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Abstract

Advanced machine learning techniques have
boosted the performance of natural language
processing. Nevertheless, recent studies, e.g.,
Zhao et al. (2017) show that these techniques
inadvertently capture the societal bias hidden
in the corpus and further amplify it. However,
their analysis is conducted only on models’ top
predictions. In this paper, we investigate the
gender bias amplification issue from the dis-
tribution perspective and demonstrate that the
bias is amplified in the view of predicted prob-
ability distribution over labels. We further pro-
pose a bias mitigation approach based on pos-
terior regularization. With little performance
loss, our method can almost remove the bias
amplification in the distribution. Our study
sheds the light on understanding the bias am-
plification.

1 Introduction

Data-driven machine learning models have
achieved high performance in various applications.
Despite the impressive results, recent studies (e.g.,
Wang et al. (2019); Hendricks et al. (2018)) demon-
strate that these models may carry societal biases
exhibited in the dataset they trained on. In particu-
lar, Zhao et al. (2017) show that a model trained on
a biased dataset may amplify the bias. For exam-
ple, we can consider a task of labeling the activity
and objects depicted in an image. The training set
contains 30% more images with “woman cooking”
than “man cooking”. However, when evaluating
the top predictions of a trained model, the disparity
between males and females is amplified to around
70%. Based on this observation, Zhao et al. (2017)
conduct a systematic study and propose to calibrate
the top predictions of a learned model by injecting

∗Both authors contributed equally to this work and are
listed in alphabetical order.

corpus-level constraints to ensure that the gender
disparity is not amplified.

However, when analyzing the top predictions,
the models are forced to make one decision. There-
fore, even if the model assigns high scores to both
labels of “woman cooking” and “man cooking”,
it has to pick one as the prediction. This process
obviously has a risk to amplify the bias. However,
to our surprise, we observe that gender bias is also
amplified when analyzing the posterior distribution
of the predictions. Since the model is trained with
regularized maximal likelihood objective, the bias
in distribution is a more fundamental perspective
of analyzing the bias amplification issue.

In this paper, we conduct a systematic study to
quantify the bias in the predicted distribution over
labels. Our analysis demonstrates that when evalu-
ating the distribution, though not as significant as
when evaluating top predictions, the bias amplifica-
tion exists. About half of activities show significant
bias amplification in the posterior distribution, and
on average, they amplify the bias by 3.2%.

We further propose a new bias mitigation tech-
nique based on posterior regularization because
the approaches described in Zhao et al. (2017) can
not be straightforwardly extended to calibrate bias
amplification in distribution. With the proposed
technique, we successfully remove the bias ampli-
fication in the posterior distribution while maintain
the performance of the model. Besides, the bias am-
plification in the top predictions based on the cali-
brated distribution is also mitigated by around 30%.
These results suggest that the bias amplification in
top predictions comes from both the requirement of
making hard predictions and the bias amplification
in the posterior distribution of the model predic-
tions. Our study advances the understanding of the
bias amplification issue in natural language pro-
cessing models. The code and data are available at
https://github.com/uclanlp/reducingbias.

https://github.com/uclanlp/reducingbias
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2 Related Work

Algorithmic Bias Machine learning models are
becoming more and more prevalent in the real
world, and algorithmic bias will have a great soci-
etal impact (Tonry, 2010; Buolamwini and Gebru,
2018). Researchers have found societal bias in dif-
ferent applications such as coreference resolution
(Rudinger et al., 2018; Zhao et al., 2018), machine
translation (Stanovsky et al., 2019) and online ad-
vertisement (Sweeney, 2013). Without appropriate
adjustments, the model can amplify the bias (Zhao
et al., 2017). Different from the previous work, we
aim at understanding the bias amplification from
the posterior perspective instead of directly looking
at the top predictions of the model.

Posterior Regularization The posterior regular-
ization framework (Ganchev et al., 2010) is aiming
to represent and enforce constraints on the posterior
distribution. It has been shown effective to inject
domain knowledge for NLP applications. For ex-
ample, Ji et al. (2012); Gao et al. (2014) design
constraints based on similarity to improve question
answering and machine translation, respectively.
Yang and Cardie (2014) propose constraints based
on lexical patterns in sentiment analysis. Meng
et al. (2019) apply corpus-level constraints to guide
a dependency parser in the cross-lingual transfer
setting. In this paper we leverage corpus-level con-
straints to calibrate the output distribution. Our
study resembles to the confidence calibration (Guo
et al., 2017; Naeini et al., 2015). However, the tem-
perature turning and binning methods proposed in
these papers cannot straightforwardly be extended
to calibrate the bias amplification.

