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Abstract
This paper introduces the Webis Gmane Email
Corpus 2019, the largest publicly available and
fully preprocessed email corpus to date. We
crawled more than 153 million emails from
14,699 mailing lists and segmented them into
semantically consistent components using a
new neural segmentation model. With 96% ac-
curacy on 15 classes of email segments, our
model achieves state-of-the-art performance
while being more efficient to train than previ-
ous ones. All data, code, and trained models
are made freely available alongside the paper.1

1 Introduction

Email is perhaps the most reliable and ubiquitous
means of digital communication. Notwithstanding
the mainstream adoption of social media for private
communication as of about 2010, email prevails un-
rivaled for workplace communication and beyond.
Compared to social media, however, emails have
attracted much less research attention in the fields
of computational linguistics, natural language pro-
cessing, and information retrieval. Key reasons
for the neglect can be found in the presumed diffi-
culty of obtaining emails at scale, the lack of open
technologies to parse them, and that, despite their
importance, they are hardly considered en vogue.

Although mailing lists as a rich and accessible
source for emails have been tapped before, this has
never been done at scale. Our contributions in this
respect are (1) the Webis Gmane Email Crawl 2019,
a crawl of more than 153 million emails from a
wide range of mailing lists, (2) the Chipmunk email
segmenter, a newly developed end-to-end neural
model, and (3) the complete preprocessing of the
crawled emails using our model to construct the
largest corpus of “ready-to-use” emails to date. Our
corpus encompasses more than 20 years worth of
discussions on a diverse set of topics, including
important political and societal issues.
1https://webis.de/publications.html?q=ACL+2020

We believe that providing the research commu-
nity with access to clean and preprocessed commu-
nication data from emails will foster open research
in several areas, such as the analysis of dialogs and
discourse, stylometry, language evolution, argu-
ment mining, as well as information retrieval, and
the synthesis of conversations and argumentation.

2 Related Work

For research purposes, the three primary sources of
email data are public mailing lists and newsgroups,
volunteered or leaked private email datasets, and
email databases at companies and service providers.
The WestburyLab USENET corpus (Shaoul and
Westbury, 2009, 2013) was crawled between 2005
and 2011. More widely employed has been the
“20 newsgroups” corpus (Lang, 1995). The W3C
corpus compiles the public W3C mailing lists (Wu,
2005), Jiang et al. (2013) examined 8 years of patch
submissions to the Linux Kernel Mailing List, and
Niedermayer et al. (2017) inspected the process
of standardization across IETF bodies via its mail-
ing lists. The CSpace corpus consists of 15,000
student dialogs volunteered for research during a
management course at CMU (Kraut et al., 2004).

All of the above have been extensively ana-
lyzed (Minkov et al., 2005, 2006; Lawson et al.,
2010), yet the most widely studied corpus remains
the leaked Enron corpus (Klimt and Yang, 2004),
built as part of the U.S. FERC’s investigation into
the Enron Corporation. It has been subject to
studies on speech act and dialog analysis (Gold-
stein et al., 2006), named entities (Lawson et al.,
2010), and word usage patterns (Keila and Skil-
licorn, 2005), among many others. Another re-
cently leaked dataset comprises the Clinton emails
that surfaced during the 2016 U.S. presidential elec-
tion (De Felice and Garretson, 2018). Regarding
email data at companies and service providers,
not many researchers are able to disclose their
datasets (Avigdor-Elgrabli et al., 2018).

https://webis.de/publications.html?q=ACL+2020
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Regardless of their source, emails are usually un-
structured and difficult to process even for human
readers (Sobotta, 2016). Thus, many approaches
have been proposed for cleansing newsgroup and
email data. As one of the earliest, de Carvalho and
Cohen (2004) developed a specialized method for
detecting and removing signatures based on typi-
cal text indicators. Tang et al. (2005) developed a
high-accuracy model for detecting blocks of non-
content in emails using a mixture of SVM models
and hard-coded rules. An unsupervised approach
was employed by Contractor et al. (2010), who
applied a noisy channel model for filtering out non-
content. Similarly, Bettenburg et al. (2011) used
spell checking techniques for uncovering techni-
cal artifacts like source code, disentangling them
from the main content. A more general approach,
befittingly named Zebra, was published by Lam-
pert et al. (2009), who split messages into a se-
ries of structural and semantic “zones”, such as
author text and signature. Finally, Repke and
Krestel (2018) developed Quagga, the first neu-
ral end-to-end model inspired by Lampert et al.’s
Zebra, which showed very substantial performance
improvements. Most machine learning-based ap-
proaches rely on classifying lines of text, either by
detecting the start and the end of structural blocks
with specialized models, or by assessing each line
individually via its surrounding context.

