
Simulating Discriminative Training for Linear Mixture Adaptation
in Statistical Machine Translation

George Foster, Boxing Chen, and Roland Kuhn
National Research Council Canada
first.last@nrc-cnrc.gc.ca

Abstract

Linear mixture models are a simple and
effective technique for performing domain
adaptation of translation models in statis-
tical MT. In this paper, we identify and
correct two weaknesses of this method.
First, we show that standard maximum-
likelihood weights are biased toward large
corpora, and that a straightforward pre-
processing step that down-samples phrase
tables can be used to counter this bias.
Second, we show that features inspired by
prototypical linear mixtures can be used
to loosely simulate discriminative training
for mixture models, with results that are
almost certainly superior to true discrimi-
native training. Taken together, these en-
hancements yield BLEU gains of approx-
imately 1.5 over existing linear mixture
techniques for translation model adapta-
tion.

1 Introduction

SMT systems, like other statistical NLP systems,
experience difficulties when the domain in which
they must operate is different from the one on
which they were trained. Domain adaptation
techniques intended to address this problem have
attracted significant research attention in recent
years. One simple and popular approach is mix-
ture adaptation, in which models trained on various
sub-corpora are weighted according to their rele-
vance for the current domain. Mixture adaptation
is most effective when there are many heteroge-
neous sub-corpora, at least some of which are not

too different from the test domain.1 It typically
requires only a small in-domain sample—a devel-
opment or test set—in order to obtain weights, and
has been shown to work well with all major SMT
model types: language (Foster and Kuhn, 2007),
translation (Koehn and Schroeder, 2007; Foster et
al., 2010; Sennrich, 2012b), and reordering (Chen
et al., 2013).

There are two main types of mixture model: lin-
ear mixtures, which combine weighted probabili-
ties from component models additively; and log-
linear mixtures, which combine multiplicatively.
Linear mixtures frequently perform better (Foster
et al., 2010), especially when there are a relatively
large number of sub-corpora, and when the mod-
els derived from them are not smooth. This is
likely due to the “veto power” that any compo-
nent model exercises within a log-linear combina-
tion: it can suppress hypotheses by assigning them
low probabilities. To avoid the complete suppres-
sion of in-domain hypotheses by weaker models,
the only option is to effectively turn these mod-
els off by downweighting them severely, thereby
discarding whatever useful information they might
possess.

Although linear mixtures are attractive for adap-
tation, they have the potential disadvantage that it
is difficult to tune mixture weights directly for an
SMT error metric such as BLEU. This is because,
in order to allow for decoder factoring, models
must be mixed at the local level, ie over ngrams
or phrase/rule pairs. Thus the linear mixtures oc-

1The assumption that train and test domains are fairly similar
is shared by most current work on SMT domain adaptation,
which focusses on modifying scores. Haddow and Koehn
(2012) show that coverage problems dominate scoring prob-
lems when train and test are more distant.
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cur inside the normal log probabilities that are as-
signed to these entities, making mixture weights
inaccessible to standard tuning algorithms. No-
tice that log-linear mixtures do not suffer from this
problem, since component probabilities can be in-
corporated as features directly into the standard
SMT model.

The usual solution to the problem of setting lin-
ear mixture weights is to sidestep it by optimizing
some other criterion, typically dev-set likelihood
(Sennrich, 2012b), instead of BLEU. This achieves
good empirical results, but leaves open the ques-
tion of whether tuning linear weights directly for
BLEU would work better, as one might naturally
expect. This question—which to our knowledge
has not yet been answered in the literature—is the
one we address in this paper.

Modifying standard tuning algorithms to ac-
commodate local linear mixtures presents a chal-
lenge that varies with the algorithm. In MERT
(Och, 2003) for instance, one could replace ex-
act line maximization within Powell’s algorithm
with a general-purpose line optimizer capable of
handling local linear mixtures at the same time
as the usual log-linear weights. For expected
BLEU methods (Rosti et al., 2011), handling local
weights would require computing gradient infor-
mation for them. For MIRA (Chiang et al., 2008),
the required modifications are somewhat less obvi-
ous.

