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Abstract

This paper presents NTT-NAIST SMT systems for English-
German and German-English MT tasks of the IWSLT 2013
evaluation campaign. The systems are based on general-
ized minimum Bayes risk system combination of three SMT
systems: forest-to-string, hierarchical phrase-based, phrase-
based with pre-ordering. Individual SMT systems include
data selection for domain adaptation, rescoring using recur-
rent neural net language models, interpolated language mod-
els, and compound word splitting (only for German-English).

1. Introduction

Spoken language is a very important and also challenging
target for machine translation. MT tasks in the IWSLT
evaluation campaign [1] focus on translating subtitles of
speech from TED Talks. These subtitles are clean transcrip-
tions without disfluencies that sometimes appeared in origi-
nal talks. These talks can be expected to be similar to writ-
ten texts that have been tackled in recent machine transla-
tion studies, as the talks are logically and syntactically well-
organized compared to conversational speeches.

In our system this year, we focused on applying syntax-
oriented translation technologies for statistical machine
translation (SMT) such as forest-to-string translation and
syntax-based pre-ordering. We also made several improve-
ments to the base SMT models: domain adaptation by train-
ing data selection among different data sources; rescoring us-
ing recurrent neural network language models (RNNLMs);
n-gram language model interpolation; compound word split-
ting for German compounds; and system combination of dif-
ferent types of SMT systems based on generalized minimum
Bayes risk (GMBR) framework. This paper presents details
of our systems and reports the results in German-English and
English-German MT tasks in the evaluation campaign.

2. Translation Methods

The main feature of our system for this evaluation is that we
perform translation using three different translation models
and combine the results through system combination. Each
of the three methods is described briefly below.

2.1. Phrase-based Machine Translation

Phrase-based machine translation (PBMT; [2]) models the
translation process by splitting the source sentence into
phrases, translating the phrases into target phrases, and re-
ordering the phrases into the target language order. PBMT is
currently the most widely used method in SMT as it is robust,
does not require the availability of linguistic analysis tools,
and achieves high accuracy, particularly for languages with
similar syntactic structure.

2.2. Hierarchical Phrase-based Machine Translation

Hierarchical phrase-based machine translation (Hiero; [3])
expands the class of translation rules that can be used in
phrase-based machine translation by further allowing rules
with gaps that can be filled in a hierarchical fashion. Hiero
is generally considered to be more accurate than PBMT on
language pairs that are less monotonic, but also requires a
significantly larger amount of memory and decoding time.
As the German-English pair has a significant amount of re-
ordering, particularly with movement of verbs, we can ex-
pect that Hiero will be able to handle these reorderings more
appropriately in some cases.

2.3. Forest-to-string Machine Translation

Tree-to-string machine translation (T2S; [4]) performs trans-
lation by first syntactically parsing the source sentence, then
translating from sub-structures of the parse to a string in
the target language. Forest-to-string machine translation
(F2S; [5]) generalizes this framework, making it possible to
not only translate the single one-best syntactic parse, but a
packed forest that encodes many possible parses, helping to
pass along some of the ambiguity of parsing to be resolved
during translation. While there are a number of proposed
methods for incorporating source-side syntax into the trans-
lation process, here we use a method based on tree-to-string
transducers [6].

Syntax-driven methods such as T2S and F2S are particu-
larly useful for language pairs with extremely large amounts
of reordering, as the syntactic parse can help guide the ac-
curate re-ordering of entire phrases or clauses. On the other
hand, these methods are highly dependent on parsing accu-
racy, and also have limits on the rules that can be extracted,



and are somewhat less robust than the previous two methods.

3. SMT Technologies
3.1. Training data selection

The target TED domain is different in both style and vocabu-
lary from many of the other bitexts, e.g. Europarl, Common-
Crawl (which we collectively call “general-domain” data1).
To address this domain adaption problem, we performed
adaptation training data selection using the method of [7].2

The intuition is to select general-domain sentences that are
similar to in-domain text, while being dis-similar to the aver-
age general-domain text.

