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Abstract
Various small-scale pilot studies have found that for at least some documents, monolingual
target language speakers may be able to successfully post-edit machine translations. We begin
by analyzing previously published post-editing data to ascertain the effect, if any, of original
source language on post-editing quality. Schwartz et al. (2014) hypothesized that post-editing
success may be more pronounced when the monolingual post-editors are experts in the domain
of the translated documents. This work tests that hypothesis by asking a domain expert to
post-edit machine translations of a French scientific article (Besacier, 2014) into English. We
find that the monolingual domain expert post-editor was able to successfully post-edit 86.7%
of the sentences without requesting assistance from a bilingual post-editor. We evaluate the
post-edited sentences according to a bilingual adequacy metric, and find that 96.5% of those
sentences post-edited by only a monolingual post-editor are judged to be completely correct.
These results confirm that a monolingual domain expert can successfully triage the post-editing
effort, substantially reducing the workload on the bilingual post-editor by only sending the most
challenging sentences to the bilingual post-editor.

1 Introduction

Post-editing is the process whereby a human user corrects the output of a machine translation
system. The use of basic post-editing tools by bilingual human translators has been shown
to yield substantial increases in terms of productivity (Plitt and Masselot, 2010) as well as
improvements in translation quality (Green et al., 2013) when compared to bilingual human
translators working without assistance from machine translation and post-editing tools. More
sophisticated interactive interfaces (Langlais et al., 2000; Barrachina et al., 2009; Koehn, 2009b;
Denkowski and Lavie, 2012) may also provide benefit (Koehn, 2009a).

Small-scale studies have suggested that monolingual human post-editors, working without
knowledge of the source language, can also improve the quality of machine translation output
(Callison-Burch, 2005; Koehn, 2010; Mitchell et al., 2013), especially if well-designed tools
provide automated linguistic analysis of source sentences (Albrecht et al., 2009). Schwartz
et al. (2014) confirmed this result with eight monolingual post-editors on a larger 3000 sentence
test corpus.

Using a bilingual judge, we evaluate the post-edited test English sentences using the 10-
point adequacy metric (see Table 5) of Albrecht et al. (2009). The results of our evaluation indi-
cate that over 95% of post-edited sentences are completely correct translations that adequately
convey the meaning of the respective French source sentence. Our bilingual judge estimated
that approximately 15 minutes of total effort would be required for a bilingual French-English
speaker to correct the remaining 5% of post-edited sentences.
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2 Effects of Original Source Language on Post-Editing Quality

In discussing post-editing, there may be cases where shared task evaluation data may have an
unintended effect on post-editing quality. When a shared task test set for a particular language
pair (for example, from Russian into English) is created, some portion of that shared test set
may have originally been written in the shared task target language, and then professionally
translated into the shared task source language. By examining the data from the 2014 Workshop
on Statistical Machine Translation, we have confirmed that this is indeed the case for (at least)
the Russian-English shared task.

Schwartz et al. (2014) performed a post-editing experiment as part of the WMT 2014
Russian-English shared task. The post-editors in that study anecdotally reported an effect on
post-editing difficulty based on original source language: Schwartz et al. noted:

Interestingly, several post-editors self-reported that they could tell which documents
were originally written in English and were subsequently translated into Russian, and
which were originally written in Russian, based on observations that sentences from
the latter were substantially more difficult to post-edit. Once per-document source
language data is released by WMT14 organizers, we intend to examine translation
quality on a per-document basis and test whether post-editors did indeed perform
worse on documents which originated in Russian.

This effect, if it does indeed exist, could mean that positive post-editing results such as
those reported by Schwartz et al. (2014) may be artificially high, due to the presence of sen-
tences in the test set which were originally written in English. Such sentences may have main-
tained the original English word order even after translation through Russian, and so may have
been easier to translate than sentences originally authored in Russian, which might be expected
to be more difficult due to more idiomatic Russian word order.

Before exploring our own post-editing study in Section 3, we therefore find it useful to
conduct some further data analysis on previously released data to attempt to ascertain what
effect, if any, the original source language may play in post-editing quality. After the work-
shop, the WMT 2014 organizers released information regarding the original source language of
each sentence in the shared task test sets. In addition, as part of their WMT 2014 submission,
Schwartz et al. (2014) made available the post-edited translations from their Russian-English
submission, along with the results of their manual evaluation.