With the increase in machine-generated emails,
recent studies have shifted their focus away from
dialogs and towards parsing and categorizing (Ab-
erdeen et al., 2010; Zhang et al., 2017) or threading
notifications (Ailon et al., 2013), as well as auto-
mated template induction (Proskurnia et al., 2017;
Castro et al., 2018; Kocayusufoglu et al., 2019).

3 The Webis Gmane Email Corpus 2019

Our dataset was crawled from Gmane,2 a popular
email-to-newsgroup gateway, which allows users
to subscribe to mailing lists via the NNTP news-
group protocol that formed the basis for the Usenet.
While Gmane’s web portal has been offline for
years and was recently replaced by a minimal web-
site under a new domain name, the newsgroup por-
tal is still alive and messages from active mailing
lists arrive every day. Unlike a mailing list server,
a newsgroup server keeps an archive of messages,
allowing a user to download the history of a news-
group even if they did not participate in it from
2https://news.gmane.io or rather: nntp://news.gmane.io

the beginning. Traditional newsgroup servers often
have a limited retention period, though fortunately,
Gmane archived all messages since its launch in
2002. About a million messages date back even
further to the year 2000 and a small number even
to the early 90’s. The latest message in our corpus
is from mid-May 2019, which is when we stopped
crawling. Considering this enormous time span and
the uncertain future of Gmane, we see archiving
these messages as both a great research opportunity
and an attempt at preserving our digital heritage.

Following the style of the Usenet, Gmane groups
are ordered in a hierarchy of subjects under the
common gmane root. This hierarchy makes it easy
to categorize mailing lists into topical domains giv-
ing a rough overview of what is being talked about.
The majority of groups is of a generally techni-
cal nature (e.g., in gmane.comp or gmane.linux), a
large number of other categories exists, most no-
tably culture, politics, science, education, music,
games, and recreation. Below these main cate-
gories, a plethora of individual subjects are found.
A cursory topic modeling study reveals not only
software development discussions, but also debates
about environmental issues, climate change, gender
equality, mobility, health, business, international
conflicts, general political concerns, philosophy,
religious beliefs, and many more.

3.1 Acquisition
We crawled all 14,699 groups of which 64 turned
out empty. Gmane provides another 18,450 groups
under the gwene hierarchy for headlines and snip-
pets from RSS feeds. We crawled those as well, but
have not analyzed nor added them to the dataset.
The crawling process ran slowly over a period of
months, producing 604 GiB of compressed WARC
files. The total number of messages across all
groups sums up to 153,310,330 usable mails. The
largest individual group is the Linux Kernel Mail-
ing List with 2.4 million messages followed by the
KDE bug tracking list with 2 million. Excluding
any obvious bug tracking or software patch submis-
sion lists, 113 million messages remain. Further
excluding the largest hierarchies comp, linux, and
os, 24 million messages are left, which boil down to
7.8 million when restricted to the seven exemplary
hierarchies mentioned above. 6.4 million of these
are English-language, the rest is mostly German,
French, and Spanish. The 153 million messages
were posted by 6.4 million unique sender addresses

https://news.gmane.io
nntp://news.gmane.io
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and the influx volume amounts to over 710,000
messages per month. This number is a bit lower
at 610,000 when only considering the past five
years. The top 10 groups account for an average
of 1.2 million messages each and the top 10,000
groups for 15,250, while the bottom 5,000 groups
have on average 100 messages.

3.2 Preprocessing
Emails are a noisy data source in need of heavy
preprocessing. The Usenet and early-day mailing
lists developed (n)etiquettes for how to write proper
messages. These included quoting as little as possi-
ble, replying inline, separating signatures by two
hyphens, and restricting their length to four lines.
Email—the more recent in particular—obeys none
of those. For the most part, messages consist of
large blocks of nested quotations—often mutilated
by the 78-character limit, various formats for intro-
ducing quotations, exuberant unstructured personal
signatures, and automated signatures added by the
author’s user agent or the mailing list server. More-
over, technical emails often contain fragments of
source code, log data, or diffs. Automated emails
also contain semi-structured templates like ASCII-
formatted tables. Extracting the content of such
unstructured messages proves difficult and long
threads pose a challenge even to human readers.

