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Abstract
Computationally analyzing Sanskrit texts
requires proper segmentation in the initial
stages. There have been various tools de-
veloped for Sanskrit text segmentation. Of
these, Gérard Huet’s Reader in the San-
skrit Heritage Engine analyzes the input
text and segments it based on the word
parameters - phases like iic, ifc, Pr, Subst,
etc., and sandhi (or transition) that takes
place at the end of a word with the initial
part of the next word. And it enlists all
the possible solutions differentiating them
with the help of the phases. The phases
and their analyses have their use in the
domain of sentential parsers. In segmen-
tation, though, they are not used beyond
deciding whether the words formed with
the phases are morphologically valid. This
paper tries to modify the above segmenter
by ignoring the phase details (except for a
few cases), and also proposes a probability
function to prioritize the list of solutions
to bring up the most valid solutions at the
top.

1 Introduction
Every Sanskrit sentence in the saṃhitā form
(continuous sandhied text) is required to be
segmented into proper morphologically ac-
ceptable words and the obtained result should
agree with syntactic and semantic correctness
for it’s proper understanding. The obtained
segmented text consists of individual words
where even the compounds are segmented
into their components. And there can be
more than one segmentation for the same
saṃhitā text. The segmented form does not
provide any difference in the sense of the text
when compared with the saṃhitā form except
for the difference in the phonology of the
words where it can be observed that the end

part of the initial word together with the first
letter of the next word undergoes phonetic
change. The saṃhitā form, in fact, represents
the text similar to a speech text because the
knowledge transfer, in the olden days, was
predominantly based on oral rendition. But
now, for extracting information from these
texts it is necessary that they be broken down
into pieces so that the intention of the text is
revealed completely without any ambiguity.
In order to understand any Sanskrit text,
this process of breaking down into individual
words is necessary, and it is popularly known
as sandhi-viccheda (splitting of the joint text)
in Sanskrit.

This process takes into account the mor-
phological analyses of each of the split-parts
obtained. As there is always a possibility
for multiple morphological analyses even
for individual words, considering only the
morphological validation might result in
enormous number of solutions for long
sentences. So, syntactical accuracy is also
measured to reduce the number of solutions.
Even then, there is always a possibility for
multiple solutions to remain, which cannot
be resolved further without the semantic and
contextual understanding of the sentence
(Hellwig, 2009). Owing to this, we find that
there is non-determinism right at the start of
linguistic analysis (Huet, 2009), since sandhi
splitting is the first step in the analysis of a
Sanskrit sentence.

This kind of non-determinism is also found
in languages like Chinese and Japanese, where
the word boundaries are not indicated, and
also in agglutinative languages like Turkish
(Mittal, 2010). In some of these languages
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like Thai (Haruechaiyasak et al., 2008), most
of the sentences have mere concatenation of
words. Possible boundaries are predicted us-
ing the syllable information, and the process of
segmentation starts with segmenting the syl-
lable first, followed by the actual word seg-
mentation. For Chinese though, their charac-
ters called hanzi are easily identifiable, and the
segmentation could be done by tagging (Xue,
2003), or determining the word-internal po-
sitions using machine learning or deep learn-
ing algorithms (like what is done in Ma et al.
(2018)). In the case of Vietnamese (Thang
et al., 2008), compound words are predomi-
nantly formed by semantic composition from
7000 syllables, which can also exist indepen-
dently as separate words. This is similar to
what can be observed in aluk samāsa in San-
skrit, which are rare in occurrence. For lan-
guages like English, French and Spanish where
the boundaries are specifically observed as de-
limiters like space, comma, semi-colon, full
stop, etc., segmentation is done using these
delimiters and is comparatively simple.
In all the above cases, we find that either

there are delimiters to separate the words, or
individual words are joined by concatenation
which ultimately rests the segmentation pro-
cess in the identification of boundaries. In the
case of Sanskrit though, these kinds of words
form a very small percentage. Rather, there is
the euphony transformation that takes place
at every word boundary. This transition can
be generally stated as u|v → w, where u is
the final part of the first word, v the first
part of the next word, and w the resultant
form after combining u and v. Here the parts
may contain at the most two phonemes. The
resultant w may contain additional phonemes
or may have elisions, but never are more
than two phonemes introduced. So this
transition or sandhi (external) occurs only at
the phoneme level, and it does not require any
other information regarding the individual
words used.1 But the reverse process of
segmentation does require a morphological
analyzer to validate the segments in a split.