Schwartz et al. (2014) report that their machine translations were post-edited by a group
of eight individuals. We divide their post-edited translations by original source language and
by post-editor, along with the binary adequacy judgements reported for each post-edited trans-
lation. Table 1 presents the results of this data collation. For each monolingual post-editor,
the percentage of sentences judged to be correct according to a monolingual human judge are
broken down according to the language in which test documents were originally authored. For
7 out of 8 post-editors, we observe worse translation quality for sentences originally authored
in Russian when compared to sentences originally authored in English. The overall percentage
of sentences judged to be correct, taken across all post-editors, is 14 percentage points lower
for sentences originally authored in Russian (57% correct) when compared to sentences origi-
nally authored in English (71% correct). Interestingly, we see no coherent effect when quality
is measured using BLEU (see Table 2); for some post-editors, BLEU scores are higher (more
positive) for sentences originally authored in English, but for most post-editors, BLEU scores
for some post-editors are higher (in some cases by more than 5 BLEU points) for sentences
originally authored in Russian.

These partially contradictory results could be an artifact of metrics, or indicative of other
factors at play. In Section 3, we examine one factor that may play a more important role in
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Post-Editor
1 2 3 4 5 6 7 8 All

en % correct 78% 67% 78% 62% 67% 48% 64% 72% 71%
ru % correct 65% 69% 52% 51% 63% 40% 60% 43% 57%

Table 1: For each monolingual post-editor in Schwartz et al. (2014), the percentage of sentences
judged to be correct according to a monolingual human judge, broken down according to the
language in which test documents were originally authored.

Post-Editor
1 2 3 4 5 6 7 8 All

English 27.97 21.08 25.20 28.16 27.94 21.22 23.34 24.10 25.56
Russian 27.38 26.82 24.21 27.18 28.98 22.73 28.92 26.03 26.62

difference 0.59 -5.74 0.99 0.98 -1.04 -1.51 -5.58 -1.93 -1.06

Table 2: Analysis of post-edited translation data from Schwartz et al. (2014), showing case-
sensitive BLEU scores per post-editor broken down according to the language in which test
documents were originally authored.

predicting post-editing quality: domain expertise.

3 Monolingual Post-editing by a Domain Expert

It has been proposed (Schwartz et al., 2014) that post-editing machine translations may be more
successful when the post-editor is highly familiar with the subject matter being translated. In
this section we test that hypothesis by asking a domain expert to post-edit machine translations
of a French scientific article (Besacier, 2014) into English.

We begin by copying the headers, content sentences, and other text comprising Besacier
(2014) from the original PDF document into plain text format (UTF-8 encoding), dividing the
text into 241 distinct segments.1 To better facilitate machine translation, each segment was
placed on its own line.

The plain text of the French source document was translated using Google Translate
(Google, 2014), Systran Server 7.4.2 (Systran, 2010), and Moses (Koehn et al., 2007). Google
Translate is a proprietary online statistical translation system that makes use of phrase-based
translation methods. Systran Server is a proprietary translation system that is primarily rule-
based, although recent versions allow for hybrid rule-based/statistical functionality; we did not
make use of hybrid functionality in this experiment. Moses is the de-facto standard open source
phrase-based statistical machine translation system. In our experiments, Moses was trained and
tuned on French-English data from IWSLT 2013, following the procedures described in Kazi
et al. (2013).

The monolingual post-editor is a native speaker of English with no training or experience
in French with domain expertise in the scientific article being post-edited. For each sentence,
the monolingual post-editor was presented with the machine translation results produced by the
three aforementioned machine translation systems. The post-editor was free to choose any of
the three MT output segments as the starting point for post-editing, and was free to incorporate
portions of any or all of the three MT output segments into the final post-edited result. No

1While most of the segments are sentences, some segments are section headers, table elements, footnotes, etc.
Throughout we will use the terms segment and sentence interchangeably.
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Confident The monolingual post-editor is confident that
the post-edited translation conveys the mean-
ing of the French sentence

Verify The monolingual post-editor believes that the
post-edited translation conveys the meaning
of the French sentence, but the translation
should be verified by a bilingual post-editor

Partially unsure The monolingual post-editor is not confident
that a specific portion of the post-edited trans-
lation is correct; that section should be han-
dled by a bilingual post-editor

Completely unsure The entire sentence should be handled by a
bilingual post-editor

Table 3: Confidence guidelines for monolingual post-editors.

