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Abstract

Context-free grammars (CFG) were one of the first formal tools used to model
natural languages, and they remain relevant today as the basis of several
frameworks. A key ingredient of CFG is the presence of nested recursion.

In this paper, we investigate experimentally the capability of several recur-
rent neural networks (RNNs) to learn nested recursion. More precisely, we
measure an upper bound of their capability to do so, by simplifying the task
to learning a generalized Dyck language, namely one composed of matching
parentheses of various kinds. To do so, we present the RNNs with a set of
random strings having a given maximum nesting depth and test its ability to
predict the kind of closing parenthesis when facing deeper nested strings. We
report mixed results: when generalizing to deeper nesting levels, the accuracy
of standard RNNs is significantly higher than random, but still far from per-
fect. Additionally, we propose some non-standard stack-based models which
can approach perfect accuracy, at the cost of robustness.
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1 Introduction

In many settings, Recurrent Neural Networks (RNNs) act as generative lan-
guage models. That is, given a prefix, they predict the likelihood of the next
symbol. This probability is expressed as a continuous function of parameters
(typically millions), which can be optimized (or trained) using gradient de-
scent. By definition, RNNs are constructed by repeating a simple component,
often called a cell, each cell taking care of one time-step. Additionally each
cell passes some information to the cell at the next timestep. This information
can be understood as an internal (so called “hidden”) state, which can be used
by the RNN to represent the input seen so far. RNNs can additionally be used
for a variety of tasks such as input classification (e.g. sentiment analysis) or
translation tasks.

The key ingredient to well-performing RNNs is to have each cell update
the state by using a linear combination of the previous state and a new value.
This linearity means that the current timestep depends linearly on symbols
which occur much earlier in the input, and, in turn, the gradients of the pa-
rameters are also linearly dependent on the error in the output. RNNs need
non-linear components as well, which allows them to model complex (non-
linear) relations between inputs and outputs. Popular RNNs functioning on
these principles include the long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997), and the gated recurrent unit (GRU) (Cho et al., 2014).

Thanks to their versatility, relative ease of training and ability to model
long-term dependencies, RNNs have become the leading tool for natural lan-
guage processing. For example, Karpathy et al. (2015) and Karpathy (2016)
show that RNNs can model Shakespeare plays, Wikipedia articles, algebraic
geometry papers and modules of the Linux source code. While experts in ei-
ther domain will quickly recognize the generated samples as nonsense, they
nonetheless broadly exhibit the syntactic structure that one would expect,
both for small-scale (words, function names) and large-scale elements (e.g.
stanzas, complex C-code statements).

Yet understanding how precisely they learn how to generalize is an open
question. Even experienced computational linguists use words such as “amaz-
ing” or even “magic” to describe them, betraying that it remains mysteri-
ous how, simply by performing arithmetic operations, the RNN can effec-
tively mimic human linguistic production (Karpathy, 2016). Unfortunately
this combination of poor understanding and enthusiasm may lead less ex-
perienced researchers into believing that the capabilities of LSTM RNNs are
limitless, and that, with enough data, they can model any language you throw
at them. In particular, because Karpathy et al. shows that their models can
generate text which appears to adhere to the rules of a context-free grammar,
one might draw the conclusion that LSTM RNNs are in fact suitable to learn
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context-free languages from a set of real-world examples.
But can they? Unfortunately, the generated samples only show display

shallow recursion depths, so one cannot conclude that they model nested re-
cursion – which is one of the defining features of the venerable Context-Free
Grammars (CFG). (Whether or not nested recursion is a fundamental feature
of natural languages has been the subject of a fierce debate. While we do not
wish to take sides in that debate, we do acknowledge the importance of re-
cursion when modeling syntax.) In this paper we measure an upper bound on
the capability of various RNNs to learn nested recursion, by focusing on a
simpler problem than that of learning context-free languages. More precisely,
we investigate experimentally the ability of RNNs to learn a nested recursion
in a language composed of balanced parentheses of various kinds. Thus, the
results presented here apply directly to formal languages rather than natural
languages.