We started the preprocessing by parsing the
MIME contents into pure plaintext. To preserve the
privacy of users, the name parts of email addresses
were replaced with a 16-byte base64 prefix of the
address’s SHA-256 hashes with @example.com ap-
pended as the authority part. Headers were reduced
to the set necessary for retaining date-time, subject,
thread, sender, and recipient information. Finally,
the contents of each email were segmented and
annotated using our model described in Section 4,
allowing for easy extraction of not only the main
content, but also other structured information. The
final corpus is packaged as compressed line-based
JSON files that can be easily indexed into Elastic-
search using its bulk API.

4 The Chipmunk Email Segmenter

Cleansing email plaintexts is laborious and first re-
quires splitting them into different functional and
semantic segments (also sometimes called zones).
Our first attempt at this was a re-implementation
of the classic approach by Tang et al. Despite our
best efforts, its handcrafted feature set, and the

need to train two individual SVMs for each type
of content block caused generalizability and scala-
bility issues on our much larger and more diverse
dataset. Also, a context window of three lines was
not nearly enough to reliably identify all types of
content blocks, and making the window larger did
not yield satisfying results due to the simplicity and
the lack of shared weights among the individual
models. We also needed a much more fine-grained
segmentation, which not even the more recent neu-
ral approach by Repke and Krestel could deliver
without substantial changes, so it was decided to
develop a new email segmenter.

We identified 15 common segments recurring in
emails: (1) paragraphs (main content), (2) saluta-
tions, (3) closings, (4) quotations, (5) quotation
markers (quotation author and date), (6) inline
email headers, (7) personal signatures, (8) auto-
mated MUA signatures (i.e., mail user agent, but
also mailing list details or advertising), (9) source
code, (10) source code diffs, (11) log data, and
(12) technical noise (e.g., inline attachments or
PGP signatures), (13) semi-structured tabular data,
(14) ornaments (e.g., separator lines), and (15)
structural section headings (e.g., in a call for pa-
pers). We annotated segments in a stratified sample
of 3,033 emails from a range of different groups,
totaling 170,309 line annotations. Annotated seg-
ments are mostly unambiguous so that a single an-
notator can produce consistent and high-quality an-
notations in multiple correction passes. Although
the sample is technically multilingual, most emails
are in English. Of the 3,033 emails, we set aside
300 for model validation and extracted another sam-
ple of 1.5 million emails and concatenated them to
a single file of 80 million lines (2.8 GiB). Here
we replaced all email addresses with the token
@EMAIL@, all URLs with @URL@, mapped num-
bers to the digit 0, replaced all hexadecimal val-
ues with @HASH@, runs of four or more indenting
spaces with @INDENT@, split words on special
characters (mainly for tokenizing quotations and
source code), and normalized Unicode characters
to NFKC. We used this processed dump to train
a fastText embedding (Grave et al., 2017) with a
default vector dimension of 100.

4.1 Model Architecture
The segmentation model has a hybrid RNN-CNN
architecture as depicted in Figure 1. For each line,
we define a context window of c = 4 lines before
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Line Embedding
(n, 100)

Context Embedding
(2c + 1, n, 100)

Bi-GRU Encoder
(n, 128)

Convolution 128 × (4, 4)

Convolution 128 × (3, 3)
Max Pool (2, 2)

Concatenate 3 × 128

Current Line

Context Lines

Previous Line

Line Labels

Figure 1: Architecture of the Chipmunk email segmenter. Embeddings for the current and previous lines (max
length n = 12 words) and a 2D line context window (c = 4) are fed into separate inputs. We use batch normaliza-
tion after the RNN and the first CNN layer and a dropout chance of 0.25 before the final softmax layer.