Rather than tackling the problem directly by at-
tempting to modify our tuning algorithm, we opted
for a simpler indirect approach in which features
are used to simulate a discriminatively-trained lin-
ear mixture, relying on the ability of MIRA to han-
dle large feature sets. Our aim in doing so is not to
achieve a close mathematical approximation, but
rather to use features to capture the kinds of in-
formation we expect to be inherent in linear mix-
tures. We apply this approach to translation model
(TM) adaptation and show that it outperforms stan-
dard linear mixtures trained for dev-set likelihood.
We also give strong evidence that it would outper-
form linear mixtures trained directly to maximize
BLEU. As an additional contribution, we identify
a problem with standard likelihood estimation for
mixtures that use unsmoothed component models
from unbalanced corpora, and provide a simple so-
lution that significantly improves performance.

2 Linear Mixture Adaptation for TMs

We now describe the adaptation methods used in
this paper. We begin with standard maximum-
likelihood mixtures, then describe the enhance-
ment for dealing with unbalanced corpora,
and finally present our method for simulating
discriminatively-trained mixtures. All techniques
are applied to TM adaptation; for brevity we de-
scribe them in terms of target-conditioned esti-
mates only.

2.1 Maximum Likelihood Mixtures
Given a set of training sub-corpora, let pi(s|t) be
the conditional probability for phrase pair s, t in
a phrase table extracted from the ith sub-corpus.
The resulting mixture model is:

p(s|t) =
∑

i

wi pi(s|t). (1)

To set the weights w, we extract a bag of phrase
pairs from an in-domain development set using
standard techniques. This yields a joint distribu-
tion p̃(s, t), which we use to define a maximum
likelihood objective:

ŵ = argmax
w

∑

s,t

p̃(s, t) log
∑

i

wi pi(s|t).

This maximization can be performed in a straight-
forward and efficient way using the EM algorithm.

2.2 Correcting for Large-Corpus Bias
A naive implementation of the method in the pre-
vious section would extract a separate phrase table
from each sub-corpus and assign pi(s|t) = 0 to all
pairs s, t not in the ith table.2 This creates a bias
in favour of large sub-corpora, which will tend to
contain a greater number of phrase pairs from the
development set than smaller sub-corpora. To see
why, consider the expected count credited to the
ith model for phrase pair s, t during the E-step of
the EM algorithm:

wi pi(s|t)∑
j wj pj(s|t)

.

Clearly, if the ith model is the only one that as-
signs non-0 probability to s, t, then its count incre-
ment for this pair will be 1, regardless of how small
2In cases where t also does not exist in the ith table, this
makes the resulting distribution pi(∗|t) , and hence the over-
all mixture, non-normalized. This is not a concern per se, but
rather a symptom of the problem we identify in this section.
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a (non-0) probability it actually assigns. Since
weights are set to normalized expected counts
in the M-step, this implies that sub-corpora with
higher dev-set coverage will tend to get assigned
higher weights.

One might argue that weights tuned for BLEU
could be expected to exhibit the same bias, in
which case it would obviously not be harmful.
However, note that the above analysis applies also
to large out-of-domain sub-corpora. Even though
models from such corpora may assign very small
pi(s|t) to phrase pairs from the dev set, they will
still get a large EM bonus for pairs that are covered
by few or no other models. However, domain mis-
match means that there will likely be other pairs
s, t′ for which pi(s|t′) � pi(s|t). At translation
time, such pairs will be detrimental to BLEU score
if wi is high.

One way to solve this problem would be to
jointly smooth models across sub-corpora, for in-
stance using a hierarchical MAP approach (Amin-
zadeh et al., 2012). We experimented with simple
add-epsilon smoothing, but found that a more ef-
fective approach was to sample sub-corpora in or-
der to remove size discrepancies. More precisely,
before running EM, we randomly select ri phrase
pairs from the ith phrase table according to p̃(s, t),
their joint probability in the dev set distribution,3

and consider pi(s|t) to be 0 for all other pairs. We
set ri = si nmin/ni, where si is the number of
pairs in table i for which p̃(s, t) > 0, ni is the total
number of pairs in that table, and nmin = mini ni.
This approach gave slightly better results than sub-
sampling corpora prior to phrase extraction, and
was easier to implement with our existing mixture-
model infrastructure. After obtaining weights with
EM, the full sub-corpus phrase tables are mixed as
usual.