The present work is part of an effort in the computational linguistic com-
munity to understand the capabilities of neural networks. We discuss previous
work, including that of Linzen et al. (2016), in section 6. We test the LSTM,
GRU, and a special purpose recurrent unit with a stack-like state (hereafter
referred to as RUSS), and combinations thereof (section 2). We test the abil-
ity to learn both the plain Dyck language (with a kind pair of parentheses,
see section 4) and a generalization of it, with several kinds of parentheses
(section 5) — the precise definition of the language can be found in section 3.

2 Models

We experiment with LSTMs, GRUs and RUSSs, sometimes in combination.
In this section we give the precise definition of each of the components.

2.1 LSTM

We use the variant of the LSTM RNN defined by the following equations:
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In the above, the ⇧ operator denotes vector concatenation. The vector x
t

is the
input at time t and W and b are trainable parameters. The so-called hidden
state h

t

both serves as the output of the RNN and is passed to the next time-
step. The dimension of each vector h

t

is an hyperparameter and is called the
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number of units of the LSTM, which we note by n in the following. The c

t

vector, whose size equals the number of units, acts as the long-term memory
of the RNN. Indeed at each timestep c

t

is updated according to a linear com-
bination of its previous value and a new vector c̃

t

, according to the forget (f
t

)
and input (i

t

) gates. This linear updates mean that backpropagating gradi-
ents are also linear functions. Thus, if the forget and input gates are properly
set, a memory can persist as long as necessary in the time dimension, for the
purpose of gradient descent.

Assuming that the size of every input vector x
t

is m, then a plain LSTM
has 4(n + m)n + 4n scalar parameters. Thus, the number of parameters is
a quadratic function of the unit size. This quadratic relation is what puts a
bound on n. Indeed, the more scalar parameters a model has, the more it is
consuming resource and the more it is prone to overfitting.

2.2 GRU

The gated recurrent unit (GRU) is another popular component of RNNs, in-
vented by Cho et al. (2014). We use here the variant of the GRU defined by
the following equations:
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The GRU does not feature a specific memory state: the so-called hidden state
h

t

serves both as internal state (memory) and output. The number of param-
eters is 3(n + m)n, which is less than the LSTM, but still quadratic in the
number of units n.

2.3 RUSS

The creative contribution of this paper is a recurrent unit with a stack-like
state hereafter abbreviated to RUSS, inspired by Grefenstette et al. (2015),
which is defined as follows:
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The internal state of this RNN is s
t

, which can be understood as the mem-
ory, and is manipulated as a stack. It is a tensor of dimensions d ⇥ n, where
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d is the maximum depth of the stack. The expression s

t

[0] refers to the top
of the stack at time-step t. We have a control gate (a

t

) which drives the ac-
tions on the stack. The value of a

t

is determined by learnable parameters W
a

and b

a

, together with the input x
t

and the top of the stack at the previous
time step. To compute the value of the stack at the current time step s

t

, we
combine linearly all the possible modifications of the stack (push, pop or no
action) according to a

t

— this linear combination is a dot product of such
modifications with a

t

.
The number of scalar parameters of the RUSS is 6m + 3. Importantly,

this number is independent of the depth of the stack. Consequently, when the
depth of the stack is increased, the total memory size is increased as well;
but the number of parameters remain the same. Further, the parameters them-
selves do not depend on the size of the stack. Consequently it is even possible
to change the stack size between runs. (Say, train it using a small stack size
and use it to evaluate new inputs using a bigger stack size.)

2.4 RNN configurations

In our experiments we use LSTM, GRU and RUSS in 11 different configura-
tions, as follows.

