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Abstract

The encoder-decoder with attention model
has become the state of the art for machine
translation. However, more investigations
are still needed to understand the inter-
nal mechanism of this end-to-end model.
In this paper, we focus on how neural
machine translation (NMT) models con-
sider source information while decoding.
We propose a numerical measurement of
source context dependency in the NMT
models and analyze the behaviors of the
NMT decoder with this measurement un-
der several circumstances. Experimental
results show that this measurement is an
appropriate estimate for source context de-
pendency and consistent over different do-
mains.

1 Introduction

Neural machine translation (NMT) with encoder-
decoder structure and attention mechanism (Bah-
danau et al., 2015; Luong et al., 2015) has achieved
great success on several machine translation tasks.
Different from phrase based systems, neural ma-
chine translation is trained end-to-end and learns
the alignment and translation jointly.

At each decoding step, the alignment is pre-
dicted in the attention layer and represented as
a distribution over words in a source sequence.
Then the source context information, which is
an attention-weighted sum over encoder hidden
states, is fed into the decoder for the prediction of
the next word.

c© 2018 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
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The decoder in a NMT model is similar to a re-
current neural network language model (RNNLM)
(Mikolov et al., 2010), with additional input from
the source side. It takes the previous hidden state,
the previous predicted target word embedding, and
source context information as inputs and produces
a distribution over the next target words.

This end-to-end approach can achieve state-of-
the-art performance on several machine translation
tasks. Joint training of the translation model and
alignment gives a soft alignment between source
side and target side. However, some of its flaws
are observed under certain settings (Koehn and
Knowles, 2017). One of the most common and im-
portant issue of neural machine translation is that
it often generates fluent but inadequate translations
especially under domain mismatch conditions.

An example1 is shown in Figure 1. Here, the
translation generated by the NMT models — while
being fluent English — has no semantic connec-
tion to the source sentence. Moreover, out-of-
domain models cause even more severe inade-
quacy.

An intuitive explanation for this observation is
that the NMT decoder lacks effective attention to
the source information. Because of the similar-
ity between the NMT decoder and an RNNLM,
it is possible that NMT models generate sentence
based on its internal language model without prop-
erly taking advantage of the source information.
While several researchers have explored the atten-

1In this example, we choose a sentence that has been pro-
cessed by byte pair encoding (BPE) (Sennrich et al., 2016)
and “@@” is used as a splitter token. The reason for this is
that BPE has become a standard pre-processing step, which
helps reducing the vocabulary size. Long words in original
text will be split into sub-word “phrases”. It is also very in-
teresting to investigate how sub-word prediction related to the
source information.

Pérez-Ortiz, Sánchez-Mart́ınez, Esplà-Gomis, Popović, Rico, Martins, Van den Bogaert, Forcada (eds.)
Proceedings of the 21st Annual Conference of the European Association for Machine Translation, p. 189–197
Alacant, Spain, May 2018.



Source der hat also die Was@@ er@@ stoff@@ emission bei
verschiedene Frequ@@ enzen aufgenommen .

Reference it recorded the hydrogen radio emission at different frequencies .
In-domain Translation so he recorded the security clearance on several frequencies .
Out-of-domain Translation indeed , He has [ more ] example in suc@@ cession .

Figure 1: An example of an inadequate translation of a Germany to English NMT model. In domain data is subtitle dataset
and out of domain data is koran dataset

tion mechanism in NMT, none of them have nu-
merically analyzed whether an NMT decoder suf-
ficiently utilizes the source information.

In this paper, we propose a numerical approach
for source context dependency analysis in NMT
models. We list some reasons why we should care
this dependency.

1. While translation of content words, such as
nouns and verbs, highly depends on source
information, function words, such as deter-
miners and prepositions, depend more on
language-internal properties. We want to in-
vestigate whether NMT models are able to
learn this difference.

2. The NMT decoder functions similarly to a
RNN language model. It takes both previ-
ous hidden state, the previous predicted word
embedding, and the source context vector
as inputs for every recurrent neural network
(RNN) cell. It is possible that under certain
circumstances the source context vector has
little impact on updating the state in the de-
coder. That means the decoder may fail to use
sufficient information from the source sen-
tence. This could be one of the reasons why
NMT models sometimes generate fluent but
inadequate sentences.

3. As observed by Koehn and Knowles (2017),
under some data conditions such as domain
mismatch, some failed translations seem to
ignore the source sentence. By analyzing
source context dependency, we can gain in-
sight into the reason of the failure.