2.3 Simulating Discriminative Training
Discriminative training applied to a mixture model
(1) will yield a particular set of weights w and a
resulting feature value:

gw(s, t) = log
m∑

i=1

wi pi(s|t).

Our aim is to find a set of phrase-pair fea-
tures fj [p1(s|t), . . . , pm(s|t)] that can be suitably
3Note that this discards pairs that weren’t extracted from the
dev set, for which p̃(s, t) = 0.

weighted to approximate gw(s, t) for any arbitrary
value of w. Formally, for any w, there should exist
a set of log-linear weights λ such that:

gw(s, t) ≈
∑

j

λj log fj [p1(s|t), . . . , pm(s|t)]. (2)

Notice that this property does not guarantee
that optimizing λ will yield a combination∑

j λj log fj [· · · ] that can be interpreted (even ap-
proximately) as gw(s, t) for some set of linear
weights w. In other words, the space defined
by weighted combinations of features log fj [· · · ]
might strictly contain the space of linear mixtures
gw(s, t). This does not pose a problem, however,
because our aim is not to carry out an exact sim-
ulation of discriminatively-trained linear mixtures
but rather a loose simulation that captures the es-
sential properties of these mixtures for adaptation.
Furthermore, if an assignment to λ does result in
a combination that is outside the space of linear
mixtures, it will be because that assignment is bet-
ter, in the sense of yielding a higher training BLEU
score, than any linear mixture.

A set of functions that trivially satisfies (2) is
one that includes a feature fw for every set of
weights w:

fw[p1(s|t), . . . , pm(s|t)] =
m∑

i=1

wi pi(s|t),

where equality in (2) is achieved by setting λw = 1
and λw′ = 0, ∀w′ 6= w. Although this solution
is clearly impractical, it motivates our choice of
features, which are intended to capture or approxi-
mate various prototypical weightings. Our hypoth-
esis is that a precise setting of linear weights is less
important than being close to an appropriate proto-
type.

We now turn to a description of our features,
which are as follows:

• EM. Under the hypothesis that maximum-
likelihood weights may sometimes be iden-
tical to maximum-BLEU weights, we define
one feature to be the weighted combination∑m

i=1 ŵi pi(s|t) returned by EM.4

• Avg. This feature captures the case when
all component models are equally valuable:∑m

i=1 pi(s|t)/m
4We tried sharpened and flattened versions of these weights,
ŵα, but did not see gains by tuning α.
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• Avgnz. To approximate mixtures that down-
weight models which frequently assign 0
probabilities, and weight other models uni-
formly, this feature takes the average over
non-zero probabilities:

∑m
i=1 pi(s|t)/mnz ,

where mnz =
∑m

i=1[pi(s|t) 6= 0]

• Support. This is a version of Avgnz in
which non-zero probabilities are mapped to
1: mnz/m.

• Max. Mixtures which contain fairly uniform
weights can be roughly approximated by the
component model that assigns highest proba-
bility to the current phrase pair (ie, the Viterbi
approximation): maxmi=1 pi(s|t).

• Onevsall(w). This feature captures mixtures
in which the ith model is weighted by w
and all other models are weighted uniformly:
w pi(s|t) + 1−w

m−1
∑

j 6=i pj(s|t). We used one
Onevsall feature for each component model,
all parameterized by the same weight w ∈
[0, 1].

In addition to the above dense features, we also ex-
perimented with sparse boolean features intended
to capture the rank of a given model’s probability
assignment for the current phrase pair:

• SparseRank(c). Among all models for which
p(s|t) > c, fire if the rank of pi(s|t) is in
[b, e]. We defined one instance of this feature
for each sub-model i and each rank range in
[1, 1], [2, 3], [4, 8], and [9,∞).

3 Experiments

We carried out experiments with a phrase-based
SMT system on two different language pairs, us-
ing a heterogeneous mix of training sub-corpora.