1In the case of internal sandhi between preverbs
and verbs, the lexical knowledge of the preverb is re-
quired. And in some compounds (like those denoting a
saṃjñā), certain cases of retroflexion is permitted. But
in this paper only the external sandhi is considered.

And it is entirely up to the speaker or writer
to perform these transitions or keep the words
separated (called vivakṣā - speaker’s intention
or desire). But in most of the texts and
manuscripts, the sandhi is done throughout
the text. So, finding the split location alone
will not be enough to segment the texts
properly.

Having looked into some of the intricacies
of sandhi in Sanskrit, we can come up with a
mechanical segmentation algorithm that splits
a given text into all possible segments:

1. Traverse through the input text and mark
all possible split locations which could be
found in the list of sandhied letters.2

2. When a sandhied letter is marked, then
list all it’s possible splits.

3. Considering all the possible combinations
of the words formed after each of these
splits are allowed to join with the respec-
tive words (left word or right word), take
each of the words, starting from the first
word, to check for the morphological fea-
sibility. Keep in mind that the words thus
formed may also bypass the split loca-
tions, where they don’t consider the split
location present in between them.3

4. If the word is morphologically correct,
then consider it as a valid split word and
move on to the next split location, and do
step 3 until the last word of the sentence
is reached. The sequence of words thus
formed is the first solution. If the word is
not morphologically correct, move to step
5. If all the words formed in a single split
location, either on the left or on the right,
or both, are not morphologically correct,
then discard that split location and move
to step 3 for the next location.

2To get the list of sandhied letters, there is a list
of sūtras or rules for the joining of letters, available in
Pāṇini’s Aṣṭādhyāyī from which one can reverse ana-
lyze and obtain the list of sandhied letters.

3For example - rāmālayaḥ has split locations at 3
places - second, fourth (due to akaḥ savarṇe dīrghaḥ
in Aṣṭādhyāyī 6.1.101) and sixth-seventh (due to
eco’yavāyāvaḥ in Aṣṭādhyāyī 6.1.78) letters. So, rā is
one split word, as also rāma, which bypasses the split
location ā. Similarly, we can find other split words
also.
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5. Check the words formed from the subse-
quent splits and continue with steps 3 and
4 to obtain other solutions.

6. Trace back every split location, and per-
form step 5.

7. In this way, get all the possible combina-
tions of the split words.

Although this mechanical process looks
quite simple, the previously mentioned issues
like non-determinism do prevail. And systems
like the Sanskrit Reader in Sanskrit Heritage
Engine come up with better ways to try to
account these problems. The current paper
tries to update these efforts. It is organized
as follows: Section 2 gives the update on how
the segmentation for Sanskrit has been dealt
with in recent years. Section 3 discusses the
important features of The Sanskrit Heritage
Engine’s Reader. Section 4 explains in de-
tail the issues present in the Reader. The
modifications needed to be done, and the im-
plementation for this paper compose Section
5. It also quotes theoretically the reasons for
these modifications and provides the probabil-
ity function proposed in this paper. Section 6
describes the methodology of the implementa-
tion, and the results and observations are in
Section 7.

