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Abstract

We propose Differentiable Window, a new neu-
ral module and general purpose component
for dynamic window selection. While univer-
sally applicable, we demonstrate a compelling
use case of utilizing Differentiable Window
to improve standard attention modules by en-
abling more focused attentions over the input
regions. We propose two variants of Differen-
tiable Window, and integrate them within the
Transformer architecture in two novel ways.
We evaluate our proposed approach on a myr-
iad of NLP tasks, including machine transla-
tion, sentiment analysis, subject-verb agree-
ment and language modeling. Our experimen-
tal results demonstrate consistent and sizable
improvements across all tasks.

1 Introduction

Computing relative importance across a series of
inputs can be regarded as one of the important ad-
vances in modern deep learning research. This
paradigm, commonly known as attention (Bah-
danau et al., 2015), has demonstrated immense
success across a wide spectrum of applications. To
this end, learning to compute contextual representa-
tions (Vaswani et al., 2017), to point to the relevant
part in the input (Vinyals et al., 2015), or to select
windows or spans (Wang and Jiang, 2017) from
sequences forms the crux of many modern deep
neural architectures.

Despite aggressive advances in developing neu-
ral modules for computing relative relevance (Lu-
ong et al., 2015; Chiu and Raffel, 2018), there has
been no general purpose solution for learning differ-
entiable attention windows. While span selection-
based pointer network models typically predict a
start boundary and an end boundary (Wang and
Jiang, 2017; Seo et al., 2017), these soft predic-
tions generally reside at the last layer of the net-
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work and are softly optimized. To the best of our
knowledge, there exists no general purpose com-
ponent for learning differentiable windows within
networks.

Although the practical advantages of learning
differentiable windows are plenty, this paper fo-
cuses on improving attentions with differentiable
windows. The key idea is to enable more focused
attention, leveraging dynamic window selection
for limiting (and guiding) the search space for the
standard attention modules to work within. This
can also be interpreted as performing a form of
dynamic local attention.

We make several key technical contributions.
First, we formulate the dynamic window selec-
tion problem as a problem of learning a discrete
mask (i.e., binary values representing the window).
By learning and composing left and right bound-
aries, we show that we are able to parameterize
the (discrete) masking method. We then propose
soft adaptations of the above mentioned, namely
trainable soft masking and segment-based soft
masking, which are differentiable approximations
that can not only be easily optimized in an end-to-
end fashion, but also inherit the desirable properties
of discrete masking.

While these modules are task and model ag-
nostic, we imbue the state-of-the-art Transformer
(Vaswani et al., 2017) model with our differentiable
window-based attention. To this end, we propose
two further variants, i.e., multiplicative window
attention and additive window attention for im-
proving the Transformer model. Within the context
of sequence transduction and self-attention based
encoding, learning dynamic attention windows are
beneficial because they can potentially eliminate
noisy aggregation and alignment from large input
sequences. On the other hand, it is good to note that
hard attention (Xu et al., 2015b), which replaces
the weight average of soft attention with a stochas-
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tic sampling model, tries to achieve similar ends,
albeit restricted to token-level selection. Hence, our
proposed differentiable windows are more flexible
and expressive compared to hard attentions.

We evaluate our Transformer model with dif-
ferentiable window-based attention on a potpourri
of NLP tasks, namely machine translation, sen-
timent analysis, language modeling, and subject-
verb agreement. Extensive experimental results
on these tasks demonstrate the effectiveness of
our proposed method. Notably, on the English-
German and English-French WMT’14 translation
tasks, our method accomplishes improvements of
0.63 and 0.85 BLEU, respectively. On the Stan-
ford Sentiment Treebank and IMDB sentiment
analysis tasks, our approach achieves 2.4% and
3.37% improvements in accuracy, respectively. We
further report improvements of 0.92% in accu-
racy and 2.13 points in perplexity on the subject-
verb agreement and language modeling tasks, re-
spectively. We make our code publicly avail-
able at https://ntunlpsg.github.io/project/
dynamic-attention/.

2 Background

The attention mechanism enables dynamic selec-
tion of relevant contextual representations with re-
spect to a query representation. It has become a
key module in most deep learning models for lan-
guage and image processing tasks, especially in
encoder-decoder models (Bahdanau et al., 2015;
Luong et al., 2015; Xu et al., 2015a).