To do so, one defines the score of an general-domain sen-
tence pair (e, f) as [8]:

[INE(e)−GENE(e)] + [INF (f)−GENF (f)] (1)

where INE(e) is the length-normalized cross-entropy of e
on the English in-domain LM. GENE(e) is the length-
normalized cross-entropy of e on the English general-domain
LM, which is built from a sub-sample of the general-domain
text. By taking a sub-sample (same size as the target-domain
data), we reduce training time and avoid training and testing
language models on the same general-domain data. Simi-
larly, INF (f) and GENF (f) are the cross-entropies of f
on Foreign-side LM. Finally, sentence pairs are ranked ac-
cording to Eq. 1 and those with scores lower than some
empirically-chosen threshold e.g. we choose this threshold
by comparing BLEU on the dev set) are added together with
the in-domain bitext for translation model training. Here,
the LMs are Recurrent Neural Network Language Models
(RNNLMs), which have been shown to outperform n-gram
LMs in this problem [7].

3.2. Syntactic Rule-based Pre-ordering

Preordering is a method that attempts to first re-order the
source sentence into a word order that is closer to the target.
As German and English have significantly different word or-
der, we can imagine that this will help our accuracy for this
language pair.

3.2.1. German-to-English

We applied the clause restructuring method of Collins et al.
[9] for German pre-ordering. The method is mainly based
on moving German verbs in the end of clause structures to-
wards the beginning of the clause. We re-implemented the
method for German parse trees created using the Berkeley
parser trained on TIGER corpus. We ignored some additional
syntactic information such as subject markers and heads im-
plemented in the original method of [9], because we used a

1To give a sense of the domain difference, a 4-gram LM trained with
Kneser-Ney smoothing on TED data gives a perplexity of 355 on the general
domain data, compared to a perplexity of 99 on held-out TED data.

2Code/scripts available at http://cl.naist.jp/∼kevinduh/a/acl2013

different syntactic parser that did not provide this informa-
tion.

3.2.2. English-to-German

We also tried to apply pre-ordering to English-to-German.
We essentially did this by reversing the Collins German-to-
English rules by moving some words towards the end of their
siblings based on their part-of-speech tags as follows:

• in main clauses, VB words were moved,
• in subordinate clauses, MD, VBP, VBD, VBZ words

were moved.

3.3. RNNLM Rescoring

Continuous-space language models using neural networks
have attracted recent attention as a method to improve the
fluency of output of MT or speech recognition. In our sys-
tem, we used the recurrent neural network language model
(RNNLM) of [10].3 This model uses a continuous space rep-
resentation over the language model state that is remembered
throughout the entire sentence, and thus has the potential to
ensure the global coherence of the sentence to the greater ex-
tent than simpler n-gram language models.

We incorporate the RNNLM probabilities through
rescoring. For each system, we first output a 10,000-best list,
then calculate the RNNLM log probabilities and add them
as an additional feature to each translation hypothesis. We
then re-run a single MERT optimization to find ideal weights
for this new feature, and then extract the 1-best result from
the 10,000-best list for the test set according to these new
weights. The parameters for RNNLM training are tuned on
the dev set to maximize perplexity, resulting in 300 hidden
layers, 300 classes, and 4 steps of back-propogation through
time.

3.4. German compound word splitting

German compound words present sparsity challenges for ma-
chine translation. To address this, we split German words
following the general approach of [11]. The idea is to split
a word if the geometric average of its subword frequen-
cies is larger than whole word frequency. In our imple-
mentation, for each word, we searched for all possible de-
compositions into two sub-words, considering the possibil-
ity of deleting common German fillers “e”, “es”, and “s” (as
in ”Arbeit+s+tier”). For simplicity, we did not experiment
with splitting into three or more sub-words as done in the
compound-splitter.perl script distributed with the
Moses package. The unigram frequencies for the subwords
and whole word is computed from the German part of the bi-
text. This simple algorithm is especially useful for handling
out-of-vocabulary and rare compound words that have high
frequency sub-words in the training data. For the F2S sys-

3http://www.fit.vutbr.cz/~imikolov/rnnlm/



tem, sub-words are given the same POS tag as the original
whole word.

In the evaluation campaign, we performed compound
splitting only in the German-to-English task. We do not at-
tempt to split German words for the English-to-German task,
since it is non-trivial to handle recombination of German split
words after reordering and translation.

3.5. GMBR system combination

We used a system combination method based on Generalized
Minimum Bayes Risk optimization [12], which has been suc-
cessfully applied to different types of SMT systems for patent
translation [13]. Note that our system combination only
picks one hypothesis from an N-best list and does not gen-
erate a new hypothesis by mixing partial hypotheses among
the N-best.