2 Current Methods
Achieving the correct segmentation computa-
tionally is as much difficult as it is manually.
A general approach would be the conversion of
the mechanical sandhi splitting process men-
tioned in Section 1 to a working algorithm, fol-
lowed by checking the statistics available for
the frequencies of the words and transitions.
But there has been a lot of better research
work, both rule-based and statistical, on com-
putational sandhi splitting in Sanskrit.
Huet (2003), as a part of the Sanskrit Her-

itage Engine, developed a Segmenter for San-
skrit texts using a Finite State Transducer.
Two different segmenters were developed - one
for internal sandhi, which is deployed in the
morphological analyser, and the other for ex-
ternal sandhi. The current paper focuses on
updating this external sandhi segmenter.
Mittal (2010) had used the Optimality The-

ory to derive a probabilistic method, and de-

veloped two methods to segment the input
text
(1) by augmenting the finite state transducer
developed using OpenFst (Allauzen et al.,
2007), with sandhi rules where the FST is used
for the analysis of the morphology and is tra-
versed for the segmentation, and
(2) used optimality theory to validate all the
possible segmentations.
Kumar et al. (2010) developed a compound

processor where the segmentation for the com-
pound words was done and used optimality
theory with a different probabilistic method
(discussed in section 5).
Natarajan and Charniak (2011) later mod-

ified the posterior probability function and
also developed an algorithm based on Bayesian
Word Segmentation methods with both unsu-
pervised and supervised algorithms.
Krishna et al. (2016) proposed an approach

combining the morphological features and
word co-occurrence features from a manually
tagged corpus from Hellwig (2009), and took
the segmentation problem as a query expan-
sion problem and used Path Constrained Ran-
dom Walk framework for selecting the nodes
of the graph built with possible solutions from
the input.
Reddy et al. (2018) built a word segmenter

that uses a deep sequence to sequence model
with attention to predict the correct solution.
This is the state of art segmenter with preci-
sion and recall as 90.77 and 90.3, respectively.
IBM Research team (Aralikatte et al.,

2018), had built a Double Decoder RNN with
attention as seq2(seq)2, where they have em-
phasized finding the locations of the splits first,
and then the finding of the split words. And
they have the accuracy as 95% and 79.5% for
finding the location of splits and the split sen-
tence, respectively.
Hellwig and Nehrdich (2018) developed

a segmenter using Character-level Recurrent
and Convolutional Neural Networks, where
they tokenize Sanskrit by jointly splitting
compounds and resolving phonetic merges.
The model does not require feature engineer-
ing or external linguistic resources. It works
well with just the parallel versions of raw and
segmented text.
Krishna et al. (2018) proposed a structured
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prediction framework that jointly solves the
word segmentation and morphological tagging
tasks in Sanskrit by using an energy based
model which uses approaches generally em-
ployed in graph based parsing techniques.

3 Heritage Segmenter
The Sanskrit Heritage Engine’s Segmenter was
chosen for further development, for three rea-
sons -

1. It is the best segmenter available online
with source code available under GPL.

2. It uses a Finite State Transducer, and
hence the segmentation is obtained in lin-
ear time.

3. It can produce all possible segmentations
that one can arrive at, following Pāṇini’s
rules for sandhi.

It analyses the given input and produces the
split based on three main factors:

1. Morphological feasibility: whether each of
the words observed as a split is morpho-
logically obtainable.

2. Transition feasibility: whether every
transition observed with each of the word
is allowed.

3. Phase feasibility: whether the sequence
of words have proper phase values. This
is a constraint on the POS of a word.
Although Sanskrit is a free word order
language, there are certain syntactic con-
straints which govern the word formation,
and the sequence of components within a
word follows certain well defined syntax.
The phase feasibility module takes care of
this. Figure 1 shows a part of the lexical
analyzer, developed by Goyal and Huet
(2013), that portrays these phases like Iic,
Inde, Noun, Root, etc.

Let us consider the sentence rāmālayo′sti,
as an example to understand these factors. It
can be observed that there are twelve possible
split solutions given in Table 1, from which, all
the observed split words are shown in Figure 2.