2.1 Transformer and Global Attention
The Transformer network (Vaswani et al., 2017)
models the encoding and decoding processes using
stacked self-attentions and cross-attention (encoder-
decoder attentions). Each attention layer uses a
scaled multiplicative formulation defined as:

score(Q,K) =
(QWQ)(KWK)T√

d
(1)

att(Q,K,V ) = S(score(Q,K))(V W V ) (2)

where S(A) denotes the softmax operation over
each row of matrix A, Q ∈ IRnq×d is the ma-
trix containing the nq query vectors, and K,V ∈
IRn×d are the matrices containing the n key and
value vectors respectively, with d being the number
of vector dimensions; WQ, WK , W V ∈ IRd×d

are the associated weights to perform linear trans-
formations.

To encode a source sequence, the encoder ap-
plies self-attention, where Q, K and V contain the
same vectors coming from the output of the previ-
ous layer.1 In the decoder, each layer first applies
masked self-attention over previous-layer states.
The resulting vectors are then used as queries to
compute cross-attentions over the encoder states.
For cross-attention, Q comprises the decoder self-
attention states while K and V contain the encoder
states. The attention mechanism adopted in the
Transformer is considered global since the atten-
tion context spans the entire sequence.

2.2 Windows in Attentions

In theory, given enough training data, global atten-
tion should be able to model dependencies between
the query and the key vectors well. However, in
practice we have access to only a limited amount of
training data. Several recent studies suggest that in-
corporating more focused attention over important
local regions in the input sequence as an explicit
inductive bias could be more beneficial.

In particular, Shaw et al. (2018) show that
adding relative positional biases to the attention
scores (Eq. 1) increases BLEU scores in machine
translation. Specifically, for each query qi ∈ Q at
position i and key kj ∈ K at position j, a train-
able vector ai,j = wmax(−τ,min(j−i,τ)) is added
to the key vector before the query-key dot product
is performed. The window size τ is chosen via
tuning. Sperber et al. (2018) also consider local
information by restricting self-attention to neigh-
boring representations to improve long-sequence
acoustic modeling. Although shown to be effective,
their methods only apply to self-attention and not
to cross-attention where the query vectors come
from a different sequence.

That said, Luong et al. (2015) are the first to
propose a Gaussian-based local attention for cross-
attention. At each decoding step t, their model
approximates the source-side pivot position pt as
a function of the decoding state and the source se-
quence length. Then, local attention is achieved
by multiplying the attention score with a confi-
dence term derived from a N (pt, σ

2) distribution.
The aligned pivot pt and the variance σ2 (a hyper-
parameter) respectively represent the center and the
size of the local window.

1Initially, Q, K, and V contain the token embeddings.

https://ntunlpsg.github.io/project/dynamic-attention/
https://ntunlpsg.github.io/project/dynamic-attention/
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Meanwhile, Yang et al. (2018) improve the
method of Luong et al. (2015) by assigning a soft
window weight (a Gaussian bias) to obtain a flex-
ible window span. Despite effective, the aligned
pivot position in the source is determined only by
the decoder state, while the encoder states are disre-
garded - these should arguably give more relevant
information regarding the attention spans over the
source sequence. Besides, the confidence for local
attention span may not strictly follow a normal dis-
tribution, but rather vary dynamically depending
on the relationship between the query and the key.
Furthermore, the approach of Luong et al. (2015)
is only applicable to cross-attention while the one
of Yang et al. (2018) works better only for encoder
self-attention as shown in their experiments.

Our proposed differentiable window approach to
local attention addresses the above limitations of
previous methods. Specifically, our methods are
dynamic and applicable to encoder and decoder
self-attentions as well as cross-attention, without
any functional constraints. They incorporate en-
coder states into the local window derivation. They
are also invariant to sequence length, which re-
moves the dependence on global features from the
local context extraction process.

3 Dynamic Differentiable Window

Our proposed attention method works in two steps:
(i) derive the attention span for each query vec-
tor to attend over, and (ii) compute the respective
attention vector using the span. In this section,
we present our approaches to step (i) by propos-
ing trainable soft masking and segment-based soft
masking. In the next section, we present our meth-
ods to compute the attention vectors. To give the
necessary background to understand what can be
expected from our method, we first present the dis-
crete masking case.