Our contributions in this paper include:

• We propose a numerical measurement for
source context dependency in NMT models.
It is based on the distribution of words gen-
erated from the decoder. The measurement is
very general to sequence to sequence models
and their variations.

• We carried out a series of experiments under
different settings to analyze the behavior of
NMT models with this measurement. More-
over, we numerically analyze source con-
text dependency related to part of speech
categories, domain mismatch and translation
length.

2 Related Work

A number of researchers have been working on ex-
ploring the “black box” of neural machine transla-
tion models. Belinkov et al. (2017a) investigated
how NMT models learn word structure and rep-
resentation quality on part-of-speech and morpho-
logical tags. Belinkov et al. (2017b) and Dalvi
et al. (2017) explored the capability of representa-
tion in NMT hidden layers of part-of-Speech and
semantic tagging in neural machine translation us-
ing multi-task training.

There is some research focusing on the attention
mechanism in NMT. Liu et al. (2016) proposed a
training scheme to learn attention under the guid-
ance from conventional alignment models. Cohn
et al. (2016) incorporates structural alignment bi-
ases to improve the alignment quality learned in
the attention layer. Ghader and Monz (2017) pro-
posed a numerical approach for analyzing the ca-
pability of attention.

Some research also focuses on analysis and vi-
sualization of NMT models for better understand-
ing. Visualization of attention weights is a com-
mon tool for NMT analysis (Ding et al., 2017).
Moreover, Shi et al. (2016) correlated activation
values of individual LSTM nodes in the translation
model with the length of the translated sentences.

Some research has addressed a similar topic as
we tackle in our paper. Instead of doing numerical
analysis, they proposed new structures to improve
both the adequacy and fluency in NMT. Tu et al.
(2017) proposed a context gate structure in NMT
decoders to control the portion of source or target
side information fed into the decoder and they ob-
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tained a 2.3 BLEU points improvement compared
a standard attention based NMT baseline. Zheng
et al. (2018) introduced a novel mechanism to sep-
arate the source information into two parts: trans-
lated past context and untranslated future context.
They fed the two parts to both the attention model
and the decoder states and reported improvement
on several translation tasks compared with the con-
ventional coverage model.

3 Methodology

3.1 Neural Machine Translation
A variety of alternative neural machine translation
approaches have been recently proposed (Gehring
et al., 2017; Vaswani et al., 2017). In this paper,
we will focus on the most common model used to-
day, the encoder-decoder based NMT model with
an attention layer (Bahdanau et al., 2015; Luong
et al., 2015).

The encoder in the neural machine translation
model is a bi-directional recurrent neural network
structure which encodes the source tokens se-
quence into a sequence H of context-related vector
representations hj upon an embedding layer.

H = h0, h1, . . . , hn−1, hn (1)

The decoder of the NMT model is a recurrent
neural network (Elman, 1990). There are several
widely used variations, such as Long Short Time
Memory (Gers et al., 1999) and Gated Recurrent
Unit (GRU) (Chung et al., 2014) In this paper, we
choose to use GRU for analysis.

Let us now introduce the structure of the NMT
decoder. In decoder, the distribution for next pos-
sible words at each step is generated by:

P (yi | y<i, x) = g(yi−1, si, ci) (2)

where x is a sequence of vectors representing
the source sentence, and si is RNN hidden state
and calculated by:

si = f(si−1, yi−1, ci) (3)

g and f are some nonlinear functions.
The context vector ci at step i comes from:

ci =

Tx∑

j=1

αijhj (4)

αij =
exp(eij)∑Tx
k=1 exp(eik)

(5)

where
eij = a(si−1, hj) (6)

is an alignment model which scores how well in-
puts around position j and the output at position i
match. hj is the encoder hidden state at step j.

3.2 Source Context Dependency
Measurement

If an NMT model properly considers source con-
text information, a significant difference should
be observed between distributions with and with-
out the source context vector. Considering this,
we propose a distribution distance based method
to calculate the source context dependency in an
NMT model.

We first train an attention based NMT model.
During decoding we have two decoders, a main
decoder and an auxiliary decoder as shown in Fig-
ure 2. The main decoder is a normal NMT de-
coder with the source context vector computed by
a weighted sum of encoder hidden states. The aux-
iliary decoder shares parameters with the NMT de-
coder but zeros out the source context vector at
each decoding step. The previous predicted tar-
get word embedding for the auxiliary decoder is
from the main NMT decoder. The hidden states of
the NMT and auxiliary decoders are denoted sep-
arately as si and sauxi in Figure 2 at each step i
while they are the same indeed.

