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Abstract
This paper describes the NAIST statistical machine transla-

tion system for the IWSLT2012 Evaluation Campaign. We

participated in all TED Talk tasks, for a total of 11 language-

pairs. For all tasks, we use the Moses phrase-based decoder

and its experiment management system as a common base

for building translation systems. The focus of our work is on

performing a comprehensive comparison of a multitude of

existing techniques for the TED task, exploring issues such

as out-of-domain data filtering, minimum Bayes risk decod-

ing, MERT vs. PRO tuning, word alignment combination,

and morphology.

1. Introduction
This paper describes the NAIST participation in the IWSLT

2012 evaluation campaign [1]. We participated in all 11

TED tasks, dividing our efforts in half between the official

English-French track and the 10 other unofficial Foreign-

English tracks. For all tracks we used the Moses decoder [2]

and its experiment management system to run a large number

of experiments with different settings over many language

pairs.

For the English-French system we experimented with a

number of techniques, settling on a combination that pro-

vided significant accuracy improvements without introduc-

ing unnecessary complexity into the system. In the end,

we chose a four-pronged approach consisting of using the

web data with filtering to remove noisy sentences, phrase ta-

ble smoothing, language model interpolation, and minimum

Bayes risk decoding. This led to a score of 31.81 BLEU on

the tst2010 data set, a significant increase over 29.75 BLEU

of a comparable system without these improvements. In Sec-

tion 2 we describe each of the methods in more detail and

examine their contribution to the accuracy of the system. For

reference purposes, in Section 3, we also present additional

experiments that gave negative results, which were not in-

cluded in our official submission.

For the 10 translation tasks into English, we focused on

techniques that could be used widely across all languages. In

particular, we experimented with unsupervised approaches

to handling source-side morphology, minimum Bayes risk

decoding, and large language models. In the end, most of

our systems used a combination of unsupervised morphol-

Decoding dev2010 tst2010

Baseline 26.02 29.75

NAIST Submission 27.05 31.81

Table 1: The scores for systems with and without the pro-

posed improvements.

ogy processing and large language models, which resulted

in an average gain of 1.18 BLEU points over all languages.

Section 4 describes these results in further detail.

2. English-French System
The NAIST English-French translation system for IWSLT

2012 was based on phrase-based statistical machine trans-

lation [3] using the Moses decoder [2] and its corresponding

training regimen. Overall, we made four enhancements over

the standard Moses setup to improve the translation accu-

racy:

Large-scale Data with Filtering: In order to use the large,

but noisy parallel training data in the English-French

Giga Corpus, we implemented a technique to filter out

noisy translated text.

Phrase Table Smoothing: We performed phrase table

smoothing to improve the probability estimates of

low-frequency phrases.

Language Model Interpolation: In order to adapt to the

domain of the task, we interpolated language models

trained using text from several domains.

Minimum Bayes-Risk Decoding: We used lattice-based

minimum Bayes risk decoding to select hypotheses

that are supported by other hypotheses in the n-best

list, and calibrated the probability distribution to fur-

ther improve performance.

We demonstrate our results (in BLEU score) before and

after these techniques are added in Table 1. It can be seen

that the combination of these 4 improvements leads to a 2.06

point gain in BLEU score on tst2010 over the baseline sys-

tem. We will explain each of the techniques in detail as fol-

lows.
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Corpus English French

TED 2.36M 2.47M

News Commentary (NC) 2.99M 3.45M

EuroParl (EP) 50.3M 52.5M

United Nations (UN) 302M 338M

WMT2012 Giga 575M 672M

Giga (+Filtering) 485M 565M

Table 2: The number of words in each corpus.

2.1. Data

The first step of building our system was preparing the data.

Table 2 shows the size and genre of each of the corpora avail-

able for the task. From these corpora, we used TED, NC,

EuroParl, UN, and Giga for training the language model, and

TED, NC, EuroParl, and filtered Giga (explained below) for

training the translation model.1 Tuning was performed on

dev2010, and testing was performed on tst2010.

In particular, the English-French Giga-word corpus is

from the web and thus covers a wide variety of diverse topics,

making it a strong ally for the construction of a general do-

main machine translation system. However, as the sentences

were automatically extracted, they contain a significant num-

ber of errors where the content of the parallel sentences ac-

tually do not match, or only match partially. In order to filter

out some of this noise, we re-implemented a variant of the

sentence filtering method of [4].

The method works by using a clean corpus to train a

classifier that can detect mis-aligned sentences. Because

the clean corpus only contains correctly aligned sentences,

we create pseudo-negative examples by traversing the cor-

pus and randomly swapping two consecutive sentences with

some set probability. These swapped sentences are labeled

as “negative,” and the remainder of the unswapped samples

are labeled as positive.