3.1 Discrete Window Masking

In this context, we seek to dynamically derive a
boolean mask vector for each query that will indi-
cate the window in the key-sequence over which the
query should attend. In other words, attentions are
only activated on the consecutive positions where
the mask vector element is 1, and the positions with
0 are canceled out. Let the query vector and the key-
sequence be q ∈ IRd and K = (k1,k2, . . . ,kn),
respectively. Formally, we define the local atten-
tion mask vector mq ∈ {0, 1}n for the query q as

φTlq

φTrq

flq = φTlqLn

grq = φTrqL
T
n

mq = flq � grq

Figure 1: Example of φ, f , and g vectors and how the
mask vector mq can be derived for lq = 3 and rq = 8.

follows.

mi
q =

{
1, if lq ≤ i ≤ rq
0, otherwise

(3)

where lq and rq denote the left and right positional
indices that form a discrete window [lq, rq] over
which the query attends. As such, in the standard
global attention, lq = 1 and rq = n for all the
query vectors, and in decoder self-attention, lq = 1
and rq = t for the query vector at decoding step t.
To facilitate the construction of mq, we first define
vectors φk, fk, gk and matrix Ln with entries as:

φik =

{
1, if i = k

0, otherwise
; f ik =

{
1, if i ≥ k
0, otherwise

gik =

{
1, if i ≤ k
0, otherwise

; Li,jn =

{
1, if i ≤ j
0, otherwise

(4)
where φk ∈ {0, 1}n denotes the one-hot represen-
tation for a boundary position k (from the left or
right of a sequence), and fk, gk ∈ {0, 1}n are the
‘rightward’ mask vector and ‘leftward’ mask vector,
respectively; Ln ∈ {0, 1}n×n denotes a unit-value
(1) upper-triangular matrix with i and j being the
row and column indices respectively. Figure 1 vi-
sualizes how these entities appear. Specifically, fk
has entry values of 1’s for position k and its right
positions, while gk has entry values of 1’s for po-
sition k and its left positions. As such, fk and gk
can be derived from φk and Ln as follows.

fk = φTkLn; gk = φTkL
T
n (5)

Note that fk can be interpreted as the cumulative
sum across φk, while gk as the inverse cumulative
sum across φk.

Given the above definitions, the mask vector mq

for a query q to attend over the window [lq, rq] in
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the key sequence such that 1 ≤ lq ≤ rq ≤ n can
be achieved by:

mq = flq � grq = (φTlqLn)� (φTrqL
T
n ) (6)

where � denotes element-wise multiplication. As
shown in Figure 1, mq represents the intersection
between flq and grq , and forms a masking span for
the attention.

3.2 Trainable Soft Masking

The above masking method is non-differentiable
as φ is discrete, which makes it unsuitable in an
end-to-end neural architecture. In our trainable soft
masking method, we approximate the discrete one-
hot vector φ with a pointing mechanism (Vinyals
et al., 2015).2 Specifically, given the query q and
the key-sequence K as before, we define confi-
dence vectors φ̂lq , φ̂rq ∈ IRn as follows.

φ̂lq = S(
qTWQ

L (KWK
L )T√

d
) (7)

φ̂rq = S(
qTWQ

R (KWK
R )T√

d
) (8)

where S is the softmax function as defined before,
and WQ

L ,W
K
L ,W

Q
R ,W

K
R ∈ IRd×d are trainable

parameters. Eq. 7-8 approximate the left and right
boundary positions of the mask vector for the query
q. However, contrary to the discrete case, they do
not enforce absolute cancellation or activation of at-
tention weights on any position in the key-sequence.
Instead, they assign a confidence score to each po-
sition. This allows the model to gradually correct
itself from invalid assignments. Moreover, the soft-
max operations enable differentiability while main-
taining the gradient flow in an end-to-end neural
architecture.