and after the current line and build an embedding
matrix of dimensions (2c+ 1, n, 100), n being the
maximum word token count per line. Longer lines
are truncated by discarding tokens between the first
75% and the last 25% of the line preserving both
line beginnings and endings with preference to be-
ginnings, where more structural markers are found
under left-to-right writing. Shorter lines and the top
or the bottom of the context matrix are padded if re-
quired. We feed the line embeddings into separate
128-unit Bi-GRU encoders and the context matrix
into a 2D CNN. The idea is that, unlike normal text,
plaintext emails have a spatial layout where the hor-
izontal and the vertical axis both convey structural
information (most importantly the first column).
The CNN performs 128 convolutions with a filter
size of 4× 4, then another 128 convolutions with
a filter size of 3 × 3, and finally a max pooling
of 2× 2. After either of the Bi-GRUs and the first
convolution, we add in a batch normalization. The
CNN output is fed into a 128-dimensional dense
layer, concatenated with the other outputs, and then
regularized with a dropout of 0.25 before being
passed to the softmax layer with outputs for the
15 segment labels and <empty> for blank lines.
All layers have ReLU as their activation function.
We train the model using a mini-batch size of 128
and the Adam optimizer with hinge loss. Choosing
this over crossentropy is a decent trade-off between
accuracy and generalizability. While crossentropy
tends to find a closer fit, giving higher accuracy
on very similar data, this comes at the expense of
uncertain decisions and early overfitting. Hinge
loss prefers larger margins, generalizing better to
new and entirely unseen data in a line-wise classifi-
cation scenario with strict block boundaries.

4.2 Evaluation
To evaluate our model, we compare it with two
others from the literature in two different settings.
Table 1 compiles an overview of the evaluation re-
sults. A confusion matrix for our model is found in
Table 2 in the appendix. Our model achieves 96%
accuracy over all classes. Mapped to binary de-
cisions between paragraphs and non-paragraphs,
the accuracy goes up to 98%. The recall on the
paragraph class is 93% (see Table 2). The ma-
jority class are quotations with 33%, followed by
patches with 16%. Paragraphs come in at 11%.
Note that the patch class is overrepresented not
because we sampled primarily patch emails, but be-
cause patches tend to be longer than normal emails.
Still, we achieve an overall high accuracy on all
classes. A typical segmentation is provided as an
example in Figure 3.

To test the model’s ability to generalize to unseen
data, we annotated 300 emails from the Enron cor-
pus, whose class distribution differs significantly
from mailing lists: The emails are much shorter and
most lines belong to paragraphs (36%) or empty
lines (26%). Quotations account for 8% and code
or patches are non-existent. Though significantly
lower, our model still shows an acceptable accu-
racy of about 88%. The excessive use of inline
headers containing multiple lines of forwarding ad-
dresses appears to be the main challenge for our
model, which is expected considering that forward-
ing emails to dozens of recipients is rare on mailing
lists. Furthermore, the proprietary Enron mail user
agent had an unusual forwarding and quotation
style quite unlike the more common Thunderbird,
GMail, or Outlook notations.
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Finally, we compared our model against Quagga,
the state-of-the-art neural segmentation model by
Repke and Krestel and a re-implementation of
Tang et al.’s SVM email cleaning approach. Un-
fortunately, a training routine was missing from
Quagga’s source code, so we re-implemented this
part as closely to the original as possible with one
notable exception. We changed the way the model
handles quotations. The original model did not
have a quotation class and was instead trained to
ignore quotation indicators so as to predict normal
content segments within quotations also. This is
very different from how our model handles quota-
tions and it renders the reconstruction of a conversa-
tion from the segments alone impossible. We prefer
our approach to classify quotations as a separate
segment, which retains the structure of emails and
one can simply strip the quotation indicators and
then apply the model recursively. We trained our
own Quagga on all 16 classes for 20 epochs (the
model started overfitting after more epochs). Al-
though the original model was trained and tested on
only five classes, the extended and retrained model
performs only slightly worse than ours with 94%
accuracy overall and very similar scores for most of
the frequent classes. The degradation on the Enron
corpus appears to be worse than in our model (with
the exception of the log data class). In conclusion,
we can say that both models perform equally well,
though our model achieves overall better general-
ization. In terms of training speed, we found our
approach to be faster and more efficient, since it
relies on a 2D context window instead of a vertical
RNN for sequences of lines.

The model by Tang et al. required a great deal
of feature engineering and the training of many
separate models. For simplicity, and in accordance
with the original paper, we mapped all labels to
the reduced set of content, quotation, header, sig-
nature, code (patch), and <empty>. Despite the
smaller number of classes, the model’s accuracy
lags behind the neural models with 80% on Gmane
and only 72% on the Enron corpus.

