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Abstract

Studies on grammatical error correction
(GEC) have reported the effectiveness of pre-
training a Seq2Seq model with a large amount
of pseudodata. However, this approach re-
quires time-consuming pretraining for GEC
because of the size of the pseudodata. In this
study, we explore the utility of bidirectional
and auto-regressive transformers (BART) as a
generic pretrained encoder–decoder model for
GEC. With the use of this generic pretrained
model for GEC, the time-consuming pretrain-
ing can be eliminated. We find that monolin-
gual and multilingual BART models achieve
high performance in GEC, with one of the re-
sults being comparable to the current strong
results in English GEC. Our implementations
are publicly available at GitHub1.

1 Introduction

Grammatical error correction (GEC) is the au-
tomatic correction of grammatical and other
language-related errors in text. Most works regard
this task as a translation task and use encoder–
decoder (Enc–Dec) architectures to convert un-
grammatical sentences to grammatical ones. This
Enc–Dec approach often does not require linguis-
tic knowledge of the target language. Strong Enc–
Dec models for GEC are pretrained with a large
amount of artificially generated data, commonly
referred to as ‘pseudodata’, that is created by in-
troducing artificial error to a monolingual corpus.
Hereafter, pretraining using pseudodata aimed at
the GEC task is referred to as task-oriented pre-
training (Kiyono et al., 2019; Grundkiewicz et al.,
2019; Náplava and Straka, 2019; Kaneko et al.,
2020). For example, Kiyono et al. (2019) gener-
ated a pseudo corpus using back-translation and

∗Currently working at Retrieva, Inc.
1https://github.com/Katsumata420/generic-pretrained-

GEC

achieved strong results for English GEC. Náplava
and Straka (2019) generated a pseudo corpus by
introducing artificial errors into monolingual cor-
pora and achieved the best scores for GEC in sev-
eral languages by adopting the methods proposed
by Grundkiewicz et al. (2019).

These task-oriented pretraining approaches re-
quire extensive use of a pseudo-parallel corpus.
Specifically, Grundkiewicz et al. (2019) used
100M ungrammatical and grammatical sentence
pairs, while Kiyono et al. (2019) and Kaneko et al.
(2020) used 70M sentence pairs, which required
time-consuming pretraining of GEC models using
the pseudo corpus.

In this study, we determined the effectiveness
of publicly available pretrained Enc–Dec models
for GEC. Specifically, we investigated pretrained
models without the need for pseudodata. We ex-
plored a pretrained model proposed by Lewis et al.
(2020) called bidirectional and auto-regressive
transformers (BART). Liu et al. (2020) also pro-
posed multilingual BART. These models were pre-
trained by predicting the original sequence, given
a masked and shuffled sentence. The motiva-
tion for using these models for GEC was that it
achieved strong results for several text generation
tasks, such as summarization; we refer to it as a
generic pretrained model.

We used generic pretrained BART models to
compare with GEC models using a pseudo-corpus
approach (Kiyono et al., 2019; Kaneko et al.,
2020; Náplava and Straka, 2019). We conducted
GEC experiments for four languages: English,
German, Czech, and Russian. The Enc–Dec
model based on BART achieved results compa-
rable with those of current strong Enc–Dec mod-
els for English GEC. The multilingual model also
showed high performance in other languages, de-
spite only requiring fine-tuning. These results sug-
gest that BART can be used as a simple baseline
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for GEC.

2 Previous Work

The Enc–Dec approach for GEC often uses the
task-oriented pretraining strategy. For example,
Zhao et al. (2019) and Grundkiewicz et al. (2019)
reported that pretraining of the Enc–Dec model
using a pseudo corpus is effective for the GEC
task. In particular, they introduced word- and
character-level errors into a sentence in monolin-
gual corpora. They developed a confusion set de-
rived from a spellchecker and randomly replaced
a word in a sentence. They also randomly deleted
a word, inserted a random word, and swapped
a word with an adjacent word. They performed
these same operations, i.e., replacing, deleting, in-
serting, and swapping, for characters. The pseudo
corpus made by the above methods consisted of
100M training samples. Our study aims to inves-
tigate whether the generic pretrained models are
effective for GEC, because pretraining with such a
large corpus is time-consuming.