1. one GRU layer with 40 units
2. one LSTM layer with 40 units
3. one GRU layer with 160 units
4. one LSTM layer with 160 units
5. one RUSS layer
6. two GRU layers with 40 units each
7. two LSTM layers with 40 units each
8. one LSTM layer followed by a GRU layer, with 40 units each
9. one GRU layer followed by a LSTM layer, with 40 units each

10. one LSTM layer followed by a RUSS layer, with 40 units each
11. one GRU layer followed by a RUSS layer, with 40 units each

The configurations 1 to 5 are used to assess the performance of each layer
independently. In particular, testing the RUSS on its own is intended to con-
firm at a specific-purpose RNN can do the nested recursion task. The other
configurations are meant to indicate how the components would perform in a
complex RNN. When two layers are used, the output of the first layers is fed
as input to the second layer, as is customary in multi-layer RNNs.

In each case, the input characters are translated to a vector of size 12 by
means of a standard embedding layer.1 Likewise, the output of either config-

1In preliminary experiments, we observed that using arbitrary embeddings instead of one-hot
vectors impacted the accuracy positively in a statistically significant way (but without impact on
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uration is fed to a dense layer with softmax activation, predicting the proba-
bility of the next character. Additionally, a dropout of 10% is applied equally
on the input (x

t

) and on the hidden state (h
t

) of LSTMs and GRUs but not
on the linear memory (c

t

). No dropout is applied to RUSS layers. The loss
is computed by summing the cross-entropy between predictions and exam-
ples in the test set, for each character. The parameters are optimized by using
the Adam optimizer (Kingma and Ba, 2014) with a learning rate of 10�4 (a
procedure which is standard at the time of writing).

3 Generalized-Dyck Language

Let us define the language D
P

as the set of strings generated by the following
context-free rules, dependent on a set P of matching parenthesis pairs.

S ::= E#

E ::= oEc for every (o, c) 2 P

E ::= EE

E ::= "

Let us further call Dn

P

the subset of D

P

composed of strings of length
n + 1 (adding one to account for the termination character (#)), and D

(n)
P

the the subset of D composed of strings of length n+ 1 or less.

D

n

P

= {x 2 D

P

| length(x) = n+ 1}
D

n

P

= {x 2 D

P

| length(x)  n+ 1}

4 Learning D{(,)}
We start by checking that RNNs can learn recursion in a Dyck language with
a single pair of parentheses. Thus we let P be {(, )}.

In this experiment, we train RNNs on strings in D

14
P

and test it on all
strings in D

18
P

. The training set is a subset of 512 strings picked at random
in D

14
P

. (#D

14
P

= 625 and #D

18
P

= 6917.) While it is customary to
select a large training set and a small test set, we do the opposite here because
1. the language is small enough to test in its entirety and 2. we want to train
our model on a data set which does not cover the whole language.

Recall that RNNs predict the probability of any given character, knowing
the previous characters in the string. However, in a Dyck language with a
single pair of possible parentheses, the next character is only restricted in
the situation when all opening parentheses have been closed — in which case

the general trends). Because using embeddings has little to no impact on the complexity of the
models, we stuck to this choice in the reported experiments.
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only an opening parenthesis is possible. Thus, for testing our models, we only
check that the model correctly predicts that, after being fed a complete string,
no closing parenthesis can follow. Testing this condition suffices to check that
the model would not generate an incorrect string of size 19 or longer.

4.1 Results

For this experiment, all our RNN configurations are able to reach an accuracy
greater than 99%, in less than 5 epochs (the exact numbers vary from run to
run, but the reported numbers are conservative).

4.2 Interpretation

One could be quick and conclude from this experiment alone that any of the
tested RNN is able to learn nested recursion. However, we must realize that
D{(,)} is an extremely simple language to model. If one has access to a count-
ing device2 one can model D{(,)} by simply using a counter initialized at 0,
incrementing it on closing parentheses and decrementing on closing parenthe-
ses. When it is equal to 0, only an opening parenthesis is acceptable. It is hard
to conclude anything about the suitability of RNNs to model most commonly-
used language from this experiment — indeed any non-trivial context-free
language will require matching several kinds of symbols, and thus will ne-
cessitate, instead of a counter, a full-fledged push-down automaton.

