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Abstract
In this paper, German and English large vocabulary contin-
uous speech recognition (LVCSR) systems developed by the
RWTH Aachen University for the IWSLT-2013 evaluation
campaign are presented. Good improvements are obtained
with state-of-the-art monolingual and multilingual bottle-
neck features. In addition, an open vocabulary approach us-
ing morphemic sub-lexical units is investigated along with
the language model adaptation for the German LVCSR. For
both the languages, competitive WERs are achieved using
system combination.

1. Introduction
This paper describes in detail the German and English
RWTH large vocabulary continuous speech recognition
recognition systems developed for the IWSLT-2013 eval-
uation campaign. Automatic speech recognition track in
IWSLT-2013 evaluation campaign focuses on transcribing
lecture data. One of the major challenge in the IWSLT-2013
evaluation is that no acoustic modeling training data is pro-
vided for the aforementioned languages, but the development
data. The data includes speech types like lectures, talks and
conversations. Recognition on the data is challenging be-
cause of a huge variability in the acoustic conditions and a
large portion includes spontaneous speech.

In the development of ASR systems transcribed speech
data is still a significant cost factor. Therefore, methods
which are able to reuse out-of-domain or multilingual re-
sources to ease the model training, have growing interest, and
this demand exists not only for under-resourced languages.
The neural networks (NN) have become a major component
in the state-of-the-art ASR system, and are used to extract
features (probabilistic [1] or bottleneck (BN) TANDEM ap-
proach [2]) and/or to model the emission probability in the
HMM framework directly (hybrid approach) [3]. In [4, 5] it
was observed that Multi Layer Perceptron (MLP) based NN
posterior features possess language independent properties to
a certain degree: the cross-lingual porting of NNs could lead
to significant improvement in a different language. In order
to exploit resources of multiple languages in acoustic model
training, there is usually a need to unify similar sounds across

different languages e.g. by IPA or SAMPA. However, as was
shown by [6] the training of NNs on multiple languages is
possible without such a mapping if language dependent out-
put layers are used and only the hidden layer parameters are
shared between the languages. Combining the multilingual
learning with the bottleneck approach [7, 8] demonstrated
that the multilingual BN features could benefit from the addi-
tional non-target language data and outperformed the unilin-
gual BN. Through better generalization the multilingual BN
features can offer improved portability on an new language,
and acoustical mismatch between the training and testing can
be reduced in the target language by exploiting matched data
from other languages [9]. Since transcribed lecture data were
not provided for the evaluation, in our systems the BN fea-
tures are trained on large amount of broadcast news and con-
versations data of multiple languages. Covering wide vari-
ety of acoustic conditions through the multilingual resources,
we aimed at improving the robustness of the acoustic model
to recognize acoustically less matched lecture data. On the
other hand, German is a morphologically rich language hav-
ing a high degree of word inflections, derivations and com-
pounding. For a morphologically rich language like German,
high out-of-vocabulary (OOV) rates and poor LM probabili-
ties are generally observed. Thus, sub-lexical language mod-
eling is used to decrease the OOV rate and reduce the data
sparsity [10, 11, 12]. In this work, we also investigate the use
of the state-of-the-art LMs like Maximum Entropy (MaxEnt)
LMs, which provide modular structure to incorporate various
knowledge sources as features in the sub-lexical LMs. Fur-
thermore, we experiment the use of Maximum a-posteriori
(MAP) adaptation over the MaxEnt LMs. Thus, the benefits
of both the MaxEnt LMs and the traditional N -gram backoff
LMs are effectively combined using interpolation, followed
by confusion network based system combination.

The rest of the paper is organized as follows: In Section 2
speaker independent and dependent acoustic models are de-
scribed along with the investigated features. In Section 3,
the use of various full-word and sub-lexical language models
are investigated. In Section 3.7, the generation of the lexi-
con is described. In Section 4, various recognition setups are
described. Results are discussed in Section 5, followed by
conclusions.



