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Abstract
We present CHARCUT, a character-based machine transla-
tion evaluation metric derived from a human-targeted seg-
ment difference visualisation algorithm. It combines an it-
erative search for longest common substrings between the
candidate and the reference translation with a simple length-
based threshold, enabling loose differences that limit noisy
character matches. Its main advantage is to produce scores
that directly reflect human-readable string differences, mak-
ing it a useful support tool for the manual analysis of MT
output and its display to end users. Experiments on WMT16
metrics task data show that it is on par with the best “un-
trained” metrics in terms of correlation with human judge-
ment, well above BLEU and TER baselines, on both system
and segment tasks.

1. Introduction
A large number of metrics have been proposed in the
past years for the task of objective evaluation of Ma-
chine Translation. To this day, trained or combined met-
rics (e.g. BEER [1], DPMFCOMB [2], UOW.REVAL [3],
COBALTF [4], among others), generally attain top results in
terms of average correlation with human judgement, as was
concluded in recent WMT conferences [5, 6].

On the other hand, endogenous metrics present the
advantage of versatility, the most widely used remaining
BLEU [7] and TER [8]. Such versatility is crucial in envi-
ronments where MT systems are built and tuned to support
numerous languages, some of which having little resources
available.

Among those metrics, character-based ones have re-
ceived more and more interest, starting from BLEU in char-
acters [9, 10] to the recent CHRF [11] and CharacTER [12].
Operating at the character level is all the more important as
MT systems working at a sub-word level are getting more
widely used, e.g. with segmentation schemes like Byte Pair
Encoding in Neural MT [13]. Since character-based met-
rics can implicitly account for sub-word linguistic phenom-
ena, they have shown to correlate much better with human
judgements than BLEU and TER—sometimes by tremen-

dous margins [5, 6]. Nowadays, such metrics seem to be
safe for use as drop-in replacements for BLEU.

Another key aspect of MT evaluation is the display of MT
output and its comparison with human references. Highlight-
ing differences between a candidate and a reference transla-
tion is a standard feature of many translation interfaces (e.g.
MateCat’s edit log [14] or SDL Studio’s SDLXLIFF Com-
pare1). Basically, any string comparison tool operating at a
sub-segment level could be used to that end. The potential
associated scores, however, typically simple word or charac-
ter match percentages, may not reflect all aspects expected
from a MT metric. One could just replace it with another
metric, but inconsistencies between score and visible differ-
ences would ensue [15], which might be confusing for non-
specialists. Advanced analysis environments proposing mul-
tiple measures along with word-based highlighting, such as
Asiya [16] or MT-ComparEval [17], among others, are thus
aimed at MT researchers rather than end users.

Some metrics allow to naturally derive user-friendly vi-
sual correspondences between candidate and reference trans-
lations. This is typically the case of word alignment based
metrics (e.g. TER or METEOR [18]), as opposed to those
based e.g. on overlapping n-grams (such as BLEU or CHRF),
or character-based approaches, which are often subject to
noise [12].

We propose an approach that benefits from fine character-
based differences while getting rid of their main drawback,
namely noise. Initially designed as a mean for displaying dif-
ferences to end users, it is also a full-fledged MT evaluation
metric, as a score can be directly inferred from those human-
targeted differences. In this view, a good metric is only the
consequence of a good visual representation.

This paper is organized as follows: Section 2 describes
how user perception of similarities led to the design of our
metric; Section 3 builds up on those observations to describe
the method in details; Section 4 evaluates it in terms of corre-
lation with human judgements; and Section 5 concludes this
work.

1http://appstore.sdl.com/app/sdlxliff-compare/
89/
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2. Defining noticeable similarities
From a translator’s point of view, a useful MT output is one
that requires little time to comprehend and edit in order to
turn it into a quality translation. When the MT contains too
many mistakes, it is faster to rewrite a new translation from
scratch than to attempt to correct it [15, 19].

A similar process takes place when humans compare two
segments. No matter how many common substrings there
are, they have no interest if they cannot be identified by the
user due to their being lost in a flow of differences. As noted
by Wang et al. [12], character-based comparisons typically
suffer from noisy matches on languages using alphabets, be-
cause letters tend to be repeated frequently. Consider for in-
stance the following segment pair taken from WMT16 eval-
uations (C denotes the candidate segment, R the reference):

C: It was also remarkable for personal reasons.
R: It was noteworthy because of personal reasons.