Note however that the left and right boundary
concepts have now become ambiguous since the po-
sitions lq = argmax(φ̂lq) and rq = argmax(φ̂rq)
are not guaranteed to conform to the constraint
lq ≤ rq. To understand its implication, lets first
consider the discrete case in Eq. 6; the element-
wise multiplication between flq and grq results in a
zero vector for mq if lq > rq, canceling out the at-
tention scores entirely. Although not absolute zeros,

2However, unlike the standard pointer network, in our case
there is no direct supervision for learning the pointing function.
Our network instead learns it from the end prediction task.

in the continuous case, mq would potentially con-
tain significantly small values, which renders the
attention implausible. To address this, we compute
the soft mask vector m̂q as follows.

m̂q = (φ̂TlqLn)� (φ̂TrqL
T
n ) + (φ̂TrqLn)� (φ̂TlqL

T
n )
(9)

This formulation has two additive terms; the former
constructs the mask vector when lq ≤ rq, whereas
the latter is activated when lq > rq. This ensures
a non-zero result regardless of lq and rq values. It
can be shown that the values in m̂q represent the
expected value of the discrete flags in mq, i.e., m̂q

= E(mq); see Appendix for a proof.
We concatenate the mask vectors horizontally

for all the query vectors in Q ∈ IRm×d to get
the mask matrix M ∈ IRm×n. Since the pointing
mechanism is invariant to sequence length, the com-
putation of the mask vectors enjoys the same advan-
tages, enabling our models to efficiently perform
attentions on any arbitrarily long sequences. In ad-
dition, the method is applicable to all attention sce-
narios – from decoder to encoder cross-attention,
encoder self-attention, and decoder self-attention.

3.3 Segment-Based Soft Masking
The soft masking introduced above modulates the
attention weight on each token separately which
may result in unsmooth attention weights on neigh-
bouring tokens. However, words in a sentence are
related and they often appear in chunks or phrases,
contributing to a shared meaning. Thus, it may be
beneficial to assign identical mask values to the
tokens within a segment so that they are equally
treated in the window selection method. In this
section, we propose a novel extension to our soft
masking method that enables the mask vector to
share the same masking values for the tokens within
a segment in a key-sequence.

The main idea is to divide the key-sequence
K = (k1,k2, . . . ,kn) into dn/be consecutive seg-
ments and to assign the same masking value to
the tokens in a segment. The segment size b is
considered a hyper-parameter. We compute the
segment-based mask vector m′q similarly as in Eq.
9, but with Ln replaced by Jn ∈ IRn×n defined as
follows.

J i,jn =

{
1, if i ≤ bd jbe
0, otherwise

(10)
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Figure 2: Segment-based masking for segment size =
2. Instead of pointing to the left and right indices of the
tokens, the soft segment-based method (approximately)
points to the left and right boundaries of the segments,
respectively.

m′q = (φ̂TlqJn)� (φ̂TrqJ
T
n ) + (φ̂TrqJn)� (φ̂TlqJ

T
n )

(11)
Eq. 10 - 11 ensure that all the items

in a segment share the same masking value,
which is the cumulative sum of the confidence
scores in φ̂lq and φ̂rq . For instance, sup-
pose φ̂lq = (a1, a2, a3, . . . , an) and segment
size b = 2, then the term φ̂TlqJn evaluates to

(
∑2

i=1 ai,
∑2

i=1 ai,
∑4

i=1 ai, . . .), and φ̂TlqJ
T
n eval-

uates to (
∑n

i=1 ai,
∑n

i=1 ai,
∑n

i=3 ai, . . .). Simi-
larly, φ̂TrqJ

T
n and φ̂TrqJn will have segment-level

effects on the cumulative sums. Figure 2 visualizes
the method with an example for b = 2.

One advantage of this approach is that it allows
us to control the masking behavior (by varying
b) without increasing the number of parameters
compared to the token-based masking. We also
show its effectiveness in our experiments.

4 Dynamic Window Attention Methods

Having presented our method to compute the mask
vector that defines the attention spans, we now
present our methods to incorporate the mask vec-
tors into the attention layers.

4.1 Multiplicative Window Attention

In this approach, the attention weights (Eq. 2)
are (element-wise) multiplied by the mask matrix
M to confine their attention scope defined by the
mask. Formally, the attention scores and outputs
are defined as follows.

score =
(QWQ)(KWK)T√

d
(12)

attMW = (S(score)�M)(V W V ) (13)

In this approach, the standard global attention
weights are suppressed and partially overshadowed
by the attention window imposed by M . Thus,
it can be interpreted as a local attention method
similar to Luong et al. (2015). However, instead
of using a static Gaussian bias, we use a dynamic
mask to modulate the attention weights.