Other possible words like rā, mālayaḥ, etc.
are not taken as proper splits because they do

Figure 1: A simplified lexical analyzer

Solutions
rāma (iic) ālayaḥ (ālaya/āli masc) asti
rāma (iic) ālayaḥ (āli fem) asti
rāma (iic) alayaḥ (ali masc) asti
rāma (iic) a (iic) layaḥ asti
rāma (iic) alayaḥ (ali fem) asti
rāmā (fem) layaḥ asti
rāmā (fem) ālayaḥ (ālaya/āli masc) asti
rāmā (fem) alayaḥ (ali masc) asti
rāmā (fem) a layaḥ asti
rāma (rā) ālayaḥ (ālaya/āli masc) asti
rāma (rā) alayaḥ asti
rāma (rā) a (iic) layaḥ asti

Table 1: List of solutions for the sentence
rāmālayo′sti

not form proper words according to the mor-
phological analyzer present in the system. In
this way, morphological feasibility is checked.
In the same example, we find that, at the last
possible split location represented by o′, we
can split it as aḥ and a but not in any other
way.4 This is ensured by the transition feasi-
bility module.
The phase details like iic for rāma or pr for

asti, etc. are displayed along with the words.
These assignments of the phase information
to the words and their analysis are the jobs of
the phase feasibility module. To understand
these phases, look at Figure 3 (the first
solution for the sentence rāmālayo′sti). rāma
is the first split and has the phase iic. ālayaḥ
is the second split with two morphological
possibilities - ālaya and āli. And the transi-
tion between the first two words is - a | ā → ā.

4For the rules governing these transitions refer the
Aṣṭādhyāyī sūtra: atororaplutādaplute (6.1.113) and
haśi ca (6.1.114)
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Figure 2: The interface for choosing or reject-
ing the obtained split words for the example
rāmālayo′sti

Figure 3: The first solution for the sentence
rāmālayo′sti

The third split is asti with root as and phase
pr. And the transition follows the equation -
aḥ | a → o′. These transitions are taken care
of by the transition feasibility module and the
phases mentioned above are taken care of by
the phase feasibility module.

According to Goyal and Huet (2013),
sentences are formed by the image of the
relation R (sandhi rules) on Kleene closure of
W*, of a regular set W of words (vocabulary
of inflected words). The Sanskrit Heritage
Reader accepts a candidate sentence w, and
applies the inverted form of the relation R,
thus producing a set of words - w1, w2, w3,....
And each of the individual words are valid
according to the rules of morphology, and
their combination makes some sense.

The methodology followed in the Segmenter

proposed in Goyal and Huet (2013) starts with
using the finite state transducer for generat-
ing the chunks, instead of the traditional re-
cursive method over the sentence employed in
many sandhi splitting tools. The FST consid-
ers the phases as important characteristics of
the words. These phases correspond to a finite
set of forms.
To understand how a word is obtained, let

us first take a small example of how the sub-
stantival forms (subantas) are obtained. A
subanta is analysed as a nominal stem followed
by a suffix. The nominal stem can be either an
underived stem or a derived stem. In case of
a derived stem, the derivation of this stem is
also provided by the segmenter. A compound,
for example, has a derived stem which con-
tains a sequence of components followed by a
nominal suffix. And three phases are present
to represent the subantas:

1. Noun, that contains declined forms of au-
tonomous atomic substantive and adjec-
tive stems, from the lexicon

2. Ifc, non-autonomous and used as right-
hand component of a compound

3. Iic contains bare stems of nouns to be
used as left component

This sequence of Subst → Noun → Accept,
creates a noun word. And the sequence of
Subst → Iic+ → Ifc → Accept, creates a
compound word. These sequences can be
observed in Figure 1. In this way, forms
from these phases are selected, and gluing
them with sandhi rules, a word is obtained.
Considering all such possible phases in
Sanskrit, an automation transition graph is
formed and is used to traverse through to find
the possible split locations and words together.