The strings in bold are likely to look like “atomic” re-
placements for most human eyes. Yet they have characters in
common. Indeed, a longest common subsequence between
the two strings in bold could be oerbe f (spaces have the
same status as any other character), underlined below:

C: also remarkable for
R: noteworthy because of

Not only would highlighting those prove useless to the
user, but it would also direct the eye focus onto meaningless
pieces of strings that would go naturally unnoticed without
highlighting. It gets even worse when taking shifts of isolated
characters into account, which is precisely why CharacTER
only considers shifts of words. Note that in this particular ex-
ample, word-based differences would yield much more sat-
isfying results. But those are generally too coarse in the gen-
eral case, especially when words differ only by e.g. a sin-
gle ending, or when dealing with morphologically rich lan-
guages.

We propose a simple approach to account for sub-
word differences, while showing only meaningful character
matches to the user. In order to keep comparisons intelligi-
ble, we reduce the number of highlighted substrings (be they
matches or differences) within segments by allowing loose
differences, i.e. differences that may still contain a few com-
mon characters. To this end, we rely on standard string dif-
ference operations, with the addition of a single constraint:
only substrings longer than a given threshold are considered
for matching. In our experiments (Sec. 4), we have found
that the best value is generally around 3 characters for Eu-
ropean languages, and manual investigations suggest that an
optimum would be 1 or 2 characters for Chinese, which is in
line with the findings of Li et al. [10]. This single constraint
significantly reduces the amount of displayed information,
helping the user focus more on meaningful differences.

To our knowledge, this approach was first used as a simi-
larity measure by [20] in a clinical context for patient record

matching. More recently, it was successfully applied to to-
ponym matching [21]. It also presents similarities with the
more complex MUMmer, a genome alignment system first
introduced in [22], where what we call loose differences are
the counterpart of what is known in bioinformatics as “highly
polymorphic regions,” i.e. short regions of DNA that have
undergone many mutations.

3. Method description
CHARCUT consists of three phases:

1. an iterative search for longest common substrings be-
tween the candidate and the reference translations;

2. the identification of string shifts;

3. a scoring phase based on the lengths of remaining dif-
ferences.

3.1. Iterative segmentation algorithm

In the first phase, we identify a set of non-overlapping
matches by applying an iterative search for the longest com-
mon substring (hereafter LCSubstr2) between a candidate C0

and a reference R0, and cutting off this LCSubstr from both
segments:

Cn+1 = Cn � LCSubstr(Cn, Rn)
Rn+1 = Rn � LCSubstr(Cn, Rn)

(1)

When several LCSubstr’s are possible (same length), the
leftmost one in Cn is processed first, and is paired with the
leftmost corresponding match in Rn. A LCSubstr removed
is replaced with a (zero-length) hard boundary that subse-
quent LCSubstr’s cannot cross. We iterate until the length of
LCSubstr(Cn, Rn), which monotonously decreases at each
step, is below a certain threshold (typically around 3 charac-
ters).

Our first investigations have revealed that pure character-
based matching, treating spaces as any other character, could
lead to misinformed segmentations in presence of shifts of
words with identical prefixes or suffixes (see Fig. 1 for an
example). For this reason, we consider only a subset of all
possible substrings of C0 and R0 when searching for the LC-
Substr, by considering only those that match any of the three
following regular expressions:

• \W*\w+\W* (intra-word substring, does not span
multiple words);

• \W*\b.+\b\W* (inter-word substring, stops at
word boundaries or non-word characters);

• \W+ (run of non-word characters).