Furthermore, we can dismiss by a reduction process any experiment which
would check that the language a

n

b

n can be learned: it is a subset of D{(,)}
and thus can also be modeled using a simple counter. Likewise, from knowing
how to learn a

n

b

n

c

n using RNNs, not much insight can be gained on whether
RNNs can learn context-sensitive languages in general.

5 Learning D{((,)),(+,�),([,]),(<,>),({,})}
Thus we set out to train RNNs on a language with several kinds of parentheses
— a task which requires memory proportional to the depth of recursion. We
choose P such that symbols in P are unique and #P = 5. (Thus say P =
{((, )), (+,�), ([, ]), (<,>), ({, })}). We train each RNN in our repertoire to
predict, as before, the probability of any given character knowing the previous
characters in the string. We note right away that one can never approach 100%
accuracy for this task. Indeed, consider the prefix:

(([()

The next character can either be a closing parenthesis of the right type (])
or any of the opening parentheses. Thus in this situation there are six possible
choices, equally valid. In situations where no closing parenthesis is possible,

2Presumably all customary RNNs can count, as they are after all composed of units which
can be activated at arbitrary floating point values, and updated using a linear combination of
activations at the previous time-step.
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one can instead expect the “end of string” character (#) instead. Thus the
number of valid choices is always 6, and a perfect strategy would yield an
accuracy of about 17%. In contrast, a random strategy would pick among all
11 possible characters and have an accuracy of about 9%.

In sum, the accuracy of predicting the next character is not a clear measure
of a generative model to recognize this language. Thus we measure instead
the accuracy of predicting the next character assuming that it is a closing

parenthesis in the test set. Consequently, a perfect predictor will yield 100%
accuracy (because only one kind of closing parenthesis is acceptable in any
given situation), while a random strategy would yield about 20% accuracy
(random choice of any closing parenthesis; and otherwise assuming that the
end of string symbol does not introduce confusion.)

For each index i in the test input (w 2 X), if w
i

is a closing parenthesis
then we test the prediction of the model. We count a success if the model
assigns the highest probability to the expected kind of closing parenthesis and
a failure otherwise. We will report the frequencies of success in function of
i for each model and task. By reporting results in function of the time-index
i, we are able to detect differences in modeling power which a compound
measure would not reveal.

The training set that we use for this experiments is composed of 512⇥200
strings picked at random in D

10
P

. (#D

10
P

= 131250). Thus our training set
is

T = Sample(512⇥ 200, D10
P

)

We train our models for 100 epochs; yielding 100 versions of the parameters
values, and keep those which yield best accuracy on the test data. Indeed,
after a while, models may tune-in to the training data, at the expense of vali-
dation accuracy (a phenomenon called “over-fitting”). Thus our method gives
enough time for most models to converge (see specific remarks below), while
minimizing potential over-fitting effects.

5.1 Subtask A: Long-Term Dependency

For this subtask, the test set is composed of 512⇥20 strings picked at random
in the set generated by sentences of the form: s1s2 or os1s2c, where s1 and
s2 are picked randomly among strings of size 8, and (o, c) is a matching
parentheses pair. Formally:

X = Sample(512⇥ 20, {os1s2c |(o, c) 2 P,

s1 2 Sample(1000, D8
P

),

s2 2 Sample(1000, D8
P

)})

This task is designed to check that the RNN can capture long-term de-
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FIGURE 1 Results for long-distance dependency task for LSTM (red), GRU (yellow)
and RUSS (blue).

pendencies, by generalizing to longer strings. Indeed, while both s1 and s2

are probably in the training set, the complete string is not: its total length is
1+8+8+1 = 18. Furthermore, correct predictions for the last character require
correctly matching it with either the first character of the input or the char-
acter at position 9. Performing this matching could be done with counting
alone, but only if the model optimizes for guessing the last character. On the
contrary, in our experiment, models are trained to predict any character, so
one can expect that to predict any closing parenthesis character the model has
to remember every unclosed parenthesis seen so far. Unfortunately, one never
knows how a model really behaves before measuring it, so we report the ac-
curacy for every character (and perform further experiments described in the
next section).