3.1 Data

Data for all our experiments was made available
as part of NIST Open MT 2012.5 Our first setting
uses data from the Chinese to English constrained
track, comprising approximately 10M sentence
pairs. We manually grouped 14 sub-corpora on the
basis of genres and origins. Table 1 summarizes
the statistics and genres of all training and test ma-
terial. Our development set was taken from the
5http://www.nist.gov/itl/iad/mig/openmt12.cfm

corpus # segs # en tok % genre
fbis 250K 10.5M 3.7 nw
financial 90K 2.5M 0.9 fin
gale bc 79K 1.3M 0.5 bc
gale bn 75K 1.8M 0.6 bn ng
gale nw 25K 696K 0.2 nw
gale wl 24K 596K 0.2 wl
hkh 1.3M 39.5M 14.0 hans
hkl 400K 9.3M 3.3 law
hkn 702K 16.6M 5.9 nw
isi 558K 18.0M 6.4 nw
lex&ne 1.3M 2.0M 0.7 lex
others nw 146K 5.2M 1.8 nw
sinorama 282K 10.0M 3.5 nw
un 5.0M 164M 58.2 un
TOTAL 10.1M 283M 100.0 (all)

devtest
dev 1,506 161K nw wl
NIST06 1,664 189K nw bn

ng
NIST08 1,357 164K nw wl

Table 1: NIST Chinese-English data. In the
genre column: nw=newswire, fin=financial,
bc=broadcast conversation, bn=broadcast news,
ng=newsgroup, wl=weblog, hans=Hansard,
law=legal, lex=lexica, un=United Nations pro-
ceedings.

NIST 2005 evaluation set, augmented with some
web-genre material reserved from other NIST cor-
pora.

The second setting uses NIST 2012 Arabic to
English data, but excluding the UN data. There are
about 1.5M English running words in these train-
ing data. We manually grouped the training data
into 7 groups according to genre and origin. Table
2 summarizes the statistics and genres of all the
training corpora and the development and test sets.
We use the evaluation sets from NIST 2006, 2008,
and 2009 as our development set and two test sets,
respectively.

3.2 System
Experiments were carried out with a phrase-based
system similar to Moses (Koehn et al., 2007).
The corpus was word-aligned using IBM2, HMM,
and IBM4 models, and the phrase table was the
union of phrase pairs extracted from these sepa-
rate alignments, with a length limit of 7. Con-
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corpus # segs # en toks % genre
gale bc 57K 1.6M 3.3 bc
gale bn 45K 1.2M 2.5 bn
gale ng 21K 491K 1.0 ng
gale nw 17K 659K 1.4 nw
gale wl 24K 590K 1.2 wl
isi 1.1M 34.7M 72.6 nw
other nw 224K 8.7M 18.2 nw
TOTAL 1.5M 47.8M 100.0 (all)

devtest
NIST06 1,664 202K nw wl
NIST08 1,360 205K nw wl
NIST09 1,313 187K nw wl

Table 2: NIST Arabic-English data. The genre la-
bels are the same as for Chinese.

method Arabic Chinese
baseline 46.79 31.72
mixtm-ml 47.39 32.73
mixtm-uni 48.02 33.29
mixtm-samp 48.13 34.01

Table 3: Mixture TM Adaptation.

ditional phrase pair estimates in both directions
were obtained using Kneser-Ney smoothing (Chen
et al., 2011), and were weighted (each directional
estimate separately) for adaptation. We also used
lexical estimates in both directions which were
not weighted (no sub-corpus-specific values were
available). Additional features included a hierar-
chical lexical reordering model (Galley and Man-
ning, 2008) (6 features), standard distortion and
word penalties (2 features), a 4-gram LM trained
on the target side of the parallel data, and a 6-gram
English Gigaword LM (14 features total). The de-
coder used a distortion limit of 7, and at most 30
translations for each source phrase. The system
was tuned with batch lattice MIRA (Cherry and
Foster, 2012).