4.2 Additive Window Attention
Having a local attention window could be benefi-
cial, but it does not rule out the necessity of global
attention, which has been shown effective in many
applications (Vaswani et al., 2017; Devlin et al.,
2019). Thus, we also propose an additive win-
dow attention, which implements a combination of
global attention and local attention. The attention
output in this method is formally defined as

sglb = (QWQ
glb)(QWK

glb)
T (14)

sloc = (QWQ
loc)(QWK

loc)
T �M (15)

scoreAW =
sglb + sloc√

d
(16)

attAW = S(scoreAW)(V W V ) (17)

where WQ
glb,W

K
glb,W

Q
loc, and WK

loc ∈ IRd×d are
the weight matrices for global and local attentions.

Compared to the multiplicative window atten-
tion where the mask re-evaluates the global atten-
tion weights, additive window attention applies
the mask vector to the local attention scores (sloc),
which is then added to the global attention scores
(sglb) before passing it through the softmax func-
tion. In this way, the mask-defined local window
does not suppress the global context but rather com-
plements it with a local context. Moreover, the
resulting attention weights add up to one, which
avoids attention weights diminishment that could
occur in the multiplicative window attention. Addi-
tive merger of global and local window components
may also facilitate more stable gradient flows.

4.3 Implementation in Transformer
We now describe how the proposed dynamic win-
dow attention methods can be integrated into the
Transformer.

Encoder, Decoder and Cross Attentions. Our
proposed methods can be readily applied to the any
of the attention layers in the Transformer frame-
work. We could also selectively apply our meth-
ods to different layers in the encoder and decoder.
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In our initial experiments on WMT’14 English-
German development set, we observed that the
following settings provide more promising perfor-
mance gains.
First, encoder self-attention layers benefit most
from additive window attention, while decoder
self-attention layers prefer multiplicative attention.
This shows that the global attention component is
more useful when the key sequence is provided
entirely in the encoder, while less useful when only
the fragmented key sequence (past keys) is visible
in the decoder. Second, the above argument is fur-
ther reinforced as we found that cross-attention lay-
ers also prefer additive window attention, where the
entire source sequence is available. Third, cross-
attention works better with segment-based masking,
which provides smoothness and facilitates phrase
(n-gram) based translations.

Lower-layer Local Attentions. It has been
shown that deep neural models learn simple word
features and local syntax in the lower layers,
while higher layers learn more complex context-
dependent aspects of word semantics. Belinkov et
al. (2017) show this on NMT models, while Peters
et al. (2018) and Jawahar et al. (2019) show this
on representation learning with ELMo and BERT
respectively. In other words, local contextual infor-
mation can still be derived in higher layers with the
standard global attention. As such, we propose to
apply our dynamic window attention methods only
to the first 3 layers of the Transformer network,
leaving the top 3 layers intact. Our diverse experi-
ments in the following section support this setup as
it offers substantial improvements, whereas using
local attention in higher layers does not show gains,
but rather increases model parameters.

5 Experiment

In this section, we present the training settings, ex-
perimental results and analysis of our models in
comparison with the baselines on machine transla-
tion (MT), sentiment analysis, subject verb agree-
ment and language modeling (LM) tasks.

5.1 Machine Translation
We trained our models on the standard WMT’16
English-German (En-De) and WMT’14 English-
French (En-Fr) datasets containing about 4.5 and
36 million sentence pairs, respectively. For val-
idation (development) purposes, we used new-
stest2013 for En-De and a random split from the

training set for En-Fr. All translation tasks were
evaluated against their respective newstest2014 test
sets, in case-sensitive tokenized BLEU. We used
byte-pair encoding (Sennrich et al., 2016) with
shared source-target vocabularies of 32,768 and
40,000 sub-words for En-De and En-Fr transla-
tion tasks, respectively. We compare our models
with three strong baselines: (i) Transformer Base
(Vaswani et al., 2017), (ii) Transformer Base with
Relative Position (Shaw et al., 2018), and (ii) Trans-
former Base with Localness Modeling (Yang et al.,
2018). To ensure a fair comparison, we trained
our models and the baselines with the following
training setup.