Náplava and Straka (2019) adopted Grund-
kiewicz et al. (2019)’s method for several lan-
guages, including German, Czech, and Russian.
They trained a Transformer (Vaswani et al., 2017)
with pseudo corpora (10M sentence pairs), and
achieved current state-of-the-art (SOTA) results
for German, Czech, and Russian GEC. We com-
pared their results with those of the generic pre-
trained model to confirm whether the model was
effective for GEC in several languages.

Kiyono et al. (2019) explored the generation of
a pseudo corpus by introducing random errors or
using back-translation. They reported that a task-
oriented pretraining with back-translation data and
character errors is better than that with pseudo-
data based on random errors. Kaneko et al. (2020)
combined Kiyono et al. (2019)’s pretraining ap-
proach with BERT (Devlin et al., 2019) and im-
proved Kiyono et al. (2019)’s results. Specifi-
cally, Kaneko et al. (2020) fine-tuned BERT with
a grammatical error detection task. The fine-tuned
BERT outputs for each token were combined with
the original tokens as a GEC input. Their study is
similar to our research in that both studies use pub-
licly available generic pretrained models to per-
form GEC. The difference between these studies
is that Kaneko et al. (2020) used the architecture
of the pretrained model as an encoder. Therefore,
their method still requires pretraining with a large

amount of pseudodata.
The current SOTA approach for English GEC

uses the sequence tagging model proposed by
Omelianchuk et al. (2020). They designed token-
level transformations to map input tokens to tar-
get corrections to produce training data. The se-
quence tagging model then predicts the transfor-
mation corresponding to the input token. We do
not attempt to make a comparison with this ap-
proach, as the purpose of our study is to create
a strong GEC model without using pseudodata or
linguistic knowledge.

3 Generic Pretrained Model

BART (Lewis et al., 2020) is pretrained by predict-
ing an original sequence, given a masked and shuf-
fled sequence using a Transformer. They intro-
duced masked tokens with various lengths based
on the Poisson distribution, inspired by Span-
BERT (Joshi et al., 2020), at multiple positions.
BART is pretrained with large monolingual cor-
pora (160 GB), including news, books, stories, and
web-text domains. This model achieved strong
results in several generation tasks; thus, it is re-
garded as a generic model.

They released pretrained models using English
monolingual corpora for several tasks, including
summarization, which we used for English GEC.
Liu et al. (2020) proposed multilingual BART
(mBART) for a machine translation task, which
we used for GEC of several languages. The lat-
ter model was trained using monolingual corpora
for 25 languages simultaneously. They used a spe-
cial token for representing the language of a sen-
tence. For example, they added <de_DE> and
<ru_RU> into the initial token of the encoder
and decoder for De–Ru translation. To fine-tune
mBART for German, Czech, and Russian GEC,
we set the target language for the special token re-
ferring to that language.

4 Experiment

4.1 Settings
Common Settings. As presented in Table 1,
we used learner corpora, including BEA2 (Bryant
et al., 2019; Granger, 1998; Mizumoto et al., 2011;
Tajiri et al., 2012; Yannakoudakis et al., 2011;
Dahlmeier et al., 2013), JFLEG (Napoles et al.,
2017), and CoNLL-14 (Ng et al., 2014) data for

2BEA corpus is made of several corpora. Details can be
found in Bryant et al. (2019).
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lang Corpus Train Dev Test

BEA 1,157,370 4,384 4,477
En JFLEG - - 747

CoNLL-2014 - - 1,312

De Falko+MERLIN 19,237 2,503 2,337

Cz AKCES-GEC 42,210 2,485 2,676

Ru RULEC-GEC 4,980 2,500 5,000

Table 1: Data statistics.

English; Falko+MERLIN data (Boyd et al., 2014)
for German; AKCES-GEC (Náplava and Straka,
2019) for Czech; and RULEC-GEC (Rozovskaya
and Roth, 2019) for Russian.

Our models were fine-tuned using a single GPU
(NVIDIA TITAN RTX), and our implementations
were based on publicly available code3. We used
the hyperparameters provided in some previous
works (Lewis et al., 2020; Liu et al., 2020), unless
otherwise noted.

The scores excluding the ensemble method
were averaged in five fine-tuned experiments with
random seeds.