We then introduce the source context depen-
dency measure. At i-th decoding step, we have
two distributions for predicting the next trans-
lated word given history and context from the
NMT decoder and the auxiliary decoder denoted
as Pmain(yi) and Paux(yi) in Figure 2, where yi is
the i-th predicted word. We then define the source
context dependency measure of word yi as

Dp
yi = dKL (Pmain(yi), Paux(yi)) (7)

= dKL

(
P (yi | y<i, ci), P (yi | yaux<i , ~0)

)

(8)

= dKL

(
g(yi−1, si, ci), g(yi−1, s

aux
i , ~0)

)

(9)

where

1. dKL is a function to calculate the KL-
divergence between the two distributions.

2. Pmain(yi) = P (yi | y<i, ci) is the distribu-
tion over the next word given history infor-
mation and source context vector ci at step i.
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Figure 2: Context dependency measure: Both standard NMT and an auxiliary decoder that ignores the source context make
word predictions. We measure the KL divergence between these predictions.

3. Paux(yi) = P (yi | yaux<i , ~0) is the distribu-
tion over the next word given history infor-
mation and a zeroed out source context vector
at step i. Notice that yaux<i and y<i are actu-
ally the same sub-sequence. However, we are
using an “aux” superscript here to emphasize
that their representations, which are the hid-
den states, are different when predicting the
next word.

The first distribution comes from main decoder
and second distribution comes from auxiliary de-
coder.

Notice that we compute source context depen-
dency scores during decoding, not training. Fur-
thermore, it is also compatible with beam search.
In addition to main decoder hidden states and pre-
vious predictions, hidden states from auxiliary de-
coder and source context dependency scores of
previous words are also tracked for each hypoth-
esis in the beam. Since the two decoders share
parameters, no additional training is needed for
the source context dependency calculation given a
trained NMT model.

An alternative implementation for computing
the source context dependency score would be to
only use one decoder. At each decoding step,
we can calculate the distance between distribu-
tions from the main decoder with and without the
source context vector. However, the previous hid-
den state potentially contains both history and pre-
vious source context information. Thus, source
context creeps into the decoder state. With a aux-
iliary decoder, we can completely eliminate the in-
fluence of source context.

4 Experimental Setup

We use the toolkit Nematus (Sennrich et al., 2017)
for training and decoding. We use the gated recur-
rent unit (GRU) (Chung et al., 2014) in both en-
coder and decoder with a dimension of 1024. The
dimension of embedding layer is 500. For opti-
mizer, Adadelta (Zeiler, 2012) with learning rate
0.0001 is used. Dropout (Srivastava et al., 2014)
with 0.2 probability was used to prevent overfit-
ting. For decoding, we use beam search with a
beam width 12.

Byte pair encoding (BPE) (Sennrich et al., 2016)
is used for processing training data to fit a 50,000
subwords vocabulary limit. We use BPE since
it has been a very popular preprocessing proce-
dure for machine translation, so that our evaluation
method can be used in more general cases.

In part-of-speech (POS) analysis, we use Stan-
ford POS tagger (Toutanova et al., 2003) with a
universal POS tagset. We first convert the trans-
lated subwords to complete words and tag the se-
quences with the Stanford POS tagger We find that
the amount of subwords is significantly smaller
than complete words. So we let each subword
inherit the tag from the corresponding complete
word2.

We carried out our experiments on German–
English translation tasks. We used five corpora
in five domains from OPUS (Tiedemann, 2012),
which is briefly described in Table 1. We use five
corpora because we want to show that our metric
and its analysis are general and consistent over dif-
ferent domains. Moreover, we would like to know

2An alternative would be to distinguish tags for split and un-
split words. We did this as well, but found no significant dif-
ference.
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Dataset Abbreviates Descriptions Size(English)
OpenSubtitle2016 subtitles Translatio Movie subtitles 118.8M

JCR-Acquis acquis Legislative text of the European Union 34.1M
EMEA emea Documents from the European Medicines Agency 12.0M
Tanzil koran Translations of Koran 11.3M

IT it Documents of GNOME, OpenOffice, KDE, PHP, Ubuntu 2.6M

Table 1: Summary of five corpora from OPUS

how domain mismatch affects the source content
dependency.

5 Analysis

5.1 Auxiliary Decoder
We briefly described the auxiliary decoder above
in Section 3.2. The basic assumption is that an
auxiliary decoder contains history information and
behaves similar to a recurrent neural language
model. The difference between an auxiliary de-
coder and a standard RNNLM (for the target lan-
guage) is in the aspect of training. The auxiliary
decoder sharing parameters with the main NMT
decoder is trained with source side information
while the standard RNNLM is only trained on the
target corpus. Considering the mismatch of train-
ing and testing situation for the auxiliary decoder,
the performance on language modeling task of it
can be worse than a standard RNNLM.