2. Acoustic Model (AM)
In this work, the data from the Quaero project is used for
acoustic modeling. The training data for the IWSLT-2013
evaluation campaign consist of data from three domains.
While the majority of the data is from the web (WEB), data
from broadcast news (BN) and European parliament plenary
sessions (EPPS) is also covered.

2.1. Resources
2.1.1. German
Table 1 lists the amount of audio data used from different
domains [13] for German LVCSR . Overall, 140 hours of
across-domain acoustic training data is used. The data in-
cludes the audio from BN, EPPS and the web domains.

Table 1: Acoustic Training data (dur.: duration (hours),
seg.:segments)

Corpus #Dur. #Segs # Running words
EPPS08 5 1109 45,796
WEB08 14 3452 127,086
Quaero
2010+2011+2012 123 25061 1,391,468

2.1.2. English
Similarly, Table 2 lists the amount of audio data, which
is collected from different domains. Overall, 142 hours of
acoustic training data is used [13]. The HUB4 and the TDT4
corpora contain only American English Broadcast News,
whereas the TC-STAR corpus consists of European Planery
Parliamentary Speech data.

Table 2: Acoustic Training data (dur.: duration (hours),
seg.:segments )

Corpus # Dur. #Segs # Running words
Quaero 268 57,629 1,666,733
HUB4 206 119.658 1,617,099
TDT4 186 110.266 1,715,445
EPPS 102 66,670 761,234
TED 200 21,614 1,857,660

Table 2 lists the amount of audio data used for acoustic
model training. The largest database is the English Quaero
corpus1, which consists of 268 hours transcribes web pod-
casts. HUB4 and TDT4 are American English broadcast
news corpora. EPPS consists of 102 hours of English Eu-
ropean Parliament speeches.

All this data has in common that it is out-of-domain for a
lectures recognition system. Therefore, we downloaded 200
hours videos from the TED website2. All videos have been
uploaded to the TED website before the IWSLT cut-off date
December31 2010. We used the video subtitles as transcrip-
tions. We used a low pruning threshold for aligning the data

1http://www.quaero.org/
2www.ted.com

and discarded the segments which could not be aligned. In
total, we used 962 hours audio training data with a mix of
British and American English and from various domains.

2.2. Feature Extraction
2.2.1. Cepstral features
From the audio files 16 Mel-cepstral coefficients (MFCC)
were extracted every 10 ms. The 20 logarithmic critical band
energies (CRBE) were computed over a Hanning window of
25 ms. For the piecewise linear vocal tract length normal-
ization (VTLN) text-independent Gaussian mixture classi-
fier was trained to estimate the warping factor (fast-VTLN).
After the segment-wise mean and variance normalization, 9
consecutive frames of MFCC were mapped by linear dis-
criminant analysis (LDA) to a 45-dimensional subspace.

2.2.2. Multilingual bottleneck MRASTA features
For both evaluation systems the same multilingual MRASTA
features are applied. The original RASTA filters were in-
troduced to extract features which are less sensitive to lin-
ear distortion [14]. According to [15], the temporal trajecto-
ries of the CRBEs were smoothed by two-dimensional band-
pass filters to cover the relevant modulation frequency range
(MRASTA). One second trajectory of each critical band is
filtered by first and second derivatives of the Gaussian func-
tion, where the standard deviation varies between 8 and 60
ms resulting in 12 temporal filters per band. Our final BN
features are extracted from hierarchical, MLP based process-
ing of the modulation spectrum [16, 17]. The input of the first
MLP contains the fast modulation part of the MRASTA fil-
tering, whereas the second MLP is trained on the slow mod-
ulation components and the PCA transformed BN output of
the first MLP. The modulation features fed to the MLPs were
always augmented by the CRBE.