4 Issues in Heritage Segmenter
The Segmenter is embedded in the Sanskrit
Reader which displays all the outputs with the
corresponding split word, it’s phase and the
transition involved with the subsequent word,
except when the number of outputs is huge, in
which case it shows only the summary. The
Reader shows the distinction between words
and phases based on verb, noun, iic, inde, etc,
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but not between some of the case-markers.
So, there is inconsistency in disambiguation:
sometimes the phase is used for pruning out
certain solutions, but in some cases, it is not.
For example, rāmovanaṅgacchati produces the
following 4 solutions:
Solution 1 :

[ rāmaḥ [rāma]m. sg. nom. �aḥ|v → ov�]
[ vanam [vana]n. sg. acc. | n. sg. nom. �m|g
→ ṅg�]
[ gacchati [gam]pr. [1] ac. sg. 3 ��]

Solution 2 :
[ rāmaḥ [rāma]m. sg. nom. �aḥ|v → ov�]
[ vanam [vana]n. sg. acc. | n. sg. nom. �m|g
→ ṅg�]
[ gacchati [gacchat ppr. [1] ac. [gam]]n. sg.
loc. | m. sg. loc. ��]

Solution 3 :
[ rāmaḥ [rā_1]pr. [2] ac. pl. 1 �aḥ|v → ov�]
present [ vanam [vana]n. sg. acc. | n. sg.
nom. �m|g → ṅg�]
[ gacchati [gam]pr. [1] ac. sg. 3 ��]

Solution 4 :
[ rāmaḥ [rā_1]pr. [2] ac. pl. 1 �aḥ|v → ov�]
[ vanam [vana]n. sg. acc. | n. sg. nom. �m|g
→ ṅg�]
[ gacchati [gacchat ppr. [1] ac. [gam]]n. sg.
loc. | m. sg. loc. ��]

The segmenter provides segmentation and
also does partial disambiguation. For exam-
ple, rāmaḥ is ambiguous morphologically and
the machine has correctly disambiguated the
alternatives. We see the noun analysis of it
in the first and second solutions, and the ver-
bal analysis in third and fourth solutions. But
we notice that the word vanam which is am-
biguous between two morphological analyses,
one with nominative case marker and the other
with accusative marker, is not disambiguated.
Goyal and Huet (2013) mention that the con-
sideration of a word’s similar declensions as
different might result in more ambiguity, and
the purpose of the segmentation is to find the
morphologically apt words and hence they are
taken as one.
If we look at these four solutions, at the

word level, all of them correspond to rā-

maḥ vanam gacchati. In order to decide the
correct solution among the four, we need to
do syntactico-semantic analyses that depend
solely upon the linguistic or grammatical in-
formation in the sentence (Kulkarni, 2013).

5 Proposed Modification

We notice that the use of phase information re-
sults in multiple solutions. In order to choose
the correct solution among them, one needs to
look beyond the word analysis and look at the
possible relations between the words. This is
the domain of the sentential parser. Only a
sentential parser can decide which of the seg-
mentations with phase information is the cor-
rect one. Thus we do not see any advantage
of having the phase information.
And in the interface, the system is not uni-

form in resolving the ambiguities. It uses cer-
tain morphologically different phases under a
single word, like vanam in section 4. Addition-
ally, in the options for selecting or rejecting
the words, sometimes the depth of the graph
goes so deep that, there is a chance to miss
some solutions.
Here we would like to mention that some

of the phase information is still relevant for
segmentation. And this corresponds to the
compounds. The phase information tells if
something is a component of a compound
or a standalone noun. There are a few
phases such as iic, iif, etc. that we do not ig-
nore. Barring these we ignore all other phases.

Therefore, we propose the following modifi-
cations in the segmenter:

1. Ignore the phase information that is ir-
relevant from segmentation point of view
and merge the solutions that have the
same word level segmentation.

2. Prioritize the solutions.

This is similar to the intention in Reddy
et al. (2018) where the morphological and
other linguistic details are not obtained, but
the segmentation problem is seen as an end in
itself.
This is also similar to what Huet (2009) did

as an update for Gillon (2009) to the com-
pound analyzer where Gillon (2009) uses the
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dependency structure to get the tree form con-
sisting of all the parts of the compound word.
And Huet (2009) made the lexical analyzer to
understand the compound as a right recursive
linear structure of a sequence of components.
This made sure that only the compound com-
ponents are obtained, and not their relation-
ship with each other. This helps in easier and
faster segmentation, but the next level syntac-
tic analysis cannot be done without the rela-
tionship information of the components. Simi-
larly, the same approach has been extended to
all words, and not just compound words, and
the phase details are not considered as valid
parameters to distinguish solutions. Such so-
lutions were termed duplicates and hence re-
moved.
Once the duplicates are removed, prioriti-