3 Background

We follow the settings in Zhao et al. (2017) to focus
on the imSitu vSRL dataset (Yatskar et al., 2016),
in which we are supposed to predict the activities
and roles in given images and this can be regraded
as a structure prediction task (see Fig. 1).

We apply the Conditional Random Field (CRF)
model for the structure prediction task. We denote
y as a joint prediction result for all instances, and
yi as a prediction result for instance i. We use yv
to denote the predicted activity, and yr to denote
the predicted role. An activity can have multiple
roles and usually one of them conveys the gender
information. For an instance i, the CRF model
predicts the scores for every activity and role, and

Figure 1: An instance from the imSitu dataset. Given
an input image, the task it to identify the activity de-
picted in the image as well as the objects (noun) and
their semantic role.

the score for a prediction is the summation of all
these scores. Formally,

fθ(y
i, i) = sθ(y

i
v, i) +

∑
e∈yi

r

sθ(y
i
v, e, i),

where sθ(yiv, i) and sθ(yiv, e, i) are the scores for
activity yiv of instance i, and the score for role e
of instance i with activity yiv, respectively. We can
infer the top structure for instance i by:

arg maxyi∈Yi fθ(y
i, i),

where Y i refers to all the possible assignments to
the instance.

4 Bias Amplification Quantification and
Corpus-level Constraints

Zhao et al. (2017) demonstrate bias amplification
in the top prediction and present a bias mitiga-
tion technique by inference with corpus-level con-
straints. In the following, we extend their study
to analyze the bias amplification in the posterior
distribution by the CRF model and define the cor-
responding corpus-level constraints.

Formally, the probability of prediction yi for
instance i and the joint prediction y defined by
CRF model with parameters θ are given by

pθ(y
i, i) ∝ exp(fθ(y

i, i)),

pθ(y) =
∏

i
pθ(y

i, i),
(1)

since instances are mutually independent.
In this section, we will define how to quantify the

bias and the bias amplification in the distribution,
and introduce the corpus-level constraints towards
restricting the bias in the distribution.

We focus on the gender bias on activities in the
vSRL task. To quantify the gender bias given a
particular activity v∗, Zhao et al. (2017) uses the
percentage that v∗ is predicted together with male
agents among all prediction with genders. This
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evaluation focuses on the top prediction. In the
contrast, we define bias function B(p, v∗, D) w.r.t
distribution p and activity v∗, evaluating the bias
toward male in dataset D based on the conditional
probability P (X|Y ), where event Y : given an
instance, its activity is predicted to be v∗ and its
role is predicted to have a gender; event X : this
instance is predicted to have gender male. Formally,

B(p, v∗, D)

=Pi∼D,y∼p(yir ∈M |yiv = v∗ ∧ yir ∈M ∪W )

=

∑
i∈D

∑
yi:yi

v=v
∗,yi

r∈M p(yi, i)∑
i∈D

∑
yi:yi

v=v
∗,yi

r∈M∪W p(yi, i)
.

(2)
This bias can come from the training set Dtr.

Here we use b∗(v∗,male) to denote the “dataset
bias” toward male in the training set, measured
by the ratio of between male and female from the
labels:

b∗ =

∑
i∈Dtr

1[ŷiv = v∗, ŷir ∈M ]∑
i∈Dtr

1[ŷiv = v∗, ŷir ∈M ∪W ]
,

where ŷi denotes the label of instance i.
Ideally, the bias in the distribution given by CRF

model should be consistent with the bias in the
training set, since CRF model is trained by maxi-
mum likelihood. However, the amplification exists
in practice. Here we use the difference between the
bias in the posterior distribution and in training set
to quantify the bias amplification, and average it
over all activities to quantify the amplification in
the whole dataset:

A(p, v∗, D) = sgn(b∗ − 0.5)[B(p, v∗, D)− b∗],

Ā(p,D) =
1

|V |
∑
v∗∈V

A(p, v∗, D).

Note that if we use the top prediction indicator
function to replace p in A, Ā, it is the same as the
definition of the bias amplification in top prediction
in Zhao et al. (2017).

The corpus-level constraints aim at mitigating
the bias amplification in test set Dts within a pre-
defined margin γ,

∀v∗, |A(p, v∗, Dts)| ≤ γ. (3)

5 Posterior Regularization

Posterior regularization (Ganchev et al., 2010) is
an algorithm leveraging corpus-level constraints to

regularize the posterior distribution for a structure
model. Specifically, given corpus-level constraints
and a distribution predicted by a model, we 1) de-
fine a feasible set of the distributions with respect
to the constraints; 2) find the closest distribution in
the feasible set from given distribution; 3) do maxi-
mum a posteriori (MAP) inference on the optimal
feasible distribution.