5 Ethical Considerations

The distribution of email data raises ethical con-
cerns, such as possible violations of privacy and
legal requirements, which we addressed to the best
of our ability. All emails in our corpus are from
public mailing lists and by policy, Gmane only ac-
cepts such lists whose users are comfortable with

Gmane Corpus Enron Corpus

Ours Quagga Tang Ours Quagga Tang

All Classes 0.96 0.94 0.80 0.88 0.83 0.72

Quotation 0.99 0.99 0.99 0.99 0.88 0.85
Patch 0.95 0.95 0.46 – – –

Paragraph 0.93 0.90 0.90 0.95 0.91 0.89
Log Data 0.84 0.77 – 0.24 0.74 –
MUA Sig. 0.91 0.93 0.4 0.65 0.51 0.21Personal Sig. 0.77 0.85 0.85 0.78

Table 1: Segmentation performance of the Chipmunk
model compared to Quagga by Repke and Krestel and
Tang et al.’s SVM approach. We report overall cate-
gorical accuracy and recall for the six most frequent
classes, excluding empty lines. The models were run
on the Gmane corpus and a small annotated subset of
the Enron corpus to analyze domain transfer.

their emails being publicly readable. At the time
of writing, the original messages in our corpus
are openly available to anyone through the NNTP
interface and other mailing list archives. Neverthe-
less, we took measures to avoid abuse of the readily
parsed and compiled form of the data, one being the
aforementioned anonymization of email addresses
to inhibit trivial mass harvesting. Furthermore, we
enforce a strict release policy in compliance with
the GDPR academic exemptions. Access to the
data is granted solely to researchers and academic
institutions and we prohibit further distribution for
non-academic purposes.

6 Summary

This paper contributes the largest email corpus
to date. The corpus is targeted mainly at discus-
sion and dialog-based research in NLP. We gave
an overview of the topics discussed in the corpus,
demonstrating that it is a valuable source for sev-
eral NLP tasks, such as argument mining. De-
spite the prevalence of technical conversations, var-
ious important and controversial societal issues
are covered in the corpus as well. To minimize
user overhead, we developed a new neural model
for segmenting emails with high precision and re-
call, which achieves state-of-the-art performance,
allowing for fine-grained extraction of structural
elements from emails. All the resources developed
in this paper are freely available.3

3Visit https://webis.de/data.html?q=Webis-Gmane-19 for de-
tails about gaining access to the corpus. The pre-trained
Chipmunk model as well as the code we used for training
it and for conducting our experiments are hosted at GitHub
(https://github.com/webis-de/ACL-20).

https://webis.de/data.html?q=Webis-Gmane-19
https://github.com/webis-de/ACL-20
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7 Appendix

7.1 Segmentation Confusion Matrix

par 0.933 0.006 0.000 0.014 0.007 0.003 0.006 0.008 0.001 0.004 0.001 0.001 0.012 0.000 0.001 0.002
clos 0.051 0.907 0.000 0.000 0.000 0.000 0.009 0.014 0.000 0.000 0.005 0.000 0.005 0.000 0.005 0.005

ihead 0.000 0.000 0.915 0.000 0.007 0.000 0.007 0.007 0.000 0.000 0.000 0.000 0.065 0.000 0.000 0.000
log 0.074 0.001 0.000 0.843 0.001 0.028 0.000 0.000 0.000 0.010 0.000 0.001 0.026 0.000 0.009 0.007

msig 0.047 0.000 0.000 0.000 0.914 0.020 0.010 0.003 0.000 0.000 0.000 0.003 0.001 0.001 0.000 0.000
pat 0.014 0.000 0.000 0.005 0.000 0.948 0.000 0.000 0.001 0.022 0.000 0.000 0.004 0.000 0.002 0.004

psig 0.068 0.045 0.000 0.019 0.060 0.000 0.774 0.019 0.000 0.000 0.000 0.000 0.008 0.000 0.008 0.000
quot 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.991 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001

mark 0.019 0.000 0.005 0.000 0.000 0.005 0.000 0.000 0.947 0.000 0.005 0.000 0.005 0.000 0.005 0.010
code 0.107 0.000 0.000 0.231 0.000 0.030 0.000 0.006 0.000 0.621 0.000 0.000 0.006 0.000 0.000 0.000
salu 0.017 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.950 0.000 0.017 0.000 0.000 0.000