Furthermore, in order to extract robust MLP features
a multilingual training method proposed by [6] is applied.
The MLP training data covered four languages — English,
French, German, and Polish —, and the final multilingual BN
features are trained on ∼ 800 hours of speech data collected
within the Quaero project as shown in Table 3. The mul-
tilingual corpus incorporates the complete German and part
of the English resources described in Subsection 2.1.1 and
2.1.2. The feature vectors extracted from the joint corpus of
the four languages were randomized and fed to the MLPs.
Using language specific softmax outputs, back propagation
is initiated only from the language specific subset of the out-
put depending on the language-ID of the feature vector. The
MLPs are trained according to cross-entropy criterion, and
approximate 1500 tied-triphone state posterior probabilities
per each language [18]. To prevent over-fitting and for ad-
justing the learning rate parameter, 10% of the training cor-
pus is used for cross-validation.

The BN features of the evaluation systems were based on
deep MLP. The size of the 6 non-BN hidden layers was set
to 2000, the bottleneck layers consisted of 60 nodes and was
always placed before the last hidden layer.



Table 3: Multilingual broadcast news and conversation re-
sources used for BN feature training.

language German English French Polish
Amount of 142 232 317 110speech [h]

In addition, four additional experiments were carried out
to select the best MLP features for German LVCSR : In
the classical (shallow) 5-layer uni- and multilingual BN net-
works the hidden layers had 7000 nodes. In deep BN, making
the last hidden layer language dependent (4x2000) increased
the number of trainable parameters and did not increase the
MLP training time. On the contrary, testing a single large
hidden layer (8000 nodes) after the BN increased the num-
ber of parameters even further, and resulted in longer training
time. The final submissions are based on this later BN struc-
ture, one level of the hierarchy is also shown in Fig. 1.

input 
features

multilingual
bottleneck
features

}

... ...

French
triphone
target

English
triphone
target

German
triphone
target

Polish
triphone
target

Figure 1: The joint training of deep context-dependent bot-
tleneck MLP features on multiple languages (FR, EN, DE,
PL). The different colors indicate different languages, and
language dependent back-propagation from the output layer.
The other parts of the network including the bottleneck layer
are shared between the languages.

2.3. AM Training with Speaker Adaptation
The English acoustic models have been trained on the com-
plete data as described in Subsection 2.1.2, whereas the Ger-
man acoustic models are built using mostly Quaero data as
described in Subsection 2.1.1.

All our systems are based on a bottleneck tandem ap-
proach, i.e., the outputs of a neural network are used as input
features for a Gaussian mixture model (GMM). The final 83-
dimensional feature vectors were obtained by concatenating
the spectral features with the multi-layer-perceptron (MLP)

features described in 2.2.1. The acoustic models AM train-
ing followed similar recipes, the GMMs have been trained
according to the maximum likelihood (ML) criterion with
the expectation maximization algorithm (EM) with Viterbi
approximation and a splitting procedure. The GMMs have
a globally pooled, diagonal covariance matrix. 4, 500 gener-
alized triphones determined by a decision-tree-based cluster-
ing (CART) are modeled in both languages.

Speaker adaptation is of crucial importance for the per-
formance of a lecture recognition system. If significant
amount of audio data is available along with the speaker
related information, this helps to capture the speaker vari-
abilities and helps in reduction of the WER. Several speaker
adaptation techniques are used in our system. First, mean
and variance normalization has been applied to the spectral
features. Furthermore, we applied a vocal tract length nor-
malization (VTLN) to the MFCC features. The VTLN warp-
ing factors were obtained by performing a grid search on the
audio training data. A Gaussian classifier has been trained on
the results and applied to the training and recognition data to
obtain the VTLN-transformed features. In addition, speaker
adaptation using constrained maximum likelihood linear re-
gression (CMLLR) [19] with the simple target model ap-
proach [20] is applied. The CMLLR transformation is ap-
plied to the training data and a new GMM is trained (speaker
adaptive training). In recognition, the CMLLR transforms
are estimated from a first recognition pass and then, a sec-
ond recognition pass with the GMM from speaker adaptive
training (SAT) is performed. The speaker labels required for
for CMLLR adaptation were obtained by clustering speech
segments optimizing the Bayesian information criterion [21].
Both the speaker independent and adaptive GMM models
ended up over 1M densities. This is referred as common sys-
tem for both English (system-1) and German LVCSRs.