3.5.1. Theory

Minimum Bayes Risk (MBR) is a decision rule to choose
hypotheses that minimize the expected loss. In the task of
SMT from a French sentence (f ) to an English sentence (e),
the MBR decision rule on δ(f)→ e′ with the loss function L
over the possible space of sentence pairs (p(e, f)) is denoted
as:

argmin
δ(f)

∑
e

L(δ(f)|e)p(e|f) (2)

In practice, we approximate this using N-best list N(f) for
the input f .

argmin
e′∈N(f)

∑
e∈N(f)

L(e′|e)p(e|f) (3)

Although MBR works effectively for re-ranking single
system hypotheses, it is challenging for system combination
because the estimated p(e|f) from different systems cannot
be reliably compared. One practical solution is to use uni-
form p(e|f) but this does not achieve Bayes Risk. GMBR
corrects by parameterizing the loss function as a linear com-
bination of sub-components using parameter θ:

L(e′|e;θ) =
K∑

k=1

θkLk(e
′|e) (4)

For example, suppose the desired loss function is
“1.0−BLEU”. Then the sub-components could be
“1.0−precision(n-gram) (1 ≤ n ≤ 4)” and “brevity
penalty”.

Assuming uniform p(e|f), the MBR decision rule can be
denoted as:

argmin
e′∈N(f)

∑
e∈N(f)

L(e′|e;θ) 1

|N(f)|

= argmin
e′∈N(f)

∑
e∈N(f)

K∑
k=1

θkLk(e
′|e) (5)

To ensure that the uniform hypotheses space gives the
same decision as the original loss in the true space p(e|f),
we use a small development set to tune the parameter θ as
follows. For any two hypotheses e1, e2, and a reference
translation er (possibly not in N(f)) we first compute the
true loss: L(e1|er) and L(e2|er). If L(e1|er) < L(e2|er),
then we would want θ such that:∑

e∈N(f)

K∑
k=1

θkLk(e1|e) <
∑

e∈N(f)

K∑
k=1

θkLk(e2|e) (6)

so that GMBR would select the hypothesis achieving lower
loss. Conversely if e2 is a better hypothesis, then we want
opposite relation:

∑
e∈N(f)

K∑
k=1

θkLk(e1|e) >
∑

e∈N(f)

K∑
k=1

θkLk(e2|e) (7)

Thus, we directly compute the true loss using a development
set and ensure that our GMBR decision rule minimizes this
loss.

3.5.2. Implementation

We implement GMBR for SMT system combination as fol-
lows.

First we run SMT decoders to obtain N-best lists for all
sentences in the development set, and extract all pairs of hy-
potheses where a difference exists in the true loss. Then
we optimize θ in a formulation similar to a Ranking SVM
[14]. The pair-wise nature of Eqs. 6 and 7 makes the prob-
lem amendable to solutions in “learning to rank” literature
[15]. We used BLEU as the objective function and the sub-
components of BLEU as features (system identity feature
was not used). There is one regularization hyperparameter
for the Ranking SVM, which we set by cross-validation over
the development set (dev2010).

3.6. What Didn’t Work Immediately

We also tried several other methods that did not have a clear
positive effect and were thus omitted from the final system.
For example, we attempted to improve alignment accuracy
using the discriminative alignment method proposed by [16]
training on the 300 hand-aligned sentences.4 However, while
this provided small gains in alignment accuracy on a held-out
set, the gains were likely not enough, and MT results were in-
conclusive. We also attempted to use the reordering method
of [17] as implemented in lader,5 again trained on the same
300 hand-aligned sentences, but increases in reordering ac-
curacy on a held-out set were minimal. We believe that both
of these techniques are promising, but require a larger set of
hand-aligned data to provide gains large enough to appear in
MT results.

4http://user.phil-fak.uni-duesseldorf.de/˜tosch/
downloads.html

5http://phontron.com/lader



4. Experiments
4.1. Setup

4.1.1. System overview

We used three individual SMT systems for each language
pairs: forest-to-string (F2S), hierarchical phrase-based (Hi-
ero), and phrase-based with pre-ordering (Preorder). In some
of our comparisons we also use simple phrase-based trans-
lation without preordering (PBMT). F2S was implemented
with Travatar [18] and Preorder, PBMT, and Hiero were im-
plemented using Moses [19].