Training Setup. We followed model specifica-
tions in (Vaswani et al., 2017) and optimization
settings in (Ott et al., 2018), with some minor mod-
ifications. Specifically, we used word embeddings
of dimension 512, feedforward layers with inner
dimension 2048, and multi-headed attentions with
8 heads. We trained our models on a single physi-
cal GPU but replicated the 8-GPU setup following
the gradient aggregation method proposed by Ott
et al. (2018). We trained the models for 200,000
updates for En-De and 150,000 updates for En-Fr
translation tasks. Finally, we averaged the last 5
checkpoints to obtain the final models for evalu-
ation. The segment size b in the segment-based
masking method was set to 5.3

Translation Results. We report our translation
results in Table 1; Enc(AW) indicates the use
of additive window (AW) attention in the en-
coder, Dec(MW) indicates the use of multiplica-
tive window (MW) attention in the decoder, and
Cr(AW,Seg) indicates the use of additive window
attention with segment-based masking for cross-
attention. The attention module that is not specified
in our naming convention uses the default token-
based global attention in the Transformer. For ex-
ample, Enc(AW)-Dec(MW) refers to the model
that uses AW attention in the encoder, MW atten-
tion in the decoder and the default global attention
for cross attention.

We notice that despite a minor increase in the
number of parameters, applying our attentions
in the encoder and decoder offers about 0.7 and
1.0 BLEU improvements in En-De and En-Fr
translation tasks respectively, compared to the

3We did not tune b; tuning b might improve the results
further.
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Model #-params En-De En-Fr

Vaswani et al. (2017) 63M 27.46 39.21
Shaw et al. (2018) 63M 27.56 39.37
Yang et al. (2018) 63M 27.62 39.47

Our Models
Enc(AW)-Dec(MW) 68M 28.11 40.24
Cr(AW, Seg) 65M 28.13 40.06
Enc(AW)-Cr(AW,Seg)-Dec(MW) 73M 28.25 40.32

Table 1: BLEU scores for different models in WMT’14
English-German and English-French translation tasks.

Method Module Full (6 layers) Partial (3 layers)

Transformer - 27.46 -

AW Encoder 27.77 27.90
MW Encoder 27.25 27.40

AW Decoder 27.73 27.85
MW Decoder 27.88 28.04

AW Cross 27.78 27.97
MW Cross 27.58 27.79

Table 2: Evaluation of Additive Window (AW)
and Multiplicative Window (MW) attentions in en-
coder/decoder self attention and cross attention for full
vs. partial settings.

Transformer base (Vaswani et al., 2017). Our
model with the segment-based additive method
for cross attention achieves a similar performance.
We observe further improvements as we apply
our attentions in all the attention modules of the
Transformer. Specifically, our model Enc(AW)-
Cr(AW,Seg)-Dec(MW) achieves 28.25 and 40.32
BLEU in En-De and En-Fr translation tasks, out-
performing Transformer base with localness (Yang
et al., 2018) by 0.63 and 0.85 BLEU, respectively.

5.2 Ablation Study
To verify our modeling decisions, we performed
an ablation study in the WMT’14 En-De transla-
tion task. In particular, we evaluated (i) the im-
pact of applying our differentiable window atten-
tions in all layers vs. only in certain lower layers
of the Transformer network, (ii) which window
attention methods (additive or multiplicative) are
suitable particularly for the encoder/decoder self-
attention and cross-attention, and (iii) the impact
of segment-based masking in different attention
modules. (iv) training efficiency and performance
of our best model with the similar models. Plus, to
further interpret our window-based attention, we
also provide the local window visualization.

Full vs. Partial. Table 2 shows BLEU scores for
the Transformer models that employ our window-

Model Token-based Segment-based

Cr(AW) 27.97 28.13
Enc(AW)-Dec(MW) 28.11 27.91

Table 3: BLEU scores for token- and segment-based
masking in cross attention and encoder self-attention.
The decoder self-attention always uses token-based
masking.

based attentions in all 6 layers (Full) vs. only in the
first 3 layers (Partial), as well as the methods used
in different attention modules (encoder/decoder
self-attention, cross-attention). We can see that
almost all the models with window-based methods
in the first 3 layers outperform those that use them
in all 6 layers. This gives the setup significant ad-
vantages as it performs not only better in BLEU
but also requires less parameters.