In addition to the system described above, for English a
second system (system-2) is trained which uses the MLP fea-
tures of our IWSLT-12 submission [22]. These MLPs were
only trained on the English Quaero data and have less layers.
In order to improve system variability, we also performed
an additional recognition pass with maximum likelihood lin-
ear regression (MLLR) [19]. In our experience, MLLR does
not improve performance of Tandem systems, but it may be
advantageous to have an MLLR system in the system combi-
nation.

3. Language Model
3.1. Resources
The distribution of words in any spoken language is cap-
tured by the LM text. The LM text is collected from vari-
ous domains. Relatively as more amount of acoustic training
data is available for BN than for EPPS and since the BN do-
main could be closer to the web domain than parliamentary
speeches, we decide to build an American English BN AM
and a British English EPPS AM in order to get better domain
dependent modeling. For the training of the LM we apply a



similar approach, as domain dependent LM data is used. The
text is normalized using language dependent predefined set
of rules and semi-automatic methods. For example, Dates
and Roman numerals are converted into text format. Punc-
tuation’s are discarded. In this paper, LM text is used for
both the German and English LVCSR task as recommended
by the IWSLT evaluation committee3, as shown in Table 4

Table 4: Text Resources for German and English LVCSR

Lang Corpus # Running words
DE Podcast 46k

IWSLT LM data 2.5M
Lecture Talks 2.5M
CALL HOME - speech 5.9M
Multilingual Parallel data 104M
Web 384M
News + acoustic trans. 971M

EN IWSLT LM data 3M
WMT 2012 news-commentary 5M
Acoustic transcriptions 8M
WMT 2012 news-crawl 2.8B
Gigaword corpus 3B

3.2. Backoff LM
As described in Table 4, the LM text is collected from mul-
tiple sources. The top N most frequent words are selected
as a vocabulary from the full-word text. For English, 150k
most frequent words are used to generate modified Kneser-
Ney smoothed 4-gram and 5-gram full-word LMs . Simi-
larly for German, 150k and 200k full-word vocabularies are
selected to generate 5-gram LMs.

3.3. Sub-lexical LMs
For an open vocabulary speech recognition, sub-lexical units
are used in the language modeling for German LVCSR [11].
In general, a LM comprising sub-lexical units with or with-
out a fraction of full-words is called a sub-lexical LM. In
general, morphemes could be extracted using linguistic or
data-driven morphological decomposition. When sub-lexical
LMs are used, the data sparsity problem is relatively re-
duced compared to the full-word LMs, leading to lower OOV
rates and higher lexical coverage. Furthermore, as the count
based statistics are improved, the LM probability estimates
are relatively better estimated compared to a full-word LM
[10, 11, 12].

In this work, words are decomposed using a Morfessor
[23]. Word decomposition model is trained using unique
words that occur more than 5 times in the LM text. Low
frequency words are excluded to avoid noise that are harmful
during training. This model is also used to decompose new
words. The decomposed words are processed so as to pro-
duce a cleaner set of sub-lexical units and to avoid very short
units which are usually difficult to recognize. This is found

3http://www.iwslt2013.org/59.php

to be helpful to improve the final WER. To generate sub-
lexical LMs, 200k hybrid vocabulary is selected, where top-
most 5k full-word forms are preserved. Standard N -gram
backoff models are created using SRILM toolkit [24].