To demonstrate the similarity with a standard
language model and verify our assumption about
the performance of the auxiliary decoder, we eval-
uate the auxiliary decoder and several standard lan-
guage models on the language model task. The
standard language models include two n-gram
models and a RNN based language model. A n-
gram model is a statistical model that predicts the
probability of the next word given the previous
n−1 history words. We use a 2-gram and a 3-gram
model with Kneser-Ney smoothing (Kneser and
Ney, 1995). The two n-gram models are trained
using the toolkit SRILM (Stolcke, 2002). The
RNN based language model is a two-layer LSTM
with both embedding and hidden dimensions 500.
We trained the LSTM LMs using Pytorch. The
optimization method is Adam with initial learning
rate 0.001. The architecture and optimization set-
tings of the LSTM LM are the same as the auxil-
iary decoder.

The perplexity results on four datasets by the
two n-gram models, the LSTM-LM, and the aux-
iliary decoder are in Table 2. We can see that al-
though the auxiliary decoder has worse perplexity

Model Acquis EMEA Koran IT

2-gram 72.3 86.7 86.3 120.0

3-gram 38.1 44.6 61.4 46.7

LSTM-LM 19.8 19.2 19.6 30.9

Auxiliary Decoder 44.0 51.9 103.7 57.1

Table 2: Perplexities from different models on four test cor-
pora from different domains.

than a standard LSTM language model, its perfor-
mance are similar to a n-gram language model for
most situations. This observation is consistent with
our assumption.

5.2 Part of Speech

Different words have different dependencies on
source context. It is very natural to assume that
content words, such as nouns and verbs, tend to
have higher dependencies on the source context,
while function words like adpositions depend more
on the target side.

Figure 4 is an example of the source con-
text dependency measurement on a translated En-
glish sentence from Germen meaning “after my
study of electronics, I came here in 1954.”3.
We can see that content words such as “study”,
“electr@@”,“19@@” and “54” have relatively
high dependency scores. Meanwhile, functional
words like “of”,“,”, and “in” have lower scores.4

3This sentence comes from subtitle dataset
4One might notice that it is not always true that all content
words scores are high and all function words scores are low
in this sentence. For example, word “after” has a very high
score, and word (or sub-word) “onics” has very low score.
The reason for the first case is that while predicting the first
word, internal language model in decoder will always pre-
fer the most common word in training data since there is no
history. So even “after” is a functional word, the most of the
information decoder needs to generate “after” comes from at-
tention vector, which results into a very high score according
to our metric. As to the second case, “onics” is a sub-word
of “electronics”. Since the sub-word phrase (“electro@@”,
“onics”) is relatively frequent and these two sub-words are
highly unlikely to appear independently, the decoder can be
confident to predict “onics” given previous prediction “elec-
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Figure 3: Scores for different categories of part of speech (POS).

Figure 4: English translation and source context dependency
of Germen sentence “nach meinem Studium in Elektroni@@
k kam ich hier in 19@@ 54 .”.

We then compare the source context dependency
of translated words with part-of-speech (POS)
tags. We calculate the average source context de-
pendency score for each POS category over test
sets from five corpora, shown in Figure 3. We
can observe that although the distribution of scores
are different among domains, they all have a simi-
lar tendency. Adpositions and particles have lower
source context dependency than other categories,
especially numbers. This observation is consist
with our intuition.

Another interesting observation is that the av-
erage score of functional words in certain situa-
tions can be high. For example, determinators in

tro@@” with very limited source side information. These
two cases are actually quite rare in our corpora, so we did not
use them for POS tagging analysis.

EMEA dataset is even higher than nouns. There
are two reasons for this observation. First, EMEA
is a highly structured and repetitive corpus. The
NMT models can generate nouns with little con-
text information since noun phrases in this cor-
pus are frequent. The decoder can easily deter-
mine the remaining words given the first word of
a phrase. The second reason is that although func-
tional words seems to rely more on decoder, some
of them still need context information. For ex-
ample, if a sentence contains the noun phrase “an
apple”, the model will generate the correct deter-
miner “an” rather than “a” from source informa-
tion — the determiner “a” is highly dispreferred
by the language model.

5.3 Domain Mismatch

Domain mismatch is a major challenge for NMT.
Training an NMT model in one domain can make
the decoder overfit that particular domain. Thus,
during decoding the decoder can produce fluent
but inadequate sentences on out-of-domain test
data. Therefore, we wondered if domain mismatch
can cause less source context dependency.