For the Moses models, we generally used the default set-
tings, but with Good-Turing phrase table smoothing. For F2S
translation we used Egret6 as a parser, and created forests
using dynamic pruning including all edges that occurred in
the 100-best hypotheses. We trained the parsing model us-
ing the Berkeley parser over the Wall Street Journal section
of the Penn Treebank7 for English, and TIGER corpus [20]
for German. For model training, the default settings for Tra-
vatar were used, with the exception of changing the num-
ber of composed rules to 6 and using Kneser-Ney rule table
smoothing.

All systems were evaluated using the standard BLEU
score [21] and also RIBES [22], a metric designed specifi-
cally to show whether reordering is being performed prop-
erly. All systems were optimized towards BLEU score. We
measure statistical significance between results with boot-
strap resampling with p > 0.05. Bold numbers in each table
indicate the best system, and all systems that do not show a
statistically significant difference from the best system [23].

All words were lowercased prior to translation, and fi-
nally recased by a SMT-based recaser as implemented in
Moses.

4.1.2. Translation models

We trained the translation models using WIT3 training data
(138,499 sentences) and 1,000,000 sentences selected over
other bitexts (Europarl, News Commentary, and Common
Crawl) by the method described in 3.1.

4.1.3. Language models

We used two types of word n-gram language models of Ger-
man and English: interpolated 6-gram and Google 5-gram.

The interpolated 6-gram LMs were from linear interpola-
tion of several 6-gram LMs on different data sources (WIT3,
Europarl, News Commentary, Common Crawl, Common
News, and MultiUN). The interpolation weights were opti-
mized for test set perplexities on the development set, us-
ing interpolate-lm.perl in Moses. Individual 6-
gram LMs were trained by SRILM with modified Kneser-
Ney smoothing.

6https://github.com/neubig/egret/
7http://www.cis.upenn.edu/˜treebank/

System tst2011 tst2012 tst2013
Combination 26.04 22.86 24.60
F2S 26.27 22.59 24.34
Hiero 24.55 20.66 22.80
Preorder 25.30 21.84 24.08

Table 1: Official BLEU results for English-to-German (case-
sensitive).

The Google 5-gram LMs were from Google Web 1T N-
grams. We limited vocabulary words to those with 8,192 or
more in unigram counts and all words were mapped to lower-
case. Then we trained 5-gram LMs with Witten-Bell smooth-
ing.

4.1.4. Recaser models

The Moses-based recaser model for both English and Ger-
man were trained by train-recaser.perl using mono-
lingual resources (WIT3, Europarl, News Commentary,
Common Crawl, Common News, and MultiUN).

4.2. Full System Results

Our full system was the combination of F2S, Hiero, and Pre-
order. Tables 1 and 2 show the evaluation results for the of-
ficial test sets in German-to-English and English-to-German,
respectively. In German-to-English, each individual system
showed similar performance in BLEU and the system combi-
nation achieved much higher BLEU score, 2.8 points higher
than Preorder. In English-to-German, F2S showed the best
performance among the three individual systems and the
system combination was not so effective as in German-to-
English.

The contributions of individual systems can be measured
by the number of each system’s output chosen by the system
combination, as shown in Table 3. These results suggest:

• When one system is much better than the others, our
system combination highly relies on the best system
and has a little room for improvement. (English-to-
German)

• When the individual systems are different each other,
the voting-like effect of our system combination im-
proves the overall performance even if individual per-
formances are similar. (German-to-English)

These findings are similar to our system combination results
in English-Japanese translation [24].

With respect to recasing, slight BLEU drops were found
between case-sensitive and case-insensitive evaluation as
shown in Table 4. There was a larger drop in English-German
than German-English, due to the large number of required re-
casing for German nouns.



System tst2013
Combination 25.83
F2S 23.03
Hiero 22.76
Preorder 23.04

Table 2: Official BLEU results for German-to-English (case-
sensitive, without disfluency).

Task F2S Hiero Preorder ALL
English-German 868 0 125 993
German-English 304 142 916 1,362

Table 3: Number of each system’s outputs chosen by system
combination for tst2013.

En-De De-En
case-sensitive 24.60 25.83
case-insensitive 25.79 26.45

Table 4: Official BLEU results by Combination systems on
tst2013 set with case-sensitive and case-insensitive evalua-
tion (without disfluency).