3.4. Maximum Entropy LMs
Alternatively, for German LVCSR, state-of-the-art MaxEnt
LM is generated to capture the long range dependencies
[25]. In principle, MaxEnt LM uses the information obtained
from multiple knowledge sources as feature constraints. The
knowledge sources could be different types of features hav-
ing different constraints (i.e., probability distribution func-
tions). MaxEnt LM estimates a unified model in a feature
space by selecting the distribution function of the highest en-
tropy satisfying all the constraints from an intersection of all
the imposed feature constraints. If w is a word/morpheme
taken from a vocabulary W , f(.) is the feature function, λ
is an optimal weight, h is the context, Z(h) is the normal-
ization factor for all the seen contexts, MaxEnt model can be
computed using Eq. 1.

pme(w|h) =
e
∑

i λifi(w,h)

Z(h)
(1)

Where, Z(h) =
∑
wiεW

e
∑

j λjfj(wi,h)

3.5. Adaptation
In general, adapted LMs are known to perform better than
non-adapted LMs in cases of domain mis-match or if the
LM corpus is diverse. In this paper, the LM data is obtained
from multiple domains for LVCSR. It is often unrealistic to
significantly reduce the WER without adapting the LM to
in-domain data [26]. For this reason, we apply LM adapta-
tion over MaxEnt LMs. Here, Maximum a-posteriori (MAP)
adaptation is performed, using Gaussian priors over the gen-
erated MaxEnt models (cf. Section 3.4). The MaxEnt model
is trained on background data including the N -gram features
of the in-domain data. The prior parameters computed from
the background data are used to learn the parameters from the
in-domain data. During MaxEnt training, the prior has zero
mean during Gaussian prior smoothing. But during adapta-
tion, the prior distribution is centered at the background data
parameters. The regularized log-likelihood of the adaptation
training data is maximized during adaptation.

As an in-domain data, two different types of adaptation,
namely supervised and unsupervised are investigated [25]. In
supervised adaptation, the development data is used as an in-
domain data. Whereas, for an unsupervised adaptation, the
automatic transcriptions are used from the first pass recogni-
tion. Here, the adaptation is performed over both morpheme
and feature based MaxEnt models. The 5-gram MaxEnt and
adapted models are created using SRILM-extension [27].

In general, N -gram backoff LMs are known to perform
better in capturing the short range context dependencies.



When the data is sufficiently available, the likelihood esti-
mates of the frequently occurringN -grams are generally bet-
ter estimated and reliable. In this work, morphemic MaxEnt
LMs are linearly interpolated with N -gram LMs [28].

3.6. Perplexity

Perplexity is a entropy related metric which measures the av-
erage branching factor for the LM, during search. On the
other hand, perplexities across various systems can only be
compared when the (same) finite vocabulary is used. The
word level standard equation of the perplexity (PPw) in log
domain is :

PPw(w
k
1 ) = log

[∏K
l=1 p(wl|wh)

]− 1
K

(2)

Thus, Eq. 2 is renormalized using at character level as:

PPc(w
k
1 ) = log

[∏K
l=1 p(wl|wh)

]− 1
K

K
Kc (3)

Where,K is the total number of words observed in the recog-
nition corpus. Kc represents the actual number of characters
including word boundaries and a representative character per
sentence-end token. Thus, using Eq. 3, full-word LM and the
sub-lexical LM could be easily compared.

3.7. Lexical Modeling

The full-word lexicon consists of 150k words for English
LVCSR. Similarly, lexicons consisting of 150k and 200k
full-words are generated for German LVCSR. For most of
the full-words as the pronunciations are not available, statis-
tical grapheme-to-phoneme (G2P) conversion toolkit is used
for both the languages [29]. The full-word pronunciations
are aligned to its corresponding sequence of morphemic sub-
lexical units using the expectation-maximization (EM) algo-
rithm as described in [12]. Thereby, lexicon is generated us-
ing the sub-lexical entries of size 200k.