English. Our setting for the English datasets was
almost the same as that of Kiyono et al. (2019).
We extracted the training data from BEA-train for
English GEC. Similar to Kiyono et al. (2019), we
did not use the unchanged sentences in the source
and target sides; thus, the training data consisted
of 561,525 sentences. We used BEA-dev to deter-
mine the best model.

We trained the BART-based models by using
bart.large. This model was proposed for the
summarization task, which required some con-
straints in inference to ensure appropriate outputs;
however, we did not impose any constraints be-
cause our task was different. We applied byte
pair encoding (BPE) (Sennrich et al., 2016) to the
training data for the BART-based model by using
the BPE model of Lewis et al. (2020).

We used the M2 scorer (Dahlmeier and Ng,
2012) and GLEU (Napoles et al., 2015) for
CoNLL-14 and JFLEG, respectively, and used the
ERRANT scorer (Bryant et al., 2017) for BEA-
test. We compared these scores with strong results
(Kiyono et al., 2019; Kaneko et al., 2020).

German, Czech, and Russian. The dataset set-
tings in this study were almost the same as those

3BART, mBART: https://github.com/pytorch/fairseq

used by Náplava and Straka (2019) for each lan-
guage. We used official training data and decided
the best model by using the development data.

In addition, we trained the mBART-based mod-
els for German, Czech, and Russian GEC. We
used mbart.cc25 for the mBART-based mod-
els. For the mBART-based model, we followed
Liu et al. (2020); we detokenized4 the GEC train-
ing data for the mBART-based model and ap-
plied SentencePiece (Kudo and Richardson, 2018)
with the SentencePiece model shared by Liu et al.
(2020). Using this preprocessing, the input sen-
tence may not represent grammatical informa-
tion, compared with the sentence tokenized us-
ing a morphological analysis tool and subword to-
kenizer. However, what preprocessing is appro-
priate for GEC is beyond this paper’s scope and
will be treated as future work. For evaluation,
we tokenized the outputs after recovering the sub-
words. Then, we used a spaCy-based5 tokenizer
for German6 and Russian7, and the MorphoDiTa
tokenizer8 for Czech.

Moreover, the M2 scorer was used for each lan-
guage. We compared these scores with the current
SOTA results (Náplava and Straka, 2019).

4.2 Results

English. Table 2 presents the results of the En-
glish GEC task. When using a single model, the
BART-based model is better than the model pro-
posed by Kiyono et al. (2019), and the results
are comparable to those reported by Kaneko et al.
(2020) in terms of CoNLL-14 and BEA-test. Kiy-
ono et al. (2019) and Kaneko et al. (2020) incor-
porated several techniques to improve the accu-
racy of GEC. To compare these models, we ex-
perimented with an ensemble of five models. Our
ensemble model was slightly better than our sin-
gle model, but worse than the ensemble models
by Kiyono et al. (2019) and Kaneko et al. (2020).
The BART-based model along with the ensem-
ble model achieved results comparable to current
strong results despite only requiring fine-tuning of
the BART model. We believe that the reason for
the ineffectiveness of the ensemble method is that
the five models are not significantly different as the

4We used detokenizer.perl in the Moses script (Koehn
et al., 2007).

5https://spacy.io
6We used the built-in de model.
7https://github.com/aatimofeev/spacy russian tokenizer
8https://github.com/ufal/morphodita
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CoNLL-14 (M2) JFLEG BEA-test

P R F0.5 GLEU P R F0.5

Kiyono et al. (2019) 67.9/73.3 44.1/44.2 61.3/64.7 59.7/61.2 65.5/74.7 59.4/56.7 64.2/70.2
Kaneko et al. (2020) 69.2/72.6 45.6/46.4 62.6/65.2 61.3/62.0 67.1/72.3 60.1/61.4 65.6/69.8
BART-based 69.3/69.9 45.0/45.1 62.6/63.0 57.3/57.2 68.3/68.8 57.1/57.1 65.6/66.1

Table 2: English GEC results. Left and right scores represent single and ensemble model results, respectively.
Bold scores represent the best score in the single models, and underlined scores represent the best overall score.