zation needs to be done. Many probabilistic
measures have been proposed in the past to
prioritize the solutions.
Mittal (2010) calculated the weight for a

specific split sj as

Wsj =
(
∏m−1

i=1 (P̂ (ci) + P̂ (ci+1))× P̂ (ri))

m
(1)

where P̂ (ci) is the probability of the occur-
rence of the word ci in the corpus. P̂ (ri) is the
probability of the occurrence of the rule ri in
the corpus. And m is the number of individual
components in the split sj .

Kumar et al. (2010) uses the weight of the
split sj as

Wsj =
(
∏m

i=1 P̂ (ci))× (
∏m−1

i=1 P̂ (ri))

m
(2)

Natarajan and Charniak (2011) proposed a
posterior probability function, P̂ (s), the prob-
ability of generating the split s = ⟨c1...cm⟩,
with m splits, and rules r = ⟨r1, ..., rm−1⟩ ap-
plied on the input, where

P̂ (s) = P̂ (c1)×P̂ (c2|c1)×P̂ (c3|c2, c1)×... (3)

P̂ (s) =
m∏
j=1

P̂ (cj) (4)

P̂ (c1) is the probability of occurrence of the
word c1. P̂ (c2|c1) is the probability of occur-
rence of the word c2 given the occurrence of
the word c1, and so on.

Mittal (2010) and Kumar et al. (2010) follow
the GEN-CON-EVAL paradigm attributed to
the Optimality Theory. This paper considers a
similar approach but the probability function
is taken as just the POP (product-of-products)
of the word and transition probabilities of each
of the solutions, discussed in section 6.
And to prioritize the solutions, the follow-

ing statistical data was added from the SHMT
Corpus:5
• samāsa words with frequencies
• sandhi words with frequencies
• samāsa transition types with frequencies
• sandhi transition types with frequencies

6 Methodology

Every solution obtained after segmentation is
checked for the two details viz. the word and
the transition (that occurs at the end of the
word due to the presence of the next word),
along with the phase detail that is checked
only for those which correspond to the com-
ponents of a compound. For every solution s,
with output as

s = ⟨w1.w2....wn⟩

a confidence value, Ci, is obtained which is the
product of the products of transition proba-
blility (Pti) and word probability (Pwi) for the
word wi,

Ci =
n∏

i=1

Pwi × Pti (5)

The confidence value is obtained as follows:

• For every split word wi, it’s phase is
checked to know whether the obtained
word forms a compound or not.

• If it is a compound word, then it’s corre-
sponding frequency is obtained from com-
pound words’ statistical data, to calculate
the word_probability, P (wi)

• If it is not a compound word, then corre-
sponding frequency is obtained from the
sandhi words’ statistical data.

5A corpus developed by the Sanskrit-Hindi
Machine Translation (SHMT) Consortium under
the funding from DeItY, Govt of India (2008-
12). http://sanskrit.uohyd.ac.in/scl/GOLD_DATA/
tagged_data.html

http://sanskrit.uohyd.ac.in/scl/GOLD_DATA/tagged_data.html
http://sanskrit.uohyd.ac.in/scl/GOLD_DATA/tagged_data.html
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• For every transition associated with the
word, the transition’s corresponding fre-
quency is obtained from either the samāsa
transition data, or the sandhi transition
data, based on the phase of the word;
to calculate the transition_probability,
P (ti).6

• The confidence value for the word,
wi is thus obtained as the prod-
uct of word_probability and transi-
tion_probability word_probability ×
transition_probability:

Ci = Pwi × Pti (6)

• Finally the product of all such products
was obtained for a single solution as the
confidence value of the solution -

Ctotal =
n∏

i=1

Pwi × Pti (7)

The solutions are then sorted as decreasing
order of confidence values and the duplicates
are removed based on only the word splits.
The remaining solutions are displayed along
with their number and confidence values.