2Contrary to the Longest Common Subsequence (LCS), the LCSubstr is
exclusively made up of adjacent characters.
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C: [. . . ] der Europäischen Gemeinsamen Strategie zur Unterstützung Palästinas [. . . ]

R: [. . . ] der Gemeinsamen Europäischen Strategie zur Unterstützung Palästinas [. . . ]

Figure 1: A common pitfall where the raw character based longest-first approach can lead to a counter-intuitive segmentation.
The first LCSubstr is underlined. Because the two swapped German words Europäischen and Gemeinsamen share the same
ending, this ending has been integrated into the LCSubstr, preventing the more natural full word matches. We circumvent this
issue by making our algorithm aware of word separators.

n Cn Rn LCSubstr(Cn, Rn) length

0 Before the game, it had arrived
at the stadium to riots.

Before the match there was a riot
in the stadium. the stadium 12

1 Before the game, it had arrived at| to riots. Before the match there was a riot in|. Before the 11
2 |game, it had arrived at| to riots. |match there was a riot in|. riot 5
3 |game, it had arrived at| to|s. |match there was a| in|. at 2

Figure 2: Example of iterative search for longest common substrings (LCSubstr). At each step, the LCSubstr (underlined) is
cut off and replaced with a zero-length boundary (noted with a pipe character “|”) that subsequent LCSubstr’s may not cross.
The process stops when the length of the LCSubstr is below a given threshold—here, 3 characters, preventing smaller common
substrings, starting with at at step 3, to be considered as matches. The longest common suffix (single full stop) is eventually
added to the list of LCSubstr’s, while the longest common prefix was already extracted as a regular LCSubstr.

C0: Before the game, it had arrived at the stadium to riots.

R0: Before the match there was a riot in the stadium.

Figure 3: Segmentation resulting from the iterative search
of Fig. 2. Matches (= LCSubstr’s) are underlined, and the
remaining substrings are loose differences. Here, those dif-
ferences still have around 68% of characters in common (16),
while no meaningful lexical correspondences are visible: the
length-based threshold has successfully prevented a large
amount of noise that would otherwise make the output un-
readable.

This leads to a mix of word- and character-based LCSub-
str’s which we felt more natural than pure character-based
ones in our experiments. In the case of scripts without word
separators such as Chinese, most LCsubstr’s match the first
expression.

Eventually, we also add the longest common prefix and
the longest common suffix between C0 and R0 to the list
of LCSubstr’s, independently of their length, providing they
match the second or third regular expression and were not
already extracted as a regular LCSubstr. This addition had
almost no impact in terms of correlation with human judge-
ment in our experiments, but it improves highlighting by fix-
ing frequent cases of true negatives, such as final punctua-
tions or segments shorter than the minimum match size, that
most users would expect to be considered as matches.

Then:

• the set of LCSubstr’s extracted up to this point (includ-
ing longest common prefix and suffix) are matches;

• the remaining strings, i.e. the last computed Cn and
Rn, are loose differences.

Figures 2 and 3 give an example. Contrary to edit dis-
tances, our approach does not yield a minimal sequence of
operations that would turn C0 into R0; instead, it seeks to
lower the number of matches and differences, hence the user
reading effort.

3.2. Identifying string shifts

CHARCUT naturally handles string shifts, as the position
change between the stadium and riot in Fig. 3 illus-
trates. For the purpose of highlighting and scoring, we mark
the shortest one ( riot) as a shift, and the other one as a
regular match.

More generally, when faced with multiple alternative
shifts, we identify the longest common subsequence, in total
number of characters, between the sequence of LCSubstr’s
from C0 (hereafter noted Cmatch) and that from R0 (hereafter
Rmatch), and any LCSubstr left out is marked as a shift. The
two input sequences have exactly the same tokens, but in a
different order (here 4 tokens = 4 LCSubstr’s, delimited by a
pipe “|”):

Cmatch = Before the | the stadium| riot|.
Rmatch = Before the | riot| the stadium|.

The longest common subsequence has three to-
kens: Before the | the stadium|. for a total of
12+11+1=24 characters. Those tokens will be referred to as
regular matches in the following. Tokens left out (here, the
single token riot) are marked as shifts, and will be scored
and highlighted accordingly later on. Note that our definition
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of the longest common subsequence deviates from the gen-
eral LCS definition, since we do not base its computation on
the number of tokens, but on the sum of their lengths.

3.3. Scoring scheme

The result of the previous phases is a segmentation of the in-
put segments in three types of substrings: regular matches,
shifts, and loose differences. Loose differences include dele-
tions (from the candidate segment) and insertions (into the
reference segment). We derive a score from those substrings
by assigning a cost to each character of the candidate and
reference segments:

• characters from regular matches have no cost;

• shifted, deleted, and inserted characters have a cost
of 1 (shifted characters are counted only once although
they appear in both segments).