P R F0.5

De
Náplava and Straka (2019) 78.21 59.94 73.31
mBART-based 73.97 53.98 68.86

Cz
Náplava and Straka (2019) 83.75 68.48 80.17
mBART-based 78.48 58.70 73.52

Náplava and Straka (2019) 63.26 27.50 50.20
Ru mBART-based 32.13 4.99 15.38

with pseudo corpus 53.50 26.35 44.36

Table 3: German, Czech, and Russian GEC results.
These models are not an ensemble of multiple models.

initial weights are the same as those of the BART
model, and seeds only affect minor changes, such
as training data order, and so on.

German, Czech, and Russian. Table 3 presents
the results for German, Czech, and Russian GEC.

In the German GEC task, the mBART-based
model achieves 4.45 F0.5 points lower than the
model by Náplava and Straka (2019). This may
be because Náplava and Straka (2019) pretrains
the GEC model with only the target language,
whereas mBART is pretrained with 25 languages,
resulting in the information of other languages be-
ing included as noise.

In the Czech GEC task, the mBART-based
model achieves 6.65 F0.5 points lower than the
model by Náplava and Straka (2019). Similar to
the case of the German GEC results, we suppose
that mBART includes noisy information.

Considering Russian GEC, the mBART-based
model shows much lower scores than Náplava and
Straka (2019)’s model. This may be because the
training data for Russian GEC are scarce com-
pared to those of German or Czech. To investigate
the effect of corpus size, we additionally trained
the mBART model with a 10M pseudo corpus, us-
ing the method proposed by Grundkiewicz et al.
(2019), and fine-tuned it with the learner corpus to
compensate for the low-resource scenario. The re-
sults presented in Table 3 support our hypothesis.

Kaneko et al. (2020) BART-based

Error Type P R F0.5 P R F0.5

PUNCT 74.1 52.7 68.5 79.2 59.0 74.1
DET 73.7 72.9 73.5 76.3 71.1 75.2
PREP 73.4 69.1 72.5 71.2 64.8 69.9
ORTH 86.9 62.9 80.8 84.2 52.9 75.3
SPELL 83.1 79.5 82.3 84.7 55.2 76.5

Table 4: BEA-test scores for the top five error types,
except for OTHER. Kaneko et al. (2020) and BART-
based are ensemble models. Bold scores represent the
best score for each error type.

5 Discussion

BART as a simple baseline model. Accord-
ing to the German and Czech GEC results, the
mBART-based model, in which we only fine-tuned
the pretrained mBART model, achieves compara-
ble scores with SOTA models. In other words,
mBART-based models are considered to show suf-
ficiently high performance for several languages
without using a pseudo corpus. These results indi-
cate that the mBART-based model can be used as
a simple GEC baseline for several languages.

Performance comparison for each error type.
We compare the BART-based model with Kaneko
et al. (2020)’s model for common error types us-
ing a generic pretrained model. Table 4 presents
the results for the top five error types in BEA-test.
According to these results, BART-based is supe-
rior to Kaneko et al. (2020) in PUNCT and DET
errors; in particular, PUNCT is 5.6 F0.5 points bet-
ter. BART is pretrained to correct the shuffled
and masked sequence, so that this model learns to
place punctuation adequately. In contrast, Kaneko
et al. (2020) uses an encoder that is not pretrained
with correcting shuffled sequences.

Conversely, Kaneko et al. (2020) report better
results for other errors, except for DET. Regard-
ing ORTH and SPELL, their model is more than
5 F0.5 points better than the BART-based one.
It is difficult for the BART-based model to cor-
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rect these errors because BART uses shuffled and
masked sequences as noise in pretraining; not us-
ing character-level errors. Kaneko et al. (2020)
introduce character errors into a pseudo corpus
as task-oriented Enc–Dec pretraining; this is the
reason why the BART-based model is inferior to
Kaneko et al. (2020) in these errors.

6 Conclusion

We introduced a generic pretrained Enc–Dec
model, BART, for GEC. The experimental results
indicated that BART better initialized the Enc–
Dec model parameters. The fine-tuned BART
achieved remarkable results, which were compa-
rable to the current strong results in English GEC.
Indeed, the monolingual BART seems to be more
effective for GEC than the model with a multilin-
gual setting. However, although it is not as good
as SOTA, fine-tuned mBART exhibited high per-
formance in other languages. This implies that
BART is a simple baseline model for pretraining
GEC methods because it only requires fine-tuning
as training.
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