The results also show that multiplicative win-
dow (MW) attention is preferred in decoder self-
attention, while additive window (AW) is more
suitable for encoder self-attention and for cross-
attention. This suggests that the global con-
text, which is maintained in AW, is more useful
when it is entirely available like in encoder self-
attention and cross attention. In contrast, incom-
plete and partially-generated context in decoder
self-attention may induce more noise than infor-
mation, where MW attention renders better perfor-
mance than AW.

Token- vs. Segment-based. Table 3 compares
the results for using token-based vs. segment-based
masking methods in different attention modules of
the network. Note that it is preferred for decoder
self-attention to adopt token-based masking since
the decoder cannot point to unfinished segments in
autoregressive generation, if it had used segment-
based masking. We see that segment-based ad-
ditive window masking outdoes its token-based
counterpart (28.13 vs. 27.97 BLEU) for cross-
attention. Meanwhile, for encoder self-attention,
token-based masking performs better than segment-
based masking by 0.2 BLEU. This suggests that
segments (or phrases) represent better translation
units than tokens, justifying its performance supe-
riority in cross-lingual attention but not in mono-
lingual (self-attention) encoding.

Speed and Parameters. As shown in table 4, our
training efficiency is competitive to the baselines.
That is, the training speed for our model is 1.04
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(a) Local masking scores (M ). (b) Our attention scores. (c) Transformer attention scores.

Figure 3: Visualization of masking scores, and attention scores for our and the original Transformer models.

Model #-params # steps/sec BLEU

Vaswani et al. (2017) 63M 1.20 27.46
Yang et al. (2018) 63M 1.07 27.62
Vaswani et al. (2017) 7 layers 69M 1.05 27.74
Vaswani et al. (2017) 8 layers 75M 0.99 27.89

Enc(AW)-Cr(AW,Seg)-Dec(MW) 73M 1.04 28.25

Table 4: Training efficiency and size of similar models

steps/sec which is similar to Yang et al. (2018). Be-
sides, our model outperforms the Transformer with
8 layers, which has more parameters. This suggests
that our performance gain may not come from addi-
tional parameters, but rather from a better inductive
bias through the dynamic window attention.

Local Window Visualization. To further inter-
pret our window-based attentions, Figure 3a shows
the cross-attention soft masking values (m̂q) on
the source tokens for each target token in an En-Fr
test sample assigned by our Enc(AW)-Cr(AW,Seg)-
Dec(MW) model. The darker the score, the higher
the attention is from a target token to a source to-
ken. We can see the relevant subwords are cap-
tured by the attentions quite well, which promotes
ngram-level alignments. For instance, the mask
(m̂q) guides the model to evenly distribute atten-
tion scores on sub-words “Co@@” and “en” (Fig.
3b), while standard attention is biased towards
“Co@@” (Fig. 3c). Similar phenomenon can be
seen for “Bro@@” and “thers” (towards “frères”).

5.3 Text Classification

We evaluate our models on the Stanford Sentiment
Treebank (SST) (Socher et al., 2013), IMDB sen-
timent analysis (Maas et al., 2011) and Subject-
Verb Aggreement (SVA) (Linzen et al., 2016) tasks.
We compare our attention methods (incorporated
into the Transformer encoder) with the encoders
of Vaswani et al. ( 2017), Shaw et al. (2018) and
Yang et al. (2018).

Model STT IMDB SVA

Vaswani et al. (2017) 79.36 83.65 94.48
Shaw et al. (2018) 79.73 84.61 95.27
Yang et al. (2018) 79.24 84.13 95.00

Enc (MW) 79.70 85.09 95.95
Enc (AW) 82.13 87.98 96.19

Table 5: Classification accuracy on on Stanford Sen-
timent Treebank (SST) and IMDB sentiment analysis
and Subject-Verb Agreement(SVA) tasks.

Training Setup. As the datasets are quite small
compared to the MT datasets, we used tiny versions
of our models as well as the baselines.4 Specifi-
cally, the models consist of a 2-layer Transformer
encoder with 4 attention heads, 128 hidden dimen-
sions and 512 feedforward inner dimensions. In
these experiments, our attention methods are ap-
plied only to the first layer of the network. We
trained for 3,000, 10,000 and 10,000 updates for
SST, IMDB and SVA tasks, respectively on a single
GPU machine.