Results

We report only the results for one run, because there is no qualitative differ-
ence from run to run. The results are shown in figure 1. The RUSS performs
expected given its design, with no error whatsoever. The LSTM shows near
perfect accuracy for all known strings (up to length 10). For longer strings
its accuracy dips slightly, but remains excellent, never going below 88%. The
GRU performs better than the LSTM up to position 14, but then suffers a
sharp drop in performance. It ends up completely failing the test at the posi-
tion which really matters for this task (the last one), with an accuracy hardly
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above that of a random strategy.

5.2 Subtask B: New Depths

For this subtask, we keep the same training sets, but the test set is composed
of sentences of the form: o⇤Sc⇤, where S is picked randomly in D

10
P

, o⇤
is a random sequence of 5 opening parentheses and c

⇤ is the corresponding
closing sequence. Formally:

X = Sample(512⇥ 20, {o⇤s1c⇤ |(o⇤, c⇤) 2 (P 5)T ,

s1 2 Sample(1000, D10
P

)})

Similarly to the previous task, while s1 is likely to be found in the training
set, the complete input is guaranteed not to be. This test is engineered to check
that the model correctly generalizes to strings with deeper nesting.

Results

For every run, a new test set is generated. When the results vary significantly
from run to run, we report the results for several runs, thereby giving an indi-
cation of the variability.3 The results are reported in figures 2 to 7. We want
to avoid biasing the reader towards our interpretation of the results as far as
possible, and thus we will give our interpretation only at the end of the sec-
tion.

Again we break down the accuracy per position of closing parentheses.
The predictive power at different positions correspond to different model-
ing capabilities. First, keep in mind that there are no closing parentheses in
the test set for indices smaller than 6, and thus we do not report any result
for those positions. Second, the positions 14 and above always have a clos-
ing parenthesis. Indeed at position 14 we have the closing parenthesis corre-
sponding to the opening one at position 5. Thus:. Positions 6 to 10 correspond to depths seen in the input set.. At positions 10 to 13 the prefixes are not seen in the training set, but the

closing parenthesis matches with a parenthesis which is at a position at
6 or greater. Thus, in principle, to predict those it is not necessary to take
into account the prefix before position 6, even though it constitutes a factor
of confusion.. Parentheses at positions 14 and greater can only be predicted by consider-
ing the nesting levels which are unseen in the training set.

3Many neural network models are trained on a fixed dataset, for example harvested from a
natural language corpus. The convention is to split this fixed data set in three part (dev/test/train),
so that while constructing the model, the test set is never used. This means that hyper parameters
cannot be specifically adjusted to perform best for this specific test set. In our case, because new
data is generated for every run, it is impossible to adjust the models to a specific test test.
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FIGURE 2 Results for a single RUSS layer.

We first report that the RUSS, which was after all specially designed for
the task, perfectly generalizes to deeper recursion (see fig 2). We tested the
RUSS with several depths for the stack. This set of tests confirmed that by
limiting the maximum stack depth, one prevents accurate prediction of the last
character in strings with nesting that is too deep. Additionally, we confirmed
experimentally that a depth of 10 is enough to accurately model our test set. In
later experiments, this depth was used in other configurations which involve
the RUSS.

For the remaining RNN configurations, we ran the experiment five times
and report the results for each run, thereby giving an indication of the vari-
ability of results. In fig. 3 we show the results for a single layer of GRU or
LSTM. The GRU shows performance significantly above the random strategy,
but with rapid decline as distance from the corresponding opening parenthe-
sis increases. For the longest such distance, its performance is hardly better
than that of a random guess. We observed that the GRU converges quickly:
its best performance is often obtained after less than 20 epochs.