Post-Editor Confidence
Completely unsure Partially unsure Verify Confident

# sentences 8 13 11 209
% sentences 3.3% 5.4% 4.6% 86.7%

Table 4: Post-editor confidence in the adequacy of post-edited translations. Confidence labels
are defined in Table 3.

interactive post-editing software was provided to the post-editor; for each sentence, the post-
editor was presented with the three MT output segments, and was instructed to type a fluent
English output sentence into a text editor.

For each segment, the monolingual post-editor was instructed to record confidence accord-
ing to the guidelines shown in in Table 3. Post-edited segments marked as “Verify” or “Partially
unsure” were passed on to a bilingual post-editor to verify and correct, if necessary. Post-edited
segments marked as “Completely unsure” were passed to a bilingual post-editor to post-edit or
translate from scratch. Table 4 shows the breakdown of post-edited sentences by post-editor
confidence. We observe that the monolingual domain expert post-edited 86.7% of the sentences
without requesting assistance from a bilingual post-editor.

In determining confidence in a post-edited segment, we expect the monolingual post-editor
to consider the segment’s coherence with surrounding segments, and its semantic consistency
with the entire document, taking into account the post-editor’s own expertise in the domain.
Because the monolingual post-editor does not know the source language, there is no guarantee
that post-edited segments in which the post-editor is confident completely and correctly convey
the meaning present in the respective source segments. For this reason, in Section 4 we perform
a bilingual adequacy evaluation over all post-edited segments.

4 Evaluation

A high rate of post-editor confidence (as seen in Table 4) is worthy of note only if the post-
editor’s confidence is justified by corresponding high quality in post-edited results. Most ma-
chine translation experiments report quality according to BLEU or some other automated met-
ric, as judged against one or more reference translations. In our case, the results of our work
represent the only known translation of the document in question — as such, no reference trans-

37



lation is available.

4.1 Post-editor Confidence and Translation Adequacy
To determine the quality of post-edited translations, we asked a bilingual judge to rank the
adequacy of the post-edited translations. The judge is a native English speaker fluent in French
who was not involved in translating or post-editing any segments in this task. The bilingual
judge was asked to rate the adequacy of all post-edited segments, using the evaluation guidelines
shown in Table 5, which were adapted from Albrecht et al. (2009).

10 The meaning of the French sentence is fully
conveyed in the English translation

8 Most of the meaning of the French sentence is
conveyed in the English translation

6 The English translation misunderstands the
French sentence in a major way, or has many
small mistakes

4 Very little information from the French sen-
tence is conveyed in the English translation

2 The English translation makes no sense at all

Table 5: Adequacy evaluation guidelines for bilingual human judges, adapted from Albrecht
et al. (2009).

Evaluation Category
2 4 6 8 10

# sentences 0 0 1 9 231
% sentences 0.0% 0.0% 0.4% 3.7% 95.9%

Table 6: Number and percentage of 241 evaluated sentences judged to be in each category by a
bilingual judge. Category labels are defined in Table 5.

The resulting adequacy scores for all 241 post-edited segments are shown in Table 6. We
observe that a very high percentage of post-edited segments (95.9% of segments) are rated by
the bilingual judge to be completely correct translations of the original French. The remainder
are either judged to be mostly correct (3.7% of segments) or partially correct (0.4% of seg-
ments). Of the 241 segments, the monolingual post-editor was confident in the post-editing of
209 segments. Those 209 segments were not shown to a bilingual post-editor; we observe that
96.5% of those 209 sentences, which were post-edited by only a monolingual post-editor, are
judged to be completely correct by the bilingual judge.

Despite shortcomings (Callison-Burch et al., 2006), BLEU remains a widely used met-
ric for MT evaluation. A somewhat conservative estimate on the quality of the post-edited
translations can be measured using BLEU by treating the post-edited translations as a refer-
ence translation, and then treating as non-matches (for the purposes of calculating BLEU) all
post-edited sentences whose bilingual adequacy score is less than 10; these results are shown in
Table 7.

In addition, we cross-tabulate monolingual post-editor confidence (shown in Table 4) with
bilingual adequacy judgments (shown in Table 6) to substantiate post-editor confidence with
actual translation adequacy for each sentence. The results are shown in Table 8. These results
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BLEU BLEU-cased
Post-edited (deleting non-perfect translations) 93.3 93.3

Table 7: Translation quality as measured by BLEU (Papineni et al., 2002) of the post-edited
machine translation output, treating as non-matches (for the purposes of calculating BLEU) all
post-edited sentences whose bilingual adequacy score is less than 10.

