ELBO is improved when the model
learns a posterior distribution of latent codes that
minimizes the reconstruction loss (the first term)
while incurring a smaller amount of KL divergence
penalty between the variational posterior and the
prior (the second term).

The majority of VNMT models design their
variational distributions to model unimodal
distribution via isotropic Gaussians with diagonal
covariance, which is the simplest form of prior
and approximate posterior distribution. This
assumption is computationally convenient because
it permits a closed-form solution for computing the
KL term and facilitates end-to-end gradient-based
optimization via the re-parametrization trick
(Rezende and Mohamed, 2015). However, such a
simple distribution may not be expressive enough
to approximate the true posterior distribution,
which could be non-Gaussian, resulting in a loose
gap between the ELBO and the true marginal
likelihood. Therefore, we propose to employ
more flexible posterior distributions in our VNMT
model, while keeping the prior a Gaussian.

Normalizing Flows-based Posterior Rezende
and Mohamed (2015) proposed Normalizing Flows
(NF) as a way to introduce a more flexible posterior
to Variational Autoencoder (VAE). The basic
idea is to draw a sample, Z0, from a simple (e.g.,
Gaussian) probability distribution and to apply K
invertible parametric transformation functions (fk)
called flows to transform the sample. The final
latent code is given by ZK = fK(...f2(f1(Z0))...)
whose probability density function, qλ(ZK | x,y),

1In VAE terms, the posterior and prior distributions are
referred to as the encoders, while the generator is referred to
as the decoder. As these terms have other specific meaning in
NMT, we avoid to use them in this paper.

is defined via the change of variable theorem as
follows:

q0(Z0 | x,y)
K∏
k=1

∣∣∣∣det ∂fk(Zk−1;λk(x,y))∂Zk−1

∣∣∣∣−1 ,
where λk refers to the parameters of the k-th flow
with λ0 corresponds to the parameters of a base dis-
tribution. In practice, we can only consider trans-
formations, whose determinants of Jacobians (the
second term) are invertible and computationally
tractable.

For our model, we consider several NFs, namely
planar flows (Rezende and Mohamed, 2015),
Sylvester flows (van den Berg et al., 2018) and
affine coupling layer (Dinh et al., 2017), which
have been successfully applied in computer vision
tasks.

Planar flows (PF) applies this function:

fk(Z;λk(x,y)) = Z + u · tanh(wTZ + b),

where λk = {u,w ∈ RD, b ∈ R}. Planar flows
perform contraction or expansion to the direction
perpendicular to the (wTZ + b) hyperplane.

Sylvester flows (SF) applies this function:

fk(Z;λk(x,y)) = Z +A · tanh(BZ + b),

where λk = {A,B ∈ RM×D, b ∈ RM} andM is
the number of hidden units. Planar flows are a spe-
cial case of Sylvester flows where M = 1. In our
experiments, we consider the orthogonal Sylvester
flows (van den Berg et al., 2018), whose parameters
are matrices with M orthogonal columns.

Meanwhile, the affine coupling layer (CL) first
splits Z into Zd1 , Zd2 ∈ RD/2 and applies the
following function:

fk(Z
d1 ;λk(x,y)) = Zd1 ,

fk(Z
d2 ;λk(x,y, Z

d1)) = Zd2 � exp(sk) + tk,

where it applies identity transform to Zd1 and ap-
plies a scale-shift transform to Zd2 according to
λk = {sk, tk}, which are conditioned on Zd1 , x
and y. CL is less expressive than PF and SF, but
both sampling and computing the probability of
arbitrary samples are easier. In practice, we follow
(Dinh et al., 2017) to switch Zd1 and Zd2 alter-
nately for subsequent flows.