We calculate source context dependency scores
under domain mismatch settings. Five NMT mod-
els were trained on five datasets shown in Table 1.
We then apply them on five test datasets and cal-
culate source context dependency scores, respec-
tively. Next, means and variance of scores among
test sets with different models are calculated.

The results are shown in Table 3 and Table 4.
Domains of training data are in columns and do-
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Train
Test law medical it koran subtitles

all 2.594 2.831 2.283 2.418 2.372
law 3.956 3.695 3.463 3.382 3.818

medical 1.694 2.186 1.615 1.383 1.414
it 3.597 3.536 4.312 3.423 3.937

koran 1.965 1.765 2.024 3.14 1.93
subtitles 0.955 0.982 0.971 1.021 1.489

Table 3: Means of source context dependency scores on
different test datasets translated by different models.

Train
Test law medical it koran subtitles

all 3.5 3.44 2.07 1.725 2.061
law 15.06 10.9 9.93 8.83 13.5

medical 3.74 5.26 2.94 1.89 2.8
it 8.61 8.13 14.15 8.46 11.3

koran 3.74 3.37 4.02 7.87 4.2
subtitles 0.676 0.619 0.66 0.571 1.521

Table 4: Variances of source context dependency scores
on different test datasets translated by different models.

Train
Test law medical it koran subtitles

all 31.1 45.1 35.3 17.9 26.4
law 31.1 12.1 3.5 1.3 2.8

medical 3.9 39.4 2.0 0.6 1.4
it 1.9 6.5 42.1 1.8 3.9

koran 0.4 0.0 0.0 15.9 1.0
subtitles 7.0 9.3 9.2 9.0 25.9

Table 5: BLEU scores of source context dependency
scores on different test datasets translated by different
models, reported by Koehn and Knowles (2017).

mains of test data are in rows. ”all” in the Ta-
ble 3 and Table 4 means the model was trained
on a combination of the five datasets. Since we
care more how one certain model behaves on
test sets from different domains, we compare the
scores along the rows. It is noticeable that all
the five models have highest source context depen-
dency scores when translating in-domain test data.
Higher means indicate that in-domain models de-
pend more on source information. Higher vari-
ances show that in-domain models are also better
at learning differences among different word, be-
cause we expect a good model has more context
dependency on content related words and less on
history related words. This can be one of the rea-
sons why NMT models often generate fluent but
inadequate translations in domain mismatch set-
tings.

We also list the BLEU score reported by Koehn
and Knowles (2017) on the same task, shown as
Table 5. We can see that inability of incorporating
context information into the decoder can be a main
reason for the failure in domain mismatch setting.

5.4 Sentence Length

The translation quality is sensitive to the lengths
of the sentences. Moreover, for longer sentences,
it is possible that a NMT model considers more
history information rather than source context in-
formation. We want to know how sentence length
affects source context dependency.

We calculate source context dependency for sen-

Figure 5: Source dependency scores with length of sentence

tences with different lengths. Results are shown
in Figure 5. We find that longer sentences have
lower source context dependency, which is consis-
tent with our hypothesis5.

However, we detect a different tendency com-
pared with the analysis by Koehn and Knowles
(2017) which show lower translation quality for
longer sentences. However, source context de-
pendency is not the only factor that determines
translation quality. When the length of translation
increases, history information from the language
model is increasingly informative (and hence pre-
dictive).

5One can notice that there are some small fluctuations in sen-
tence length from 70 to 90. This can be caused by a small
percentage of sentences in that length range (70-80: ∼ 4%,
80-90: ∼ 3%).
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6 Conclusion and Future Work

In this paper, we proposed a measurement of
source context dependency in neural machine
translation models. With our measurement, we an-
alyzed source context dependency with different
POS tags, domains and sentence lengths. From the
analysis, we can see our measurement is a good
estimation of source context dependency.

In the future, we plan to extend our research in
two directions. One is to investigate the relation-
ship between source context dependency and word
level translation quality, so that we can immedi-
ately detect when the system goes off track. The
other is to improve the performance of NMT mod-
els. Since our measurement is differentiable, we
can use it as an auxiliary term of the training ob-
jective function.
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J., and Khudanpur, S. (2010). Recurrent neu-
ral network based language model. In INTER-
SPEECH 2010, 11th Annual Conference of the
International Speech Communication Associa-
tion, Makuhari, Chiba, Japan, September 26-
30, 2010, pages 1045–1048.

Sennrich, R., Firat, O., Cho, K., Birch, A., Had-
dow, B., Hitschler, J., Junczys-Dowmunt, M.,
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