7 Observations
The test data contained on the whole 21,127
short sandhied expressions, which were taken
from various texts available at the SHMT cor-
pus. This data was a parallel corpus of sand-
hied and unsandhied expressions. In case there
are more than one segmentation possible, only
one segmentation that was appropriate in the
context where the sandhied expression was
found is recorded.
The above data was fed to both the old and

the modified segmenters. The results of the
old segmenter were used as the baseline. A
comparison was done on how the updated sys-
tem performed with respect to the old system.
The correct solution’s position in the old seg-
menter was compared with the correct solu-
tion’s position in the updated segmenter. Ta-
ble 2 summarizes the results.
The old segmenter was able to correctly pro-

duce the segmented form in 19,494 cases out
6If the frequency is not available for either the word

or the transition, then it is assigned a default value of
1.

of the 21,127 instances. Of these, 53.51% of
the solution was found to be in the first posi-
tion, 12% in second position, and 9.61% in the
third. All put together, 75.12% of the correct
solutions were found in the top three solutions.
Another important observation was that, the
entire number of solutions taken all together
was 2,40,942 for 21,127 test instances and the
average number of solutions was 11.4 with the
correct solution’s position averaging at 4.71.
The modified segmenter was able to cor-

rectly produce the segmented form in 19,494
cases, same as the old segmenter. And 89.27%
of the solution was found to be in the first po-
sition, 6.83% in the second position, and 2.2%
in the third. All put together, 98.3% of the
correct solutions were found in the top three
solutions. This has an increase of 23.18% from
the existing system. Also, the entire number
of solutions taken all together was 1,46,610 for
21,127 test instances, having a drastic reduc-
tion of 94,332 solutions. The average number
of solutions was 6.94, with the correct solu-
tion’s position averaging at 1.18.
It can be noted that the overall Recall was

0.92270554267 for both the machines. Since
only the statistics have been altered, the new
system doesn’t provide new solutions. Rather,
it has increased the chances of getting the so-
lution at the top three by 23.18%.
As we observe, the updated system reduces

the total amount of solutions and brings up
the most likely solutions. Also, we have more
than 90% recall in both the cases. The missed
out instances were either due to morphological
unavailability or owing to the failure of the
engine. Once the morphological analyzer is
updated, there will definitely be a boost in the
efficiency.

8 Conclusion

There are a few observations to be noted.
First, by just using the POP (product of prod-
ucts) of the word and transition probabilities,
we are able to obtain 98% precision. With bet-
ter probabilities, we will definitely have better
results. Second, this system can now be used
to mechanically split the continuous texts like
Saṃhita-Pāṭha of the Vedas or any other clas-
sical text to obtain the corresponding Pada-
Pāṭha, which may be manually checked for
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No. of Old Segmenter % Updated Segmenter %
Input text 21,127 - 21,127 -
Output text 21,127 - 21,127 -
Correct sol 19,494 92.27 19,494 92.27
Correct sol in 1st 10,432 53.51 17,403 89.27
Correct sol in 2nd 2,340 12.00 1,332 6.83
Correct sol in 3rd 1,874 9.61 429 2.20
Correct sol in 4th 937 4.8 164 0.84
Correct sol in 5th 703 3.6 73 0.37
Correct sol in sol > 5th 3,208 16.45 96 0.49
Incorrect sol 1,629 7.71 1,629 7.71
Entries with 1 solution 5,467 25.87 7,167 33.92
Entries with 2 solutions 3,320 15.71 4,002 18.94
Entries with 3 solutions 2,123 10.05 2,053 9.71

Table 2: A comparison of the performance of both the segmenters

correctness. Third, for mere segmentation, the
phase distinctions were ignored, and the ob-
tained solutions were prioritized. As stated
earlier in the previous sections, to proceed to
the next stage of parsing or disambiguation,
we need more than just the split words. Thus
this could be a proper base for working on how
the available segmented words, along with the
phase details, may be used for further stages
of analysis.
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