As we adopt the amortized inference strategy,
the parameters of these NFs are data-dependent. In
our model, they are the output of 1-layer linear map
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with inputs that depend on x and y. Also, as the
introduction of normalizing flows no longer offers
a simple closed-form solution, we modify the KL
term in Eq. 1 into:

Eqλ(Z|x,y) [log qλ(Z | x,y)− log pψ(Z | x)]

where we estimate the expectation w.r.t.
q(ZK |x;λ) via L Monte-Carlo samples. We
found that L = 1 is sufficient, similar to (Zhang
et al., 2016). To address variable-length inputs, we
use the average of the embeddings of the source
and target tokens via a mean-pooling layer, i.e.,
meanpool(x) and meanpool(y) respectively.

Transformer-based Generator We incor-
porate the latent code to the Transformer model by
mixing the code into the output of the Transformer
decoder’s last layer (hj) as follows:

gj = δ([hj ;Z]), hj = (1− gj) ∗ hj + gj ∗ Z

where gj controls the latent code’s contribution,
and δ(·) is the sigmoid function. In the case of the
dimension of the latent code (D) doesn’t match
the dimension of hj , we apply a linear projection
layer. Our preliminary experiments suggest that
Transformer is less likely to ignore the latent code
in this approach compared to other approaches we
explored, e.g., incorporating the latent code as the
first generated token as used in (Zhang et al., 2016).

Prediction Ultimately, we search for the
most probable translation (ŷ) given a source
sentence (x) through the evidence lower bound.
However, sampling latent codes from the posterior
distribution is not straightforward, since the
posterior is conditioned on the sentence being
predicted. Zhang et al. (2016) suggests taking the
prior’s mean as the latent code. Unfortunately, as
our prior is a Gaussian distribution, this strategy
can diminish the benefit of employing normalizing
flows posterior.

Eikema and Aziz (2018) explore two strategies,
namely restricting the conditioning of the posterior
to x alone (dropping y) and introducing an
auxiliary distribution, r(Z|x), from which the
latent codes are drawn. They found that the former
is more accurate with the benefit of being simpler.
This is confirmed by our preliminary experiments.
We opt to adopt this strategy and use the mean
of the posterior as the latent code at prediction time.

Mitigating Posterior Collapse As re-
ported by previous work, VNMT models are
prone to posterior collapse, where the training
fails to learn informative latent code as indicated
by the value of KL term that vanishes to 0. This
phenomenon is often attributed to the strong
generator (Alemi et al., 2018) employed by the
models, in which case, the generator’s internal
cells carry sufficient information to generate the
translation. Significant research effort has been
spent to weaken the generator network. Mitigating
posterior collapse is crucial for our VNMT model
as we employ the Transformer, an even stronger
generator that comes with more direct connections
between source and target sentences (Bahuleyan
et al., 2018).

To remedy these issues, we adopt the βC-VAE
(Prokhorov et al., 2019) and compute the following
modified KL term: β |KL− C| where β is the
scaling factor while C is a rate to control the
KL magnitude. When C > 0, the models are
discouraged from ignoring the latent code. In
our experiments, we set C = 0.1 and β = 1.
Additionally, we apply the standard practice of
word dropping in our experiments.

Related Work VNMT comes in two fla-
vors. The first variant models the conditional
probability akin to a translation model, while the
second one models the joint probability of the
source and target sentences. Our model adopts
the first variant similar to (Zhang et al., 2016; Su
et al., 2018; Pagnoni et al., 2018), while (Eikema
and Aziz, 2018; Shah and Barber, 2018) adopt the
second variant. The majority of VNMT models em-
ploy RNN-based generators and assume isotropic
Gaussian distribution, except for (McCarthy et al.,
2019) and (Przystupa et al., 2019). The former
employs the Transformer architecture but assumes
a Gaussian posterior, while the latter employs the
normalizing flows posterior (particularly planar
flows) but uses an RNN-based generator. We
combine more sophisticated normalizing flows and
the more powerful Transformer architecture to
produce state-of-the-art results.