Evaluation Category
2 4 6 8 10

Po
st

-E
di

to
r

C
on

fid
en

ce Completely unsure 0 0 0 0 8
Partially Unsure 0 0 0 2 11

Verify 0 0 0 1 10
Confident 0 0 1 6 202

Table 8: For each of the 241 evaluated sentences, the adequacy category assigned by a bilingual
judge, along with confidence assigned by the post-editor. Adequacy category labels are defined
in Table 5. Confidence labels are defined in Table 3.

indicate that the high level of post-editor confidence is for the most part justified. Of the 209
segments where the post-editor was confident, only 7 were judged to be less than completely
adequate translations.

For reference, these 7 segments are reproduced in their entirety in Appendix A. Four of the
segments marked as less than completely adequate contain minor errors in typography or lexical
choice. The post-edited translation of Segment 107 substitutes the more technical English term
the data instead of the more literal the work or the text for the French term l’oeuvre. In segment
171, the English translates the French word lecteurs as readers, which is a valid translation
for that French term, but is an incorrect lexical choice in context. Segment 196 incorrectly
uses the literal translation in the state instead of a more appropriate idiomatic translation, such
as as is, for the French phrase en l’état. Segment 215 consists entirely of a URL; the post-
edited translation is rated 8 instead of 10, presumably because the English “translation” does
not faithfully reproduce a spurious space character that appears in the French segment.

The remaining three segments contain more serious problems. The English translation
of segment 8 elides a clause present in the French, resulting in an English translation that is
perfectly fluent but semantically different from the original French. Segments 183 and 198
each contain phrases that are ill-formed in English, and also do not properly convey the semantic
content of the respective French source segments.

4.2 Examining Machine Translation Results
Ideally, it would be desirable to evaluate the raw (un-edited) machine translation using the
same 10-point adequacy metric used to evaluate the post-edited translations. Due to time con-
straints, we were unable to collect bilingual adequacy judgements on the raw (un-edited) ma-
chine translation output. We intend to pursue this in future work; in order to enable any in-
terested researchers to perform such an analysis, we are making available for download both
the post-edited results and the machine translation output of all three systems as supplementary
materials to accompany this paper.

In the absence of a manual evaluation, we consider various automatic metrics in an attempt
to provide at least some insight into the machine translation quality. Recall that over 95% of
post-edited translations in our task were judged to be completely correct. Given this very high
adequacy rate, we propose that it is not unreasonable to treat this post-edited data as reference
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Post-edited translations as reference
BLEU BLEU-cased PER WER

Sy
st

em
Google Translate 52.6 51.8 17.70 35.23

Systran 37.2 36.6 30.29 49.21
Moses 14.0 11.8 67.34 87.09

Table 9: Similarity of the post-edited translations with the raw (un-edited) machine translation
output from each MT system, as measured by case-insensitive and case-sensitive BLEU (Pap-
ineni et al., 2002), position-independent word error rate (PER), and word error rate (WER).

Google translations as reference
BLEU BLEU-cased PER WER

Sy
st

em

Google Translate 100.0 100.0 0.0 0.0
Systran 37.2 36.4 30.2 45.0
Moses 17.6 15.1 65.6 80.2

Table 10: Similarity of the raw (un-edited) output of Google Translate with the raw (un-edited)
machine translation output from the other two MT systems, as measured by case-insensitive
and case-sensitive BLEU (Papineni et al., 2002), position-independent word error rate (PER),
and word error rate (WER).

Systran translations as reference
BLEU BLEU-cased PER WER

Sy
st

em

Google Translate 37.3 36.6 27.9 41.5
Systran 100.0 100.0 0.0 0.0
Moses 21.0 17.9 56.0 72.6

Table 11: Similarity of the raw (un-edited) output of Systran with the raw (un-edited) machine
translation output from the other two MT systems, as measured by case-insensitive and case-
sensitive BLEU (Papineni et al., 2002), position-independent word error rate (PER), and word
error rate (WER).