4.3. Effect of Data Selection

Experimental results on adaptation training data selection
is shown in Table 5. By adding 1 million (1M) general-
domain sentences, we improve a baseline de-en PBMT sys-
tem (which is only trained from in-domain TED data) from
27.26 to 28.09 BLEU. We improve from 21.53 to 22.11
BLEU in the en-de PBMT system. This 1M general-
domain data is combined with the in-domain TED bitext
in subsequent system building, which required sufficiently
fewer computational resources than using the entire general-
domain data (especially for the F2S system).

Interestingly, we have found the improvements in Table
5 are not as large as that reported in [7] despite the simi-
lar task setup. The results are not directly comparable due
to different dev/test splits and random initializations. Nev-
ertheless, it has come to our attention that the random sam-
pling of general-domain data for GENE(e) and GENF (f)
in Eq. 1 appears to cause large differences in the subsequent
RNNLMs. This is because the RNNLMs are highly opti-
mized on perplexity. We suspect that using only INE(e) and
INF (f) as the sentence selection criteria (or using the sim-
pler n-grams for GENE(e) and GENF (f) values) may give
more stable results, though we have not tried comprehensive
experiments to validate this.

4.4. Translation Method Comparison

In this section, we provide a brief comparison of the three
translation methods mentioned in Section 2 on tst2010 data.
For all systems we used the TED data and 1M selected sen-
tences for training, and used the language model described

Number of Selected General-domain Sentences
0 100k 500k 1M 2M all

de-en 27.26 27.51 27.55 28.09 27.43 27.44
en-de 21.53 21.58 21.73 22.11 21.92 22.09

Table 5: BLEU results for adaptation training data selection.
These are tst2010 results using a preliminary PBMT system,
so they are not directly comparable to other results in this
paper.

en-de de-en
BLEU RIBES BLEU RIBES

PBMT 23.11 80.56 30.51 84.68
Hiero 23.33 81.17 30.54 84.51
F2S 24.30 81.09 30.37 83.44

Table 6: A comparison between different translation methods
with exactly matched training conditions.

Baseline +Splitting
PBMT 30.36 30.51
Hiero 30.22 30.54
F2S 29.82 30.36

Table 7: BLEU results for compound splitting.

in the previous section. None of the results include RNNLM,
and are somewhat preliminary, so they do not match our final
submission exactly.

The results are shown in Table 6. From these results,
we can see that given exactly the same data, alignments,
and language model, F2S achieved the highest accuracy on
English-German, and PBMT and Hiero achieved higher ac-
curacy on German-English. For English-German, we noticed
that the F2S system did a significantly better job of accu-
rately generating verbs at the end of the German sentence,
demonstrating its superior capability for reordering. For
German-English, on the other hand, F2S achieved a some-
what counter-intuitive low score on the reordering-based
measure RIBES. Upon an analysis of the results, we found
that the F2S system was largely getting the reordering right,
but occasionally making big changes in reordering large
clauses that were not reflected in the German reference. It
is likely that if we optimized towards RIBES, or a combina-
tion of BLEU and RIBES [25] we might get better results.

4.5. Effect of Compound Splitting

Next, we examine the effect of compound splitting for
German-English translation. From the results in Table 7, we
can see that compound splitting provides a gain for all sys-
tems, and particularly so for F2S translation.



en-de de-en
n-gram +RNNLM n-gram +RNNLM

PBMT 23.11 23.81 30.51 31.03
Hiero 23.33 24.31 30.54 31.80
F2S 24.30 25.02 30.48 30.85

Table 8: BLEU results for RNNLM rescoring.

4.6. Effect of RNNLM

Next, we examine the effect of adding RNNLM to the trans-
lation accuracy. From the results in Table 8, we can see that
the RNNLM provided significant gains in all cases, ranging
from 0.4-1.3 BLEU points. Examining the results manually,
we it was difficult to identify one clear reason for the im-
provements in the scores, but we did see some subjective im-
provements in agreement between prepositions in coordinate
structures, and less collapse of syntactic structure around un-
known words.

5. Conclusion
We used various SMT technologies for this year’s evalua-
tion campaign. Most of them had positive effects on the final
translation performance. The forest-to-string SMT had the
largest contribution in English-to-German, and the GMBR
system combination largely increased the performance in
German-to-English.
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