The feasible distribution set Q is defined by the
corpus-level constraints defined in Eq. (3):

Q = {q | ∀v∗, |B(q, v∗, Dts)− b∗| ≤ γ}, (4)

where B(·) is defined in Eq. (2).
Given the feasible set Q and the model distri-

bution pθ defined by Eq. (1), we want to find the
closest feasible distribution q∗ :

q∗ = arg minq∈QKL(q‖pθ). (5)

This is an optimization problem and our variable
is the joint distribution q with constraints, which
is intractable in general. Luckily, according to the
results in Ganchev et al. (2010), if the feasible setQ
is defined in terms of constraints feature functions
φ and their expectations:

Q = {q | Ey∼q[φ(y) ≤ c]}, (6)

Eq. (5) will have a close form solution

q∗(y) =
pθ(y) exp(−λ∗ · φ(y))

Z(λ∗)
, (7)

where λ∗ is the solution of
λ∗ = arg maxλ≥0−c · λ− logZ(λ).

Z(λ) =
∑

y
pθ(y) exp(−λ · φ(y)).

(8)

Actually, we can derive the constraints into the
form we want. We set c = 0 and

φ(y) =
∑

i
φi(yi). (9)

We can choose a proper φi(yi) to make Eq. (4)
equal to Eq. (6). The detailed derivation and the
definition of φi(yi) are shown in Appendix A.

We can solve Eq. (8) by gradient-based meth-
ods to get λ∗, and further compute the close form
solution in Eq. (7). Actually, considering the rela-
tion between y and yi in Eq. (1) and (9), we can
factorize the solution in Eq. (7) on instance level:

q∗(yi, i) =
pθ(y

i, i) exp(−λ∗ · φi(yi))
Zi(λ∗)

,

and the derivation details are in Appendix B. With
this, we can reuse original inference algorithm to
conduct MAP inference based on the distribution
q∗ for every instance seperately.
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(a) bias in distribution before bias mitigation.
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(b) bias in distribution after bias mitigation.
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(c) bias in top predictions before bias mitigation.
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(d) bias in top predictions after bias mitigation.

Figure 2: x-axis and y-axis are the bias toward male in the training corpus and the predictions, respectively. Each
dot stands for an activity. The blue reference lines indicate the bias score in training is equal to that in test and the
dash lines indicate the margin (= 0.05). The dots in red stand for being out of margin and violating the constraints.
The black lines are linear regressions of the dots. Results show that we can almost remove the bias amplification
in distributions (see 2a and 2b), and reduce 30.9% amplification in top predictions (see 2c and 2d) after applying
posterior regularization.

6 Experiments

We conduct experiments on the vSRL task to an-
alyze the bias amplification issue in the posterior
distribution and demonstrate the effectiveness of
the proposed bias mitigation technique.

Dataset Our experiment settings follow Zhao
et al. (2017). We evaluate on imSitu (Yatskar et al.,
2016) that activities are selected from verbs, roles
are from FrameNet (Baker et al., 1998) and nouns
from WordNet (Fellbaum, 1998). We filter out the
non-human oriented verbs and images with labels
that do not indicate the genders.

Model We analyze the model purposed together
with the dataset. The score functions we describe
in Sec. 3 are modeled by VGG (Simonyan and
Zisserman, 2015) with a feedforward layer on the
top of it. The scores are fed to CRF for inference.

6.1 Bias Amplification in Distribution

Figures 2a and 2c demonstrate the bias amplifica-
tion in both posterior distribution pθ and the top pre-
dictions y defined in Sec.4, respectively. For most
activities with the bias toward male (i.e., higher
bias score) in the training set, both the top predic-
tion and posterior distribution are even more biased
toward male, vise versa. If the bias is not amplified,
the dots should be scattered around the reference
line. However, most dots are on the top-right or
bottom-left, showing the bias is amplified. The
black regression line with slope > 1 also indicates
the amplification. Quantitatively, 109 and 173 con-
straints are violated when analyzing the bias in
distribution an in top predictions.

Most recent models are trained by minimizing
the cross-entropy loss which aims at fitting the
model’s predicted distribution with observed distri-
bution on the training data. In the inference time,
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Figure 3: The curve of training and test accuracy, and
bias amplification with the number of training epochs.
The optimal model evaluated on the development set is
found in the grey shade area.

the model outputs the top predictions based on the
underlying prediction distribution. Besides, in prac-
tice, the distribution has been used as an indicator
of confidence in the prediction. Therefore, under-
standing bias amplification in distribution provides
a better view about this issue.