The LSTM also shows performance significantly above the random strat-
egy, around 60% accuracy for index 15, where it performs the worst. One
observes an expected drop in performance for depths which are not seen in
the test data. However, the LSTM is able to make more accurate predictions
for indices which are close to the end of the string (close to 90% accuracy).

To obtain the results shown in figure 4, we have increased the number
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FIGURE 3 Results for LSTM, 40 units (red) and GRU (yellow)

of units to 160. In this situation the models reach their peak performance
about as quickly as before. The LSTM displays a smoother accuracy curve
through time-steps, but the general characteristic of dipping around position
15 remains. By and large, the same can be said about the GRU. The main dif-
ference in this situation is that it does not perform as well for early positions.
Consequently the LSTM dominates the GRU across the board.

In figure 5 we show the results for a double layers of either GRU or
LSTM, each with 40 units. The double LSTM model converges after around
70 epochs. It exhibits roughly the same performance as the single LSTM with
the same number. The effect of better accuracy for the last few positions is
amplified. The double GRU model converges around 50 epochs, and exhibits
roughly the same pattern as the single-layer GRU RNN, with better accuracy,
but an even sharper drop around position 14.

In figure 6 we show the results for models combining one GRU and one
LSTM, with 40 units. These models generally exhibit behavior similar to that
of their first layer alone, but with their specific characteristics (positive or
negative) somewhat smoothed out.

In figure 7 we show the results of combining the RUSS with either GRU
or LSTM. In these configurations the RUSS is provided with data exhibit-
ing more complex patterns. Thus they correspond more to how the RUSS
would perform for not so simple languages, where an LSTM or RNN would
be needed to pre-process the data before it can be consumed by the RUSS.
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FIGURE 4 Results for LSTM, 160 units (red) and GRU (yellow)
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FIGURE 5 Results for two layers of LSTM (red) and two layers of GRU (yellow)
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FIGURE 6 Results for LSTM followed by GRU (red) and GRU followed by LSTM
(yellow)

In these configurations, the model was often still improving even after 100
epochs.

Adding the RUSS to the LSTM improves its accuracy both for short pre-
fixes and for positions close to the end of the string. However it sometimes
worsens slightly its accuracy for positions 14 to 15. The GRU and RUSS com-
bined model displays great variability from run to run, ranging from perfect
accuracy to not much better than the single GRU.

From these results, we note the following salient points:

1. The single LSTM exhibits the unusual feature of better accuracy for the
longest distances than for mid-range ones. Our interpretation is that the
LSTM learned to specially match the outermost parentheses. How is
that possible? First, remember that the LSTM can develop a counting
mechanism (section 4), which can thus predict when the closing paren-
thesis corresponding to the outermost opening parenthesis is expected.
Assuming that such a mechanism is available, it suffices to combine it
is with another mechanism to remember the first character of the input
to correctly predict the last closing parenthesis.

2. Layering two RNNs of the same kind tended to yield small improve-
ments and reinforce the general trends exhibited by their single-layer
counterparts.

3. Increasing 4-fold the number of units tended to yield small improve-
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FIGURE 7 Results for LSTM+RUSS (purple) and GRU+RUSS (green)

ments, and smooth out the general trends exhibited by their single-layer
counterparts.

4. The behavior of a heterogeneously layered RNN seems to be primarily
following the behavior of its first layer. However, the RUSS can have
a significant beneficial impact on the behavior of the compound, when
employed as a second layer.

6 Related work

Das et al. (1992) proposed the first neural network architecture with a differ-
entiable stack, and used it to learn context-free language. However they con-
sidered only very simple synthetic languages: anbn, anbncbma

m, an+m

b

n

c

m

and an undefined “parenthesis” language (which they report is easier to learn
than a

n

b

n). Such languages can be modeled by counting only, thus, as ex-
plained in section 4 we dismiss them as unrepresentative of the context-free
(or worse context-sensitive) language classes for the purposes of modeling us-
ing RNNs. Gers and Schmidhuber (2001) showed that the LSTM could learn
such simple synthetic languages. (The special stack structure is not needed;
the general-purpose LSTM works well already.) This counting behavior has
been studied in depth for various RNNs architectures by Weiss et al. (2018).