3.3 Results

Our first experiment compares a non-adapted base-
line, trained on all available corpora, with standard
maximum likelihood (ML) mixture TM adaptation
as described in section 2.1 and the sampled variant
described in section 2.2. The results are presented
in table 3, in the form of BLEU scores averaged
over both test sets for each language pair. ML mix-

corpus PT size weights
(# pairs) mixtm-ml mixtm-samp

financial 4.4M 0.033 0.142
gale bc 3.6M 0.022 0.091
gale bn 4.6M 0.059 0.126
gale nw 1.8M 0.082 0.279
gale wl 1.4M 0.017 0.176
hkh 62.2M 0.120 0.008
hkl 8.2M 0.002 0.024
hkn 26.6M 0.035 0.021
isi 26.1M 0.045 0.011
ne lex 1.9M 0.003 0.030
others nw 7.8M 0.050 0.042
fbis 19.6M 0.142 0.026
sinorama 17.0M 0.053 0.020
unv2 360.1M 0.341 0.005

Table 4: Comparison of weights assigned to Chi-
nese sub-corpora by standard and sampled ML
mixture models.

ture adaptation (mixtm-ml) yields significant gains
of 0.6 and 0.9 for Arabic and Chinese over the un-
adapted model. However, in our setting, this un-
derperforms assigning uniform weights to all com-
ponent models (mixtm-uni). Equal-size sampling
of the phrase tables (mixtm-samp) performs best,
improving over the plain ML method by 0.7 and
1.3 BLEU.

Table 4 shows the weights assigned to the Chi-
nese component models by these two strategies,
and gives some insight into their behaviour. The
bias of mixtm-ml in favour of large corpora is very
evident, particularly in its assignment of by far the
largest weight to the highly out-of-domain UN cor-
pus. This trend is reversed by mixtm-samp, which
assigns a suitably low weight to UN, and the high-
est weight to the small but very relevant gale nw
corpus.

We now evaluate the features intended to allow
for simulating discriminative training described in
section 2.3. Table 5 contains results (average
BLEU scores, as before) for each feature on its
own. The w and c parameters for the onevsall
and sparserank features were optimized for dev-
set BLEU separately for Arabic and Chinese, with
resulting values w = 0.9 and 0.5; and c = 0.05
and 0.005 respectively. All but one of the fea-
tures (avgnz) outperform the baseline, probably
because all incorporate some mechanism for im-
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method or feature Arabic Chinese
baseline 46.79 31.72
EM = mixtm-samp 48.13 34.01
avg 48.02 33.29
avgnz 46.46 31.66
support 48.27 32.88
max 47.13 32.72
onevsall(w) 48.60 34.22
sparserank(c) 48.15 33.38

Table 5: Performance of features for simulating
discriminative training.

method or feature Arabic Chinese
baseline 46.79 31.72
mixtm-samp 48.13 34.01
onevsall(w) 48.60 34.22
all features 48.48 34.20
onevsall(09)

+ avgnz + support + max 48.84 ——
onevsall(05)

+ avg + max + EM —— 34.37

Table 6: Feature combinations.

plicitly countering the harmful effects of large out-
of-domain corpora such as the UN. Avgnz does not
have this property because it will emphasize non-
zero probabilities without connecting them to a
particular component. Although some features ap-
pear to be competitive with EM, the only one that
clearly outperforms it on both language pairs is
onevsall. This is not particularly surprising, since
ovevsall generates multiple values (one per sub-
corpus) unlike all other features except sparser-
ank (4 potential boolean features per sub-corpus).
However, it is interesting to note that onevsall is es-
sentially a log-linear mixture in which component
models are heavily smoothed by linear interpola-
tion.

Table 6 shows the combination of all features
from table 5. Disappointingly, this does somewhat
worse than onevsall on its own. To determine the
cause, we compared the dev-set BLEU scores for
onevsall with those for the full model. On Ara-
bic these are 48.81 versus 49.00; and on Chinese
they are 29.13 versus 29.46. Hence we conclude
that MIRA is mildly overfitting on the full feature
sets. This is not quite the whole story, however.
To see if we could improve on onevsall, we used

method Arabic Chinese
dev test dev test

mixtm-samp 48.10 48.13 28.65 34.01
simplex 48.62 48.28 28.76 34.06
onevsall(w) 48.81 48.60 29.13 34.22
best 49.05 48.84 29.28 34.37

Table 7: Comparison of direct optimization for lin-
ear weights with feature simulation.

a greedy feature selection strategy, hillclimbing on
dev-set score, and stopping when we reached a lo-
cal maximum. The (language-pair-specific) results
are shown in table 6. These improve over the full
models and give small gains over onevsall. The
corresponding dev-set scores are 49.05 and 29.28,
which indicates that, at least for Arabic, MIRA
was both overfitting and failing to properly opti-
mize the full model.