We do not consider the combination deletion + inser-
tion = replacement as a single operation because, by defi-
nition, there is no correspondence inside loose differences.
While this combination appears natural when dealing with
word units, it makes much less sense on characters, as iden-
tification of replacement pairs within differences would be
arbitrary, especially if their lengths highly differ between the
candidate and the reference.

While CharacTER assigns a shift cost equal to the av-
erage word length of the shifted phrase, we use the total
number of shifted characters instead, thus keeping the com-
putation rather straightforward. There is little risk of over-
evaluating the cost of shifts because, by definition (Sec. 3.2),
their length is minimal.

In our setting, the cost of post-edition is thus the to-
tal number of edited characters. An intuitive normalization
scheme would be to divide this number by the total length of
the candidate and reference segments in order to produce a
score between 0 and 1:

scoreorig =
#deletions +#insertions +#shifts

|C0|+ |R0|
(2)

However, following Wang et al. [12], we tried using only
the length of the candidate, and we could confirm that it
generally leads to higher correlation with human judgements
(see experiments in next section). We thus consider also the
following variant, where we divide by twice the candidate
length instead, and limit the final score to 1 in case the num-
ber of edited characters exceeds the denominator:

scoreC = min

✓
1,

#deletions +#insertions +#shifts
2⇥ |C0|

◆
(3)

The lower the scores, the better. A score of zero means
that the candidate and reference segments are identical. In
the example of Fig. 3, we obtain scoreorig = 27+21+5

56+49 ' 0.50

and scoreC = 27+21+5
2⇥56 ' 0.47.

4. Experiments
4.1. Task description

We evaluate CHARCUT on the WMT16 system- and
segment-level news metrics tasks [6], using the official eval-
uation scripts. We report results obtained with the “direct
assessment” golden truth (hereafter DA), as it was concluded
in WMT16 that it was more reliable than relative ranking,
and it was also chosen as the official human evaluation at
WMT17. Under this evaluation scheme, humans evaluate
the adequacy of translations on an absolute scale in isolation
from other translations, and the correlation with automatic
scores is measured by means of absolute Pearson correla-
tion coefficient. The data consist of news texts from Czech,
Finnish, German, Romanian, and Turkish, into English, plus
the Russian-English language pair in both directions.3

In addition, we report results of the segment-level tasks
under the “HUMEseg” evaluation scheme [23], which was
also an official human evaluation of WMT17. Similarly to
DA, scores are compared using the Pearson correlation coef-
ficient, but with human judgements of semantic nodes aggre-
gated over each sentence rather than single absolute scores.
The data used for those tracks are texts from the medical do-
main from English into Czech, German, Romanian, and Pol-
ish.

4.2. Optimizing for correlation with human judgement

Figure 4 reports the average Pearson correlations between
human judgements and various set-ups of CHARCUT. On
average, the correlations obtained with the scoreC scheme
(eq. 3) is greater than that obtained with scoreorig (eq. 2)
by 0.01, which confirms the findings of Wang et al. [12].

Although in practice varying the minimum match size
leads to visually very different outputs, especially with low
values, they seem to have a limited impact on correlations
with human judgements: the average range of the absolute
Pearson coefficient (difference between maximum and min-
imum) is 0.01. The system- and segment-level DA graphs
show curves that tend to increase slightly then decrease, with
a maximum correlation when the minimum match size equals
2 or 3 characters. This is consistent with the sense we get
from the corresponding highlighting, which “looks right” to
the eye—too small values leading to noisy matches, and too
high values to silence.

On the contrary, the monotonously decreasing curves of
the segment-level HUME graph suggest that smaller mini-
mum match sizes would be better, which is in contradiction
with the other results. We will nevertheless restrict our fol-
lowing experiments to a minimum match size of 3 characters,
as it constitutes a good compromise between the above three

3 The DA evaluations of WMT17 cover more diverse target languages,
in particular Chinese, which constitutes a good test for character based ap-
proaches, but the official evaluation scripts were not publicly released at the
time this paper was written. For consistency, we therefore chose to stick to
the WMT16 evaluations.
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Figure 4: Average correlations between CHARCUT scores
and human judgements on WMT16’s metrics tasks. In or-
dinates, the absolute Pearson correlation coefficient. In ab-
scissae, the minimum match size in characters (length-based
threshold). The reported numbers are averages over all lan-
guage pairs. Normalizing with the candidate segment length
only (scoreC) consistently outperforms using both the candi-
date and reference lengths (scoreorig).

evaluations and our manual investigations, in which we ob-
served that a 2 character threshold still produced too many
noisy matches.