Elman (1991) studied the learnability of a context-free language with
more structure, involving central embedding and thus long-distance depen-
dencies. However he did not train the network to generalise from shallow to
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deeper levels of recursion. This limited focus persists in the followup work
of Cartling (2008).

Our main source of inspiration for the RUSS is the work of Grefenstette
et al. (2015), who use a differentiable stack for transduction. Even though lan-
guage modeling is not explicit in their work, their transduction uses an RNN
and thus has implicit language modeling aspects. The main methodological
difference from this work is that they do not attempt to generalize to deeper
nested recursion. The main technical difference is that we have simplified the
differentiable stack and packaged it as a reusable RNN layer.

Joulin and Mikolov (2015) also use stacks for modeling purposes. Their
domain of applications is algorithmic patterns, such as binary addition and
memorization of a string. However their stack is different from ours, in that
all the units in their stack state are controlled independently from each other.
In effect we (and Grefenstette et al.) have one stack with n units, whereas they
have n stacks of 1 unit each. A consequence of their choice is that the number
of scalar parameters is larger by a factor of n. In other words, the model has
the possibility (and the burden) to learn lots of different push/pop patterns.

The modeling capabilities of the LSTM in natural language have been in-
vestigated by Linzen et al. (2016), Bernardy and Lappin (2017). Specifically,
they focus on the capability of the LSTM to model long-distance dependen-
cies, by measuring the accuracy of the LSTM when predicting agreement
of verb with subject, in English. Their test did not measure the amount of
nesting, but only the number of intervening nouns with mismatching fea-
tures (which they call attractors). They found that for no attractors, the LSTM
scored near perfectly, but for 5 or more attractors, it did not perform much
better than the baseline. The good accuracy for less than 5 attractors was cor-
roborated by Gulordava et al. (2018), for other languages, including Italian,
Hebrew and Russian.

Yogatama et al. (2018) have investigated the effect of various memory
architectures, including stacks, on the long-distance dependency task, for up
to 5 attractors. They found that the best-performing model uses a stack with
the ability to perform several pop operations per time step.

Unfortunately none of the above tests can be used to conclude significantly
that RNNs can learn nested hierarchical structures. Indeed, in natural data, the
relationship between nesting depth and number of attractor is exponential.
Consequently, the nesting depth grows on average logarithmically with the
nesting depth. In turn, by limiting their experiment to a small fixed number
of attractors, one cannot draw any conclusion on nested recursion from their
results, despite what the title used by Gulordava et al. (2018) suggests.

Furthermore, even when considering the effect of only the number of at-
tractors on predicting agreement, English data will be influenced by semantic
factors (multiple syntactic interpretations are possible if semantics do not dis-
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ambiguate). Additionally, in English the syntactic marker of nesting are not
always present. In contrast, here we have established conclusively that, in
the case of our synthetic language, the LSTM suffers from no confusion by
intervening symbols with mismatching features. Indeed, in our experiment
(see sec. 5.1) the accuracy of predicting the closing character is very high,
regardless of the distance to the corresponding opening parenthesis. (And, in
most cases, intervening characters would be composed of attractors). One can
however not say the same thing about the GRU, which fails to generalise to
unseen longer strings.

7 Conclusion

7.1 Learnability of depth recursion

We have found out that, by and large, the LSTM is capable of generaliza-
tion to new depths, with a respectable, yet not nearly perfect accuracy. On the
contrary, the GRU, as defined in sec. 2.2, is not suitable for such generaliza-
tion. While the accuracy of the LSTM may be suitable for some tasks, with
an error rate approaching 40% on nesting levels unseen in the training set,
it cannot be considered to reliably model CFGs. Thus, if one desires higher
accuracy on predicting agreement in unseen nesting levels, special-purpose
components such as the RUSS must be employed.