To analyze the cause of bias amplification, we
further show the degree of amplification along with
the learning curve of the model (see Fig. 3). We
observed that when the model is overfitted, the
distribution of the model prediction becomes more
peaky1. We suspect this is one of the key reasons
causes the bias amplification.

6.2 Bias Amplification Mitigation

We set the margin γ = 0.05 for every constraint in
evaluation. However, we employ a stricter margin
(γ = 0.001) in performing posterior regularization
to encourage the model to achieve a better feasible
solution. We use mini-batch to estimate the gradi-
ent w.r.t λ with Adam optimizer (Kingma and Ba,
2015) when solving Eq. (5). We set the batchsize to
be 39 and train for 10 epochs. The learning rate is
initialized as 0.1 and decays after every mini-batch
with the decay factor 0.998.

Results We then apply the posterior regulariza-
tion technique to mitigate the bias amplification in
distribution. Results are demonstrated in Figures
2b (distribution) and 2d (top predictions). The pos-
terior regularization effectively calibrates the bias
in distribution and only 5 constraints are violated

1This effect, called overconfident, has been also discussed
in the literature (Guo et al., 2017).

after the calibration. The average bias amplification
is close to 0 (Ā: 0.032 to −0.005). By reducing
the amplification of bias in distribution, the bias
amplification in top predictions also reduced by
30.9% (Ā: 0.097 to 0.067). At the same time, the
model’s performance is kept (accuracy: 23.2% to
23.1%).

Note that calibrating the bias in distribution can-
not remove all bias amplification in the top pre-
dictions. We posit that the requirement of making
hard predictions (i.e., maximum a posteriori esti-
mation) also amplifies the bias when evaluating the
top predictions.

7 Conclusion

We analyzed the bias amplification from the pos-
terior distribution perspective, which provides a
better view to understanding the bias amplification
issue in natural language models as these models
are trained with the maximum likelihood objective.
We further proposed a bias mitigation technique
based on posterior regularization and show that it
effectively reduces the bias amplification in the dis-
tribution. Due to the limitation of the data, we only
analyze the bias over binary gender. However, our
analysis and the mitigation framework is general
and can be adopted to other applications and other
types of bias.

One remaining open question is why the gender
bias in the posterior distribution is amplified. We
posit that the regularization and the over-fitting
nature of deep learning models might contribute to
the bias amplification. However, a comprehensive
study is required to prove the conjecture and we
leave this as future work.
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A Definition of the Feature Functions

The feature function for predictions y is defined
as the summation of feature functions for each in-
stance yi, which is a 2n−dimensional vector where
n is the number of constraints. Each entry is the
feature function corresponding to a constraint and
the inequality sign direction. Formally,

φiv∗,−(yi)=


1− b∗ − γ yiv = v∗,yir ∈M
−b∗ − γ yiv = v∗,yir ∈W
0 otherwise

φiv∗,+(yi)=


−1 + b∗ − γ yiv = v∗,yir ∈M
b∗ − γ yiv = v∗,yir ∈W
0 otherwise

φi = (φiv1,−, φ
i
v1,+, ..., φ

i
vn,−, φ

i
vn,+)

φ(y) =
∑
i

φi(yi)

B Derivation of Feature Functions
Expectation

We can derive the feature functions expection as

Ey∼q[φ(y)] ≤ 0

Ey∼q

[∑
i

φi(yi)

]
≤ 0∑

i

Eyi∼q(·,i)
[
φi(yi)

]
≤ 0

Thus, it is equivalent as ∀v∗,∑
i

Eyi∼q(·,i)
[
φiv∗,−(yi)

]
≤ 0,

∑
i

Eyi∼q(·,i)
[
φiv∗,+(yi)

]
≤ 0.

The inequality about φiv∗,− can be derived as∑
i

Eyi∼q(·,i)
[
φiv∗,−(yi)

]
≤ 0∑

i

∑
yi

q(yi, i)φiv∗,−(yi) ≤ 0

∑
i

∑
yi:yi

v=v
∗,yi

r∈M

(1− b∗ − γ)q(yi, i) −

∑
i

∑
yi:yi

v=v
∗,yi

r∈W

(b∗ + γ)q(yi, i) ≤ 0

∑
i

∑
yi:yi

v=v
∗,yi

r∈M q(yi, i)∑
i

∑
yi:yi

v=v
∗,yi

r∈M∪W q(yi, i)
≤ b∗ + γ

B(q, v∗, ·) ≤ b∗ + γ

The inequality about φiv∗,− can be derived simi-
larly.