3 Experimental Results

Experimental Setup We integrate our pro-
posal into the Fairseq toolkit (Ott et al., 2019;
Gehring et al., 2017a,b). We report results on
the IWSLT’14 German-English (De-En) and the
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WMT’18 English-German (En-De) tasks. For
IWSLT’14, we replicate Wu et al. (2019); Edunov
et al. (2018)’s setup with 160K training sen-
tences and a 10K joint BPE vocabulary, while
for WMT’18, we replicate Edunov et al. (2018)’s
setup with 5.2M training sentences and a 32K joint
BPE vocabulary. For WMT experiments, we report
the accuracy using detokenized SacreBLEU (Post,
2018) to facilitate fair comparison with other pub-
lished results. Note that tokenized BLEU score is
often higher depending on the tokenizer, thus not
comparable. We apply KL annealing schedule and
token dropout similar to (Bowman et al., 2016),
where we set the KL annealing to 80K updates and
drop out 20% target tokens in the IWSLT and 10%
in the WMT experiments.

The encoder and decoder of our Transformer
generator have 6 blocks each. The number of
attention heads, embedding dimension, and
inner-layer dimensions are 4, 512, 1024 for
IWSLT; and 16, 1024, 4096 for WMT. The WMT
setup is often referred to as the Transformer Big.
To our knowledge, these architectures represent
the best configurations for our tasks. We set the
latent dimension to D = 128, which is projected
using a 1-layer linear map to the embedding space.
We report decoding results with beam=5. For
WMT experiments, we set the length penalty to
0.6. For all experiments with NF-based posterior,
we employ flows of length 4, following the results
of our pilot study.

In-Domain Results We present our IWSLT
results in rows 1 to 6 of Table 1. The accuracy
of the baseline Transformer model is reported in
row (1), which matches the number reported by
Wu et al. (2019). In row (2), we report a static Z
experiment, where Z = meanpool(x). We design
this experiment to isolate the benefits of token
dropping and utilizing average source embedding
as context. As shown, the static Z provides
+0.8 BLEU point gain. In row (3), we report
the accuracy of our VNMT baseline when the
approximate posterior is a Gaussian, which is +1.3
BLEU point from baseline or +0.5 point from the
static Z, suggesting the efficacy of latent-variable
modeling. We then report the accuracy of different
variants of our model in rows (4) to (6), where we
replace the Gaussian posterior with a cascade of 4
PF, SF and CL, respectively. For SF, we report the
result with M = 8 orthogonal columns in row (5).

As shown, these flows modestly add +0.2 to +0.3
points. It is worth noticing that the improvement
introduces only around 5% additional parameters.

System #params BLEU
1 Transformer IWSLT 42.9M 34.5
2 + static Z 42.9M 35.3
3 + Z ∼ Gaussian 43.6M 35.8
4 + Z ∼ 4 x PF 44.2M 36.1
5 + Z ∼ 4 x SF (M=8) 45.9M 36.0
6 + Z ∼ 4 x CL 44.3M 36.1
7 (1) + distilled 42.9M 34.9
8 (6) + distilled 44.3M 36.6
9 (Edunov et al., 2018) 29.0

10 Transformer Big 209.1M 28.9
11 + static Z 209.1M 29.0
12 + Z ∼ Gaussian 210.5M 29.1
13 + Z ∼ 4 x PF 211.6M 29.3
14 +Z ∼ 4 x SF (M=8) 215.3M 29.5
15 +Z ∼ 4 x CL 210.6M 29.2
16 (10) + distilled 209.1M 29.2
17 (14) + distilled 215.3M 29.9

Table 1: The translation accuracy on the De-En
IWSLT’14 task (rows 1-8), the En-De WMT’18 task
(rows 10-17). Each task’s best results in the in-domain
setting are italicized, while the results with added dis-
tilled data are in bold.