4.3. Comparison with other metrics

Table 1 compares CHARCUT with metrics that took part in
the WMT16 evaluations. For conciseness, we only report
average correlations over all language pairs. The rankings
differ from the official WMT16 results since we chose to fo-

cus on the Direct Assessment and HUME evaluations, while
the official evaluations were based on Relative Ranking. The
reported results make therefore no pretence to (re-)define the
“best metrics;” rather, they are only meant to show that the
scores produced by CHARCUT, which are first and foremost
intended to be presented to users along with segment high-
lighting, are globally as good as other recent metrics, well
above well-known baselines.

In these experiments, CHARCUT uses the scoreC normal-
ization scheme and a minimum match size of 3-characters.
We also report additional correlations obtained with the Lev-
enshtein distance, normalized with the sum of the source and
target segment lengths, to serve as a character-based base-
line; as well as with TER and CharacTER on segment-level
tasks.

Globally, CHARCUT’s results are very close to those
of MPEDA [24], which relies yet on additional training
corpora. Compared with other endogenous metrics (chrF,
wordF, CharacTER, variants of BLEU and TER, Leven-
shtein distance), CHARCUT produces top average correla-
tions on the system- and segment-level DA evaluations, and
is only superseded by chrF on the HUME evaluation. A
fortiori, its correlations are much higher than those of the
BLEU and TER baselines: from +9% relative Pearson corre-
lation (MTEVALBLEU, system-level DA) up to +23% (TER,
segment-level HUME).

Unexpectedly, the simple normalized character-based
Levenshtein distance performs quite well, outperforming
even metrics like BEER and CharacTER on the DA evalu-
ations. CHARCUT nevertheless represents a consistent im-
provement over it, by +0.03 absolute Pearson correlation on
average.

4.4. Processing time

We used a random sample of 10,000 segment pairs from
WMT16 to measure the speed of CHARCUT. The average
reference length in this sample was 113 characters. On a
2.8 GHz processor, our Python implementation could pro-
cess 260 segment pairs per second, using a minimum match
size of 3 characters, which is faster than required in most sit-
uations. For comparison, CharacTER and CHRF, also Python
implementations, could process respectively 54 and 600 seg-
ment pairs per second with default settings on the same ma-
chine.

5. Conclusion
We have presented CHARCUT, a character-based machine
translation evaluation metric. It relies on loose differences,
residuals from an iterative search for longest common sub-
strings. Initially designed for displaying differences between
reference and candidate segments to end users, it also pro-
duces scores that should look consistent to most, since they
directly reflect those differences. In this view, good correla-
tion with human judgement is only a consequence of a good
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Table 1: Comparison of CHARCUT’s performances with metrics that took part in the system-level DA, segment-level DA, and
segment-level HUME tasks of WMT16. We report the average Pearson correlation coefficients over all language pairs. Averages
within brackets refer to metrics that did not participate in the English-to-Russian evaluation, so they are based on one less figure.
Asterisks indicate our own runs; all other averages are based on figures from [6]. CHARCUT is globally on par with the best
metrics in those evaluations.

system-level DA segment-level DA segment-level HUME

Metric Avg. corr. ± stddev.

UOW.REVAL (0.972 ± 0.013)
MPEDA 0.945 ± 0.044
*CHARCUT 0.942 ± 0.037
CHRF2 0.934 ± 0.038
CHRF3 0.934 ± 0.035
*Lev. distance 0.930 ± 0.049
BEER 0.928 ± 0.054
CHRF1 0.927 ± 0.051
CHARACTER 0.922 ± 0.055
MTEVALNIST 0.886 ± 0.068
MTEVALBLEU 0.867 ± 0.060
MOSESCDER 0.861 ± 0.061
MOSESTER 0.851 ± 0.061
MOSESPER 0.842 ± 0.096
WORDF3 0.836 ± 0.069
WORDF2 0.836 ± 0.069
WORDF1 0.831 ± 0.071
MOSESWER 0.812 ± 0.099
MOSESBLEU 0.810 ± 0.082

Metric Avg. corr. ± stddev.