Moses translations as reference
BLEU BLEU-cased PER WER

Sy
st

em

Google Translate 17.4 14.9 51.2 62.6
Systran 21.0 17.9 47.4 61.5
Moses 100.0 100.0 0.0 0.0

Table 12: Similarity of the raw (un-edited) output of Moses with the raw (un-edited) machine
translation output from the other two MT systems, as measured by case-insensitive and case-
sensitive BLEU (Papineni et al., 2002), position-independent word error rate (PER), and word
error rate (WER).
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translations in order to examine the quality of the machine translation results used in this ex-
periment. Treating the post-edited translations as a reference translation, we calculate BLEU,
word error rate (WER), and position-independent word error rate (PER) on the output from the
machine translation three systems.2

The results are shown in Table 9. Of the three MT systems, we observe the best scores
for the raw MT output from Google Translate. Recall that the monolingual post-editor, when
post-editing a segment, had the freedom to use the results of any of the three MT systems as the
starting point for post-editing. The good automated metrics scores for Google Translate suggest
that the post-editor drew most heavily from the Google Translate results when post-editing.

To get an indication of the relative similarity of the respective segments of the three MT
systems, we also calculate BLEU, PER, and WER, treating (in turn) each MT system output
as the reference for the purposes of automatic metric calculations. These results are shown in
Tables 10, 11, and 12. We observe from these results that the output of Google Translate and
Systran are somewhat similar, and that each of those systems differ substantially from the output
of Moses.

5 Conclusion

The need for translation in today’s highly connected and highly multilingual world far outstrips
the supply of qualified human translators. In some cases of assimilation, where a user wants to
extract information from a web page or other resource that is in a foreign language, imperfect
machine translation can partially or completely satisfy the user’s needs. In other more demand-
ing cases of assimilation, as well as in most cases of dissemination, there is a need for a higher
quality of translation than most machine translation systems provide.

Monolingual post-editing represents a middle ground between professional translation and
raw use of machine translation. Previous work has indicated that monolingual post-editing
can result in higher quality results than raw machine translation. In this work we have shown
that when the monolingual post-editor is a domain expert in the material being translated, the
monolingual post-editor can produce completely correct translations over 95% of the time. This
work suggests that a monolingual post-editor can serve to effectively triage the translation pro-
cess by forwarding on to bilingual post-editors only those segments which are too difficult for
the monolingual post-editor to handle.

This work represents an initial examination into monolingual post-editing as a potential
triage mechanism for translation. We plan a more thorough examination of this line of research.
In future work, we plan to perform manual adequacy evaluations of the raw machine translation
output in addition to the post-edited translations, in order to directly measure the adequacy
improvements of monolingual post-editing. This work also is limited in scope by only making
use of a single monolingual post-editor and a single document; future work should be broader
in both of these dimensions, making use of multiple monolingual post-editors (both domain
experts and non-experts) and multiple documents to be translated.
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Appendix

A Segments

• Segment 8 of 241 - Adequacy score 8

French Les techniques actuelles de traduction automatique (TA) permettent de produire
des traductions dont la qualité ne cesse de croitre.

English Current machine translation (MT) techniques continue to improve.

• Segment 107 of 241 - Adequacy score 8

French L’oeuvre, composée de 545 segments et 10731 mots est divisée en trois blocs
identiques.

English The data, made up of 545 segments and 10731 words was divided into three equal
blocks.

• Segment 171 of 241 - Adequacy score 8

French Après trois questions permettant de mieux cerner le profil du lecteur, une première
partie (5 questions) interroge les lecteurs sur la lisibilité et la qualité du texte littéraire
traduit.

English After three questions to better understand the profile of the player, the first portion
(5 questions) asks readers about readability and quality of the translated literary text.

• Segment 183 of 241 - Adequacy score 8

French ce résultat mitigé indique peut-être un désintérêt de certains lecteurs pour les as-
pects les plus techniques de l’oeuvre.

English this mixed result may indicate a lack of interest by some readers to the most
technical of the work aspects.

• Segment 196 of 241 - Adequacy score 8

French Le manque de place ne nous permet pas de commenter ces remarques mais nous
pensons qu’elles sont assez explicites pour être délivrées en l’état.

English Lack of space does not allow us to comment on these remarks but we think that
they are sufficiently clear to be delivered in the state.

• Segment 198 of 241 - Adequacy score 6

French Le texte auquel vous êtes parvenu restitue une image fidéle du contenu de l’article
de Powers.

English The text you have successfully reproduces faithfully the content of the article by
Powers.

• Segment 215 of 241 - Adequacy score 8

French 10. https ://fluidsurveys.com/surveys/manuela-cristina/
un-livre-sur-moi-qualite-de-la-traduction/?TEST_DATA=

English 10. https://fluidsurveys.com/surveys/manuela-cristina/
un-livre-sur-moi-qualite-de-la-traduction/?TEST_DATA=
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