We report our WMT results that use the
Transformer Big architecture in rows (10) to (15).
For comparison, we quote the state-of-the-art
result for this dataset from Edunov et al. (2018) in
row (9), where the SacreBLEU score is obtained
from Edunov (2019). As shown, our baseline
result (row 10) is on par with the state-of-the-art
result. The WMT results are consistent with the
IWSLT experiments, where our models (rows
13-15) significantly outperform the baseline, even
though they differ in terms of which normalizing
flows perform the best. The gain over the VNMT
baseline is slightly higher, perhaps because NF
is more effective in larger datasets. In particular,
we found that SF and PF perform better than
CL, perhaps due to their simpler architecture,
i.e., their posteriors are conditioned only on the
source sentence, and their priors are uninformed
Gaussian. Row (11) shows that the static Z’s
gain is minimal. In row (14), our best VNMT
outperforms the state-of-the-art Transformer Big
model by +0.6 BLEU while adding only 3%
additional parameters.
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Simulated Bimodal Data We conjecture
that the gain partly comes from NF’s ability to
capture non-Gaussian distribution. To investigate
this, we artificially increase the modality of our
training data, i.e., forcing all source sentences
to have multiple translations. We perform the
sequence-level knowledge distillation (Kim and
Rush, 2016) with baseline systems as the teachers,
creating additional data referred to as distilled data.
We then train systems on this augmented training
data, i.e., original + distilled data. Rows (7) and
(16) show that the baseline systems benefit from
the distilled data. Rows (8) and (17) show that our
VNMT models gain more benefit, resulting in +2.1
and +0.9 BLEU points over non-latent baselines
on IWSLT and WMT tasks respectively.

Simulated Out-of-Domain Condition We
investigate whether the in-domain improvement
carries to out-of-domain test sets. To simulate an
out-of-domain condition, we utilize our existing
setup where the domain of the De-En IWSLT task
is TED talks while the domain of the En-De WMT
task is news articles. In particular, we invert the
IWSLT De-En test set, and decode the English
sentences using our baseline and best WMT En-De
systems of rows (10) and (14). For this inverted
set, the accuracy of our baseline system is 27.9,
while the accuracy of our best system is 28.8,
which is +0.9 points better. For reference, the
accuracy of the Gaussian system in row (11) is
28.2 BLEU. While more rigorous out-of-domain
experiments are needed, this result gives a strong
indication that our model is relatively robust for
this out-of-domain test set.

Translation Analysis To better understand
the effect of normalizing flows, we manually
inspect our WMT outputs and showcase a few
examples in Table 2. We compare the outputs of
our best model that employs normalizing flows
(VNMT-NF, row 14) with the baseline non-latent
Transformer (row 10) and the baseline VNMT that
employs Gaussian posterior (VNMT-G, row 12).

As shown, our VNMT model consistently im-
proves upon gender consistency. In example 1, the
translation of the interior decorator depends on the
gender of its cataphora (her), which is feminine.
While all systems translate the cataphora correctly
to ihrem, the baseline and VNMT-G translate the

Example 1
Source

In her book , the interior decorator
presents 17 housing models for indepen-
dent living in old age .

Reference In ihrem Buch stellt die Innenarchitektin
17 Wohnmodelle für ein selbstbestimmtes
Wohnen im Alter vor .

Non-latent
Baseline

In ihrem Buch präsentiert der Innenar-
chitekt 17 Wohnmodelle für ein un-
abhängiges Leben im Alter .

VNMT-G In ihrem Buch stellt die der Innenarchitekt
17 Wohnmodelle für ein selbstbestimmtes
Wohnen im Alter vor .

VNMT-NF In ihrem Buch präsentiert die Innen-
dekoratorin 17 Wohnmodelle für ein un-
abhängiges Leben im Alter .

Example 2
Source

Even though she earns S 3, 000( 2,400 )
a month as an administrator and her hus-
band works as well , the monthly family
income is insufficient , she says .