3.8. Word Reconstruction

For sub-lexical experiments, full-words are needed to be re-
constructed from the morphemes. An identifier ‘+’ is marked
at the end of each non-boundary morpheme. After recogni-
tion, the recognized morphemes are combined using the pre-
defined marker to regenerate the full-words. For example:
wasch+ masch+ ine → waschmaschine (washing machine
in English). Alternatively, the effective OOV rate of any cor-
pus is computed in such a way that a word is considered an
OOV if and only if it is not found in the vocabulary and it
is not possible to compose it using in-vocabulary sub-lexical
units.

4. Recognition Setup
The evaluation systems have a multi-pass recognition setup.
In an initial non-adapted pass, a first transcription is obtained,
which is used for the CMLLR-adapted recognition pass. The
development and evaluation corpus statistics for both the lan-
guages are shown in Table 5.

Table 5: Details of the IWSLT-13 Recognition Corpus

Language Corpus #Duration (hrs.)

English dev2012 2.0
tst2011 1.3
tst2012 2.2
tst2013 4.8

German dev2012 3.3
tst2013 3.2

For the English LVCSR system, CMU segmentation is
used [30]. A 4-gram domain adapted backoff LM is cre-
ated to construct the search space and 5-gram LM is used
for rescoring word lattices. For our alternative system (sys-
tem 2), an non-adapted and a CMLLR-pass are performed
as in system-1. In addition, a third recognition pass with
MLLR adaptation is performed. Finally, the word lattices
are rescored. Confusion network based system combination
is used to combine the results of both systems.

For the German LVCSR system, two different systems
are experimented with LIUM [31] and RWTH audio segmen-
tation [32]. 5-gram domain adapted backoff LM is created
to construct the search space. This recognition setup is simi-
lar to the system-1 of the English LVCSR. After the speaker
adaptation,N -best (N=5000) lists are generated from the lat-
tices for LM rescoring. The N -best lists are rescored using
the interpolated LMs as described in Section 3.5. Similarly,
the advantages of both the full-word and the sub-lexical sys-
tems are combined using confusion network decoding.

5. Results
In this Section, detailed results for the various systems are
described in terms of the WER and the OOV rates. For
both the languages, WERs for the development corpus are
generated using the unofficial scoring script, where as the
WERs for the evaluation corpus are obtained using official
scoring script. For English LVCSR system, the recognition
results are shown in Table 6. The WER of system-1 is better
than system-2. Significant improvements are obtained using
speaker adapted acoustic models over the speaker indepen-
dent models. Further improvements are obtained using con-
fusion network decoding. In addition, noticeable WERs are
reported on the tst2011 and tst2012 corpora for IWSLT-2013
evaluation, compared to our previous IWSLT-2012 WERs for
English LVCSR as shown in Table 7. Test transcriptions are
not released by the IWSLT-13 evaluation committee, yet.

For the German LVCSR system, the first set of experi-
ments are shown in Table 8. The BN features used in the
evaluation system were optimized using the 200k sub-lexical
LM, as it is better than the 150k or 200k full-word system in-
terms of the WER. Thus, the recognition results using 150k
vocabulary are not shown in this paper. The experiments
were carried out with RWTH segmentation and sub-lexical
language models containing 200k sub-lexical units. As can



Table 6: WERs[%] of the English LVCSR system (OOV
Rate:0.7, dev2012 PPL:129, Vocabulary size:150k ).

Corpus Pass System-1 System-2
dev2012 VTLN 17.6 21.9

CMLLR 15.2 18.5
MLLR - 18.8
LM-rescoring 14.8 17.9
CN decoding 14.4

tst2011 10.2
tst2012 11.3
tst2013 16.0

Table 7: Progressive WER [%] improvements : IWSLT-12
Vs. IWSLT-13 English LVCSR Systems

Corpus IWSLT 2012 IWSLT 2013 Rel. gain
tst2011 13.4 10.2 23.9
tst2012 13.6 11.3 20.3
tst2013 - 16.0 -

be seen in Table 8, the deep unilingual BN features trained
on out-of-domain BN/BC data did not result in better WER
compared to the shallow ones (1st and 3rd rows). Including
multiple languages in the BN training improved the results
significantly, and the performance gap increased further after
the speaker adaptation step (3rd and 4th rows), similar to our
observation in [8]. Furthermore, the results also show that the
deep structure is more beneficial for multilingual training and
outperforms the shallow multilingual BN (2nd, 4th rows).
Different types of last hidden layers described in Subsection
2.2.1 were also investigated. Applying language dependent
hidden layers between the bottleneck and output layer did not
resulted in lower error rate (5th row). On the contrary, if the
number of parameters were increased by larger language in-
dependent hidden layer further reduction in WER (6th row)
is observed.