DPMFCOMB (0.633 ± 0.048)
METRICS-F (0.631 ± 0.049)
COBALT-F. (0.617 ± 0.040)
MPEDA 0.584 ± 0.053
*CHARCUT 0.582 ± 0.076
UPF-COBALT (0.582 ± 0.060)
CHRF3 0.560 ± 0.082
CHRF2 0.559 ± 0.081
*Lev. distance 0.556 ± 0.065
BEER 0.556 ± 0.082
CHRF1 0.548 ± 0.079
*CHARACTER 0.537 ± 0.074
UOW.REVAL 0.530 ± 0.035
WORDF3 0.524 ± 0.055
WORDF2 0.522 ± 0.055
WORDF1 0.514 ± 0.055
SENTBLEU 0.510 ± 0.039
*TER 0.485 ± 0.052
DTED 0.330 ± 0.058

Metric Avg. corr. ± stddev.

CHRF3 0.519 ± 0.096
CHRF2 0.517 ± 0.092
BEER 0.513 ± 0.079
CHRF1 0.503 ± 0.079
MPEDA 0.492 ± 0.073
*CHARCUT 0.483 ± 0.121
WORDF3 0.452 ± 0.092
WORDF2 0.450 ± 0.091
WORDF1 0.439 ± 0.088
*CHARACTER 0.438 ± 0.126
*Lev. distance 0.437 ± 0.109
SENTBLEU 0.401 ± 0.101
*TER 0.394 ± 0.125

visual representation. Experiments on WMT16 metrics tasks
have thus shown that those scores are well correlated with
human judgements, globally on par with other recent met-
rics like CHRF and MPEDA, ahead of BLEU and TER base-
lines by up to 23% relative Pearson correlation in our exper-
iments. It is also language independent and requires no ad-
ditional resource or training. Possible improvements include
better handling of shifts, as CHARCUT is currently unaware
of shift distance; or again automatically correlate the mini-
mum match size with the number of highlighted substrings
in order to keep outputs readable even with very different in-
put segments.

6. Availability
CHARCUT is open source and available at https://
github.com/alardill/CharCut. It consists of a sin-
gle Python script that computes scores and highlights differ-
ences (HTML outputs). Figure 5 shows a sample output.
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[11] M. Popović, “chrF: character n-gram F-score for
automatic MT evaluation,” in Proceedings of the Tenth
Workshop on Statistical Machine Translation. Lisbon,
Portugal: Association for Computational Linguistics,
September 2015, pp. 392–395. [Online]. Available:
http://aclweb.org/anthology/W15-3049

[12] W. Wang, J.-T. Peter, H. Rosendahl, and H. Ney,
“CharacTer: Translation Edit Rate on Character
Level,” in Proceedings of the First Conference on
Machine Translation. Berlin, Germany: Association
for Computational Linguistics, August 2016, pp.
505–510. [Online]. Available: http://www.aclweb.org/
anthology/W/W16/W16-2342

[13] R. Sennrich, B. Haddow, and A. Birch, “Neural
Machine Translation of Rare Words with Subword
Units,” in Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers). Berlin, Germany: Association
for Computational Linguistics, August 2016, pp.
1715–1725. [Online]. Available: http://www.aclweb.
org/anthology/P16-1162

[14] M. Federico, N. Bertoldi, M. Cettolo, M. Negri,
M. Turchi, M. Trombetti, A. Cattelan, A. Farina,
D. Lupinetti, A. Martines, A. Massidda, H. Schwenk,
L. Barrault, F. Blain, P. Koehn, C. Buck, and
U. Germann, “THE MATECAT TOOL,” in Pro-
ceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: System
Demonstrations. Dublin, Ireland: Dublin City Uni-
versity and Association for Computational Linguistics,
August 2014, pp. 129–132. [Online]. Available:
http://www.aclweb.org/anthology/C14-2028

[15] S. O’Brien, “Towards predicting post-editing produc-
tivity,” Machine Translation, vol. 25, no. 3, p. 197,
2011. [Online]. Available: http://dx.doi.org/10.1007/
s10590-011-9096-7
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