Reference Obwohl sie jeden Monat 3.000 Singapur-
Dollar (ca 1.730 Euro ) als Verwaltungsmi-
tarbeiterin verdiene –truncated–

Non-latent
Baseline

Obwohl sie pro Monat 3.000 S $ ( 2.400 $
) als Verwalter verdient und auch ihr Mann
arbeitet , ist das –truncated–

VNMT-G Obwohl sie jeden Monat 3.000 Singapur -
Dollar ( ca 1.730 Euro ) als Verwaltungsmi-
tarbeiterin –truncated–

VNMT-NF Obwohl sie S $ 3.000 ( $ 2.400 ) pro Monat
als Administratorin verdient und ihr Mann
auch –trunctated–

Table 2: Translation examples with different gender
consistency. Inconsistent, consistent translations and
source words are in red, orange, blue respectively.

phrase to its masculine form. In contrast, the trans-
lation of our VNMT-NF produces the feminine
translation, respecting the gender agreement. In
example 2, only VNMT-NF and VNMT-G produce
gender consistent translations.

4 Discussions and Conclusions

We present a Variational NMT model that outper-
forms a strong state-of-the-art non-latent NMT
model. We show that the gain modestly comes
from the introduction of a family of flexible distri-
bution based on normalizing flows. We also demon-
strate the robustness of our proposed model in an
increased multimodality condition and on a simu-
lated out-of-domain test set.

We plan to conduct a more in-depth investiga-
tion into actual multimodality condition with high-
coverage sets of plausible translations. We conjec-
ture that conditioning the posterior on the target
sentences would be more beneficial. Also, we plan
to consider more structured latent variables beyond
modeling the sentence-level variation as well as to
apply our VNMT model to more language pairs.
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A Word dropout

We investigate the effect of different dropout rate
and summarize the results in Table 3. In partic-
ular, we take the VNMT baseline with Gaussian
latent variable for IWSLT (row 3 in Table 1) and
for WMT (row 12 in Table 1). As shown, word
dropout is important for both setup but it is more so
for IWSLT. It seems that tasks with low resources
benefit more from word dropout. We also observe
that above certain rate, word dropout hurts the per-
formance.

Dropout rate 0.0 0.1 0.2 0.3
IWSLT 34.4 35.7 35.8 35.6
WMT 29.0 29.1 28.8 28.7

Table 3: Results of different dropout rate for IWSLT
and WMT setup. The best results are in bold.

B Latent Dimension

We report the results of varying the dimension of
latent variable (D) in Table 4. For this study, we
use the VNMT baseline with Gaussian latent vari-
able in IWSLT condition (row 3 in Table 1) . Our
experiments suggest that the latent dimension be-
tween 64 and 128 is optimal. The same conclusion
holds for the WMT condition.

D 8 16 32 64 128 256
BLEU 35.6 35.5 35.4 35.7 35.8 35.4

Table 4: Results of different dropout rate for IWSLT.
The best results are in bold.

C Normalizing Flow Configuration

In the Experimental Results section, we report the
accuracy for our models with 4 flows. In Table 5,
we conduct experiments varying the number of
flows for the IWSLT condition. Our baseline (num
flows=0) is an NMT model with word dropout,
which performs on par with the static Z experi-
ment reported in Table 1’s row 3. These results
suggest that increasing the number of flows im-
proves accuracy, but the gain diminishes after 4
flows. The results are consistent for all normal-
izing flows that we considered. We also conduct
experiments with employing more flows, but un-
fortunately, we observe either unstable training or
lower accuracy.

Num
PF

SF
CL

Flows (M=8)
0 35.3
1 35.8 35.6 35.8
2 35.7 35.5 35.8
3 36.0 35.9 35.7
4 36.1 36.0 36.1
5 35.9 36.1 35.9
6 35.8 36.0 35.9

Table 5: Translation accuracy of VNMT models em-
ploying various number of flows in the IWSLT condi-
tion. The best results are in bold.

In Table 6, we conduct experiments varying
the number of orthogonal columns (M ) in our
Sylvester normalizing flows (SF) experiments. As
shown, increasing M improves the accuracy up to
M = 24. We see no additional gain from employ-
ing more additional orthogonal columns beyond 24.
In Table 1, we report M = 8, because it introduces
the least number of additional parameters.

M 2 4 8 16 24 32
BLEU 35.7 35.5 36.0 36.0 36.2 35.9

Table 6: Results of different number of orthogonal
columns for SF. The best results are in bold.
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