Table 8: WER[%] comparison of speaker independent (SI)
and speaker adapted (SA) uni- and multilingual BN features
with different structures - German LVCSR with no word com-
pounding (Seg: audio segmentation, SI: speaker indepen-
dent models, SA: speaker adapted models)

Seg Dev2012 Eval2013
AM SI SA SI SA

B
N

fe
at

ur
es

Shallow RWTH 22.3 20.1 30.0 27.5
+multilingual 21.7 19.1 29.4 26.1

Deep 22.1 20.5 30.1 28.1
+multilingual 20.9 19.0 28.0 25.8

+lang.dep.hidden 20.8 19.1 27.9 26.1
+large hidden 20.6 18.8 27.7 25.7

LIUM 20.8 19.0 27.9 25.9

Table 9: Recognition results for 200k German LVCSR with
no word compounding (FW: full-word system, Crp: corpus,
MW: sub-lexical system, PPw: word-level perplexity, PPc:
character level perplexity, unsp: unsupervised adapted LM
, CN: confusion network decoding, CER: character error
rate, Effective OOV rate :- Dev:0, eval:0.9)

Expt. Crp LM Adap PPw/PPc WER CER
[%] [%]

FW dev backoff no 314/2.1 19.6 7.6
eval 226/2.2 26.0 15.6

MW dev backoff no 284/2.2 18.8 7.5
+ME 282/2.2 18.8 7.5

eval backoff no 240/2.3 25.4 15.4
+ME+unsp yes 239/2.3 25.4 15.4

CN dec.
MW+FW dev backoff no – 18.4 7.5

eval – 25.2 15.4

Alternatively, as shown in Table 9, non-adapted and
adapted MaxEnt models are applied on the morpheme sys-
tems interpolated with the backoff LM. Character-level per-
plexities are shown for fair comparison between full-word
and morpheme based systems. Applying LM adaptation did
not affect either the perplexity or the WER for both devel-
opment and evaluation corpus. To capture the advantages of
both the sub-lexical and full-word systems, system combina-
tion is used. Using confusion network decoding based sys-
tem combination, further improvements are achieved com-
pared to the stand-alone sub-lexical based system.

6. Conclusions

In this paper, the descriptions of the German and English
LVCSR systems developed by the RWTH Aachen for the
IWSLT 2013 evaluation are presented. Here, state-of-the-art
acoustic level multilingual features, domain dependent lan-
guage modeling, supervised and unsupervised adaptation and
system combination of subsystems are experimented. No-
ticeable contribution of the improvements were achieved be-
cause of the use of multilingual features. Language model
adaptation did not affect the WER. Although sub-lexical sys-
tems performed significantly better than the full-word sys-
tems, system combination outperformed all other systems.
The RWTH produced competitive results for German and
English LVCSRs in the IWSLT 2013 evaluation campaign.
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E. Egorova, “The language-independent bottleneck fea-
tures,” in IEEE Workshop on Spoken Language Tech-
nology, Miami, Florida, USA, Dec. 2012, pp. 336–341.
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lexical language models for German LVCSR,” in IEEE
Workshop on Spoken Language Technology, Berkeley,
CA, USA, Dec. 2010, pp. 159 – 164.

[13] M. Nußbaum-Thom, S. Wiesler, M. Sundermeyer,
C. Plahl, S. Hahn, R. Schlüter, and H. Ney, “The
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