Our final experiment is an attempt to determine
how our loose simulation of discriminative training
for linear mixtures compares with true discrimina-
tive training. Lacking a sophisticated implemen-
tation of the latter, we used a brute force down-
hill simplex search (Press et al., 2002). We first
ran MIRA with mixtm-samp linear weights, then
performed 200 simplex iterations to optimize lin-
ear weights with log-linear weights held constant,
then ran MIRA to re-optimize log-linear weights.
The results are shown in table 7. The simplex
search was mildly successful in its attempt to im-
prove dev-set BLEU scores, gaining 0.52 and 0.11
over the mixtm-samp baseline for Arabic and Chi-
nese respectively. Since, unlike MIRA, it makes
no provision for generalization beyond the dev set,
it is not fair to compare its test scores to those
of mixtm-samp; indeed, we note that its test per-
formance is poor relative to dev. What is signif-
icant is that the feature-based methods—onevsall
and best—do much better on the dev set than sim-
plex. We conclude that it is very unlikely that a
more sophisticated optimizer working with a bet-
ter objective than raw BLEU would be able to find
a set of linear weights that outperform the test re-
sults of our features.6

6As noted above, however, it almost certainly does not ac-
complish this feat while remaining within the space of linear
combinations.
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4 Related Work

Domain adaptation for SMT is currently a very
active topic, encompassing a wide variety of ap-
proaches. TM linear mixture models of the kind
we study here were first proposed by Foster et
al (2010), and have been refined by (Sennrich,
2012b), who applied them to multiple sub-corpora
and investigated alternative techniques such as
count weighting to capture the amount of sub-
corpus-internal evidence for each phrase pair. Sen-
nrich (2012a) reports interesting results using clus-
tering to automate the identification of coherent
sub-corpora. (Aminzadeh et al., 2012) examine the
interaction between adaptation and MAP smooth-
ing, and compare different combining techniques.
Other ways of combining various component mod-
els have also been proposed, including “fill-up”
with a predefined preference order (Bisazza et al.,
2011), using multiple decoder paths (Koehn and
Schroeder, 2007), and ensemble combination of
complete models in the decoder (Razmara et al.,
2012). Mixture approaches have also been used for
LM adaptation (Foster and Kuhn, 2007). Finally,
data selection approaches (Axelrod et al., 2011)
can be seen as an extreme form of mixture mod-
eling in which weights are either 0 or 1.

5 Conclusion

Our main aim in this paper has been to inves-
tigate whether SMT features inspired by various
prototypical linear mixtures can be used to simu-
late discriminative training of linear mixture mod-
els for TM adaptation. Because of the fact that
linear mixtures occur within the log-probabilities
assigned to phrase pairs, they are not accessible
to standard tuning algorithms without non-trivial
modification, and hence are usually trained non-
discriminatively for maximum likelihood.

Our simulation is loose in the sense that its fea-
tures are not strictly limited to the space avail-
able to linear mixtures; they can and do “cheat”
by leaving that space in order to improve perfor-
mance. We find that we can improve significantly
on linear mixtures trained using maximum likeli-
hood, by 0.7 BLEU on an Arabic to English task,
and by 0.4 BLEU on a Chinese to English task.
Most of the gain is achieved by a single set of
features (onevsall), parameterized by a combining
weight, in which there is one instance per compo-

nent model which assigns that model the combin-
ing weight and interpolates it with a uniform com-
bination of all other models. The onevsall features
achieve higher BLEU score on a development set
than does a linear mixture optimized directly using
downhill simplex. We consider this to be strong
evidence in favour of a conclusion that our ap-
proach would outperform true discriminative train-
ing for linear mixtures.

We have also proposed an enhancement to max-
imum likelihood training of linear mixtures that
involves sampling input phrase tables in order to
balance their size. This counters a strong bias
in favour of large sub-corpora with unsmoothed
component models that is especially harmful when
these corpora are highly out-of-domain. Although
our results above improve on the performance of
linear mixtures, we believe that EM-trained linear
mixtures still offer a simple and effective way to
perform domain adaptation (we also note that one
of our best sub-sets of adaptation features includes
a maximum-likelihood combination).
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