Results. Table 5 shows the results. Our multi-
plicative window approach (Enc (MW)) achieves
up to 79.7%, 85.1% and 95.95% accuracy in SST,
IMDB and SVA, exceeding Transformer (Vaswani
et al., 2017) by 0.4%, 1.35% and 1.47%, respec-
tively. Our additive window attention (Enc (AW))
renders even more improvements. Specifically,
it outperforms Transformer with relative position
(Shaw et al. 2018) by 2.4% and 3.37%, 0.92%
reaching 82.13%, 87.98% and 96.19% accuracy in
SST, IMDB and SVA, respectively. In fact, the re-
sults demonstrate consistent trends with our earlier
MT experiments: additive window attention out-
does its multiplicative counterpart in the encoder,

4As specified in https://github.com/tensorflow/tensor2tensor.
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Model Perplexity

Vaswani et al. (2017) 46.37
Shaw et al. (2018) 46.13

Dec (MW) 44.00
Dec (AW) 44.95

Table 6: Perplexity scores on 1-billion-word language
modeling benchmark (the lower the better).

where the entire key sequence is available.

5.4 Language Modeling

Finally, to demonstrate our proposed methods as
effective general purpose NLP components, we
evaluate them on the One Billion Word LM Bench-
mark dataset (Chelba et al., 2013). The dataset
contains 768 million words of data compiled from
WMT 2011 News Crawl data, with a vocabulary of
32,000 words. We used its held-out data as the test
set.

Training Setup. As the LM dataset is consider-
ably large, we used the same model settings as
adopted in our MT experiments. For these exper-
iments, we only trained the models on virtually 4
GPUs for 100,000 updates using gradient aggre-
gation on a single GPU machine. Note that only
the self-attention based autoregressive decoder of
the Transformer framework is used in this task.
Therefore, the method of Yang et al. (2018) is not
applicable to this task.

Results. Table 6 shows the perplexity scores. As
can be seen, our multiplicative and additive win-
dow attention models both surpass Transformer
(Vaswani et al., 2017) by 2.37 and 1.42 points
respectively, reaching 44.00 and 44.95 perplexity
scores respectively. In addition, it is noteworthy
that similar to MT experiments, multiplicative at-
tention outperforms the additive one on this task,
where the decoder is used. This further reinforces
the claim that where the global context is not fully
available like in the decoder, the incomplete global
context may induce noises into the model. Thus,
it is effective to embrace dynamic local window
attention to suppress the global context, for which
the multiplicative window attention is designed.

6 Conclusion

We have presented a novel Differential Window
method for dynamic window selection, and used it

to improve the standard attention modules by en-
abling more focused attentions. Specifically, we
proposed Trainable Soft Masking and Segment-
based Masking, which can be applied to en-
coder/decoder self-attentions and cross attention.

We evaluated our models on four NLP tasks in-
cluding machine translation, sentiment analysis,
subject verb agreement and language modeling.
Our experiments show that our proposed methods
outperform the baselines significantly across all
the tasks. All in all, we demonstrate the benefit
of incorporating the differentiable window in the
attention. In the future, we would like to extend our
work to make a syntactically-aware window that
can automatically learn tree (or phrase) structures.
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Appendix

Proof: m̂q = E(mq)

The probability of left and right boundary for a
query q:

φ̂lq = S(
qTWQ

L (KWK
L )T√

d
) (18)

φ̂rq = S(
qTWQ

R (KWK
R )T√

d
) (19)

For any k,

p(fk = 1) = p(lq ≤ k) =
∑
φ̂lq≤k

φ̂lq = (φ̂TlqLn)k (20)

p(gk = 1) = p(rq ≥ k) =
∑
φ̂rq≥k

φ̂rq = (φ̂TrqL
T
n )k (21)

Since fk and gk are binary values,

f̂k = p(fk = 1) = E(fk) (22)

ĝk = p(gk = 1) = E(gk) (23)

Hence,

m̂q = f̂lq � ĝrq + f̂rq � ĝlq = E(mq) (24)