7.2 Suitability of RNN variants

The discrepancy between LSTM and GRU goes contrary to neural-network
folklore, which propagates the idea that they are roughly interchangeable
components. Indeed, many tests of RNNs focus on some compound measure
of accuracy or perplexity, which is roughly equivalent for LSTM or GRU,
even in our tests. But such a compound measure hides variation in behavior
through time-steps. By focusing precisely on this variation, our test method-
ology reveals sharp differences in the behavior of various RNNs and their
combinations.

In sum, our experiment suggests that using the GRU is a better idea if
only a short-distance generalization is desired, whereas the LSTM is prefer-
able for learning dependencies which need to generalize over long distances
and new depths. The GRU could also be a sensible choice if little training
time is available: it tends to find its optimal parameters more quickly than
the LSTM. Unfortunately, at the time of writing, the state-of-the-art analysis
of neural models is mostly experimental and thus we cannot offer a theo-
retical explanation for the difference between LSTM and GRU, but we can
make educated guesses. The difference could be explained by either 1. the
larger number of parameters of the LSTM or 2. the architectural differences,
mainly having a separate memory and output. Guess (1.) is refuted by our
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experiments (because increasing the number of parameters does not make a
qualitative difference). Guess (2.) is compatible with our experiments, but
corroborating evidence would be necessary before accepting it as fact.

Besides, we note that the popular technique of layering several instances
of the same type of RNN did not prove fruitful for our main experiment:
it only yielded incremental improvements. More interesting behaviors were
obtained by combining different kinds of RNN. In particular, incorporating
special-purpose RNN layers such as the RUSS can have beneficial effects.

7.3 Deep recursion in natural language

Karlsson (2007) has observed that deep recursion does not occur in practice
in natural language input. Therefore, it is possible to train LSTM RNNs on
all nesting levels which do occur in practice — and thus the RUSS is not
a necessary component in such applications. It is intriguing that the LSTM
thus appears to be a better model of human ability than computer models with
explicit stacks, such as the RUSS or the traditional push-down automata. This
observation is compatible with the hypothesis of Karlsson (2010), namely
that the limits on recursion depth in natural language is caused by memory
limitations. Indeed, the LSTM has finite memory while the memory of the
RUSS can be expanded dynamically (section 2.3). Regardless, we are careful
not to claim any similarity of structure between the LSTM and any human
organ; such claims would be outside our domain of expertise.
Relevance of this study In the light of the limited depth of recursion found
in natural language corpora, one can wonder if this study is relevant to such
contexts? One area where generalization to unseen depths can be useful is
argumentative dialogue. Indeed, in a such a dialogue one can quote a previous
interaction and embed it in one’s own production, thereby increasing nesting
depth. Dealing with this situation is critical if the system is intended to cope
with adversarial users — who can at any point push the system to its limits.

Another area where nested recursion occurs is in works which are bound
by formal rules and whose author is using external tools4 as unbounded mem-
ory. Examples would include logical propositions, program source code, and
perhaps even legal texts and works in certain musical genres.

7.4 Applications of RUSS

Because of its potentially unbounded memory, the RUSS cannot be recom-
mended if one desires to model human language production and recognition.
Regardless, it has several characteristics which may make it suitable for cer-
tain practical applications. First, its input-output structure is the same as that
of standard RNNs. Consequently, it can be combined with other RNNs in the

4classically pen and paper, but computers in a modern setting
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usual way, namely by layering them. The RUSS is thus a component which
can be easily incorporated in any RNN-based model. Second, experiments
indicate that even for tasks which do not require generalization to arbitrary
depth, a combination of RUSS and LSTM performs well. Third, many appli-
cations may want to go beyond basic human capabilities and thus desire depth
generalization, for example in the domains listed in the previous subsection.
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