head 0.312 0.062 0.000 0.062 0.125 0.000 0.000 0.188 0.000 0.000 0.000 0.125 0.125 0.000 0.000 0.000
tab 0.085 0.000 0.009 0.030 0.004 0.026 0.000 0.102 0.000 0.000 0.000 0.000 0.728 0.000 0.004 0.013

tech 0.077 0.000 0.000 0.000 0.038 0.000 0.000 0.000 0.038 0.038 0.000 0.000 0.000 0.731 0.038 0.038
sep 0.008 0.003 0.000 0.008 0.000 0.005 0.008 0.023 0.005 0.000 0.000 0.000 0.003 0.000 0.938 0.000

emp 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.995

par clos ihead log msig pat psig quot mark code salu head tab tech sep emp

Table 2: True labels are on the vertical axis, values were normalized line-wise. Classes: paragraph, closing, in-
line_headers, log_data, mua_signature, patch, personal_signature, quotation, quotation_marker, raw_code, salu-
tation, section_heading, tabular, technical, visual_separator, <empty>. The model is generally conservative,
leaning towards paragraphs in uncertain cases. A slight yet notable confusion between MUA signatures, personal
signatures, and closings can be observed, which are sometimes hard to discern even for humans. The heading class
is the least prevalent of all and thus missing training data. Empty line misclassification is corrected afterwards.

7.2 Corpus Statistics

Languages

All EN DE FR n/a

Messages 153.3M 137.8M 1.9M 1.8M 2.1M
Excl. Replies 57.1M 51.8M 513.4k 683.9k 1.1M

Excl. Bugs, Patches 113.2M 100.3M 1.9M 1.6M 806.0k
Excl. comp, linux, os 24.0M 19.3M 448.5k 315.6k 172.8k

Messages/Month 710.6k 640.8k 9,0k 8,5k 10.0k

Unique Groups 14,635 14,398 6,984 7,710 9,241
Unique Senders 6.4M 6.7M 164.6k 137.7k 252.3k

Paragraph Lines 2.0G 1.8G 28.5M 28.7M 4.7M
Quotation Lines 2.5G 2.3G 26.0M 26.5M 5.0M
MUA Sig. Lines 400.3M 347.9M 3.8M 3.5M 6.3M
Pers. Sig. Lines 158.9M 133.3M 5.3M 2.3M 396.6k

Patch Lines 2.0G 1.9G 7.4M 18.5M 7.7M
Code Lines 254.0M 235.0M 1.6M 2.2M 339.9k

Table 3: Gmane corpus statistics by detected language.

7.3 Segmentation Examples

head: CALENDAR ENTRY: APPOINTMENT

tab: Description:
tab: EB48c2 - DPR Risk Mtg.
tab: Date 3/6/2001
tab: Time 10:00 AM - 11:00 AM (Central Standard Time)
tab: Chairperson: Stacey W White

head: Detailed Description:

par: Shona Wilson Heading the meeting

Figure 2: Segmentation example of an Enron email
with section headings, tabular data, and a paragraph.

salu: Hi Michael,

par: Thanx very much for your response to my question. I will keep a look
par: out on VITN for any updates. The artwork has been fantastic over the
par: years! Thanx so much for all the effort put in!!!

clos: kind regards
clos: LiveMiles

msig: Sent from my iPhone

mark: On Apr 8, 2010, at 20:52, "michael_. . . " </hOMQPRV. . . @example.com
mark: > wrote:
. . .
quot: > > Sent from my iPhone
quot: > >
quot: > Hi Miles & others,
quot: >
quot: > sorry for the late reply. In September last year I have published
quot: > new artwork for TT I and TL VII by Leah Cim on Voices In The Net.
quot: > There will be an update of the site quite soon (I hope), featuring
. . .

tech: [Non-text portions of this message have been removed]

sep: ————————————

sep: ———————–

msig: http://www.tadream.net
msig: ———————–Yahoo! Groups Links

msig: <*> To visit your group on the web, go to:
msig: http://groups.yahoo.com/group/tadream/

msig: <*> Your email settings:
msig: Individual Email | Traditional

msig: <*> To change settings online go to:
msig: http://groups.yahoo.com/group/tadream/join
msig: (Yahoo! ID required)
. . .

Figure 3: Gmane corpus email segmentation example.
Lines were identified correctly as salutation, paragraph,
closing, MUA signatures, quotation marker, quotation,
technical, and separators.