In this application, the feature set chosen for the classifier

must satisfy two desiderata. First, as with all machine learn-

ing applications, the features must be sufficient to discrimi-

nate between the classes that we are interested in: properly or

improperly aligned sentences. Second, as our training data (a

clean corpus) and testing data (a noisy corpus) will necessar-

ily be drawn from different domains, we would like to use a

small, highly generalizable feature set that will work on both

domains. In order to achieve both of these objectives, we

take hints from [4] and [5] to define the following features,

where fJ
1 and eI1 are the source and target sentences, and J

and I are their respective lengths:

Length Ratio features capture the fact that properly aligned

sentences should be approximately the same length.

Two continuous features max(J, I)/min(J, I), J/I ,

1We also attempted to use the UN corpus for training the translation

model, but found that it provided no gain, likely because of the specialized

writing style of UN documents.

Giga Data dev2010 tst2010

None 26.61 31.52

Unfiltered 27.03 31.90
Filtered 27.05 31.81

Table 3: Accuracy given various styles of using the Giga

data.

and three indicator features J > I , I > J , I = J .

Model One Probability features capture the fact that an un-

supervised alignment model (in this case, the effi-

ciently calculable IBM Model One [6]) should as-

sign higher probability to well-aligned sentences.

In this category, we use two continuous features

logPM1(e
I
1|fJ

1 ) and logPM1(f
J
1 |eI1).

Alignment features use Viterbi word alignments and cap-

ture certain patterns that should occur in properly

aligned sentences. Word alignments are calculated

using IBM Model One, and symmetrized using the

“intersection” criterion [7]. If the number of aligned

words is K, our features include aligned word ra-

tio K/min(I, J), total number of aligned words K,

number of alignments that are monotonic, monotonic

alignment ratio, and the average length of gaps be-

tween words (similar to “distortion” used in phrase-

based MT [3]).

Same Word features count the number of times that a word

of length n is exactly equal to a word in the oppo-

site sentence. This is useful for noticing when proper

names, numbers, or words with a shared linguistic ori-

gin occur in both sentences. In our system we use sep-

arate features for n = 1, n = 2, n = 3, and n ≥ 4.

To train the non-parallel sentence identifier, we use data

from the TED, NC, and EuroParl corpora swapping sen-

tences with a probability of 0.3 to create pseudo-negative ex-

amples. We use this as training data for a support vector ma-

chine (SVM) classifier, which we train using LIBLINEAR

[8]. In order to get an estimate of the accuracy of sentence

filtering, we perform 8-fold cross validation on the training

data, and achieve a classification accuracy of 98.0%.2

Next, we run the trained classifier on the entirety of

the Giga corpus and remove the examples labeled as non-

parallel. As a result of filtering with the classifier, a total of

485M English and 565M French words remained, a total of

84.3% of the original corpus.

Finally, using no Giga data, the unfiltered Giga data, and

the filtered Giga data (in addition to all other data sets), we

measured the final accuracy of the translation system. The

2Of course, as we are using pseudo-negative examples in the Europarl

corpus instead of real negative examples from the Giga corpus, these accu-

racy features are only approximate.
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Smoothing dev2010 tst2010

None 26.75 31.19

Good-Turing 27.05 31.81

Table 4: BLEU results using translation model smoothing.

LM dev2010 tst2010

TED Only 24.80 29.44

Without Interp. 26.30 31.15

With Interp. 27.05 31.81

Table 5: Results training the language model on only TED

data, and when other data is used without and with language

model interpolation.

results are shown in Table 3. As a result, we can see that us-

ing the data from the Giga corpus has a positive effect on the

results, but filtering does not have a clear significant effect on

the results.

2.2. Phrase Table Smoothing

We also performed experiments that used smoothing of the

statistics used in calculating translation model probabilities

[9]. The motivation behind this method is that the statistics

used to train the phrase table are generally sparse, and tend to

over-estimate the probabilities of rare events. In the submit-

ted system we used Good-Turing smoothing for the phrase

table probabilities.

Results comparing a system with smoothing and without

smoothing can be found in Figure 4. It can be seen that Good-

Turing smoothing of the phrase table improves results by a

significant amount.

2.3. Language Model Interpolation

One of the characteristics of the IWSLT TED task is that, as

shown in Table 2, we have several heterogeneous corpora.

In addition, the in-domain TED data is relatively small, so it

can be expected that we will benefit from using data outside

of the TED domain. In order to effectively utilize out-of-

domain data in language modeling, we build one language

model for each domain and interpolate the language models

to minimize perplexity on the TED dev2010 set using the

method described by [10] and implemented in the SRILM

toolkit [11].

To measure the effectiveness of this technique, we also

measure the accuracy without any data other than TED, and

when the data from all domains was simply concatenated to-

gether for LM learning. The results can be found in Table

5. We can see that adding the larger non-TED data to the

language model is essential, and using linear interpolation

to adjust the language model weights can also provide large

further gains.

2.4. Minimum Bayes Risk Decoding

Finally, we experimented with improved decoding strategies

for translation, particularly using minimum Bayes risk de-

coding (MBR, [12]). In normal translation, the decoder at-

tempts to simply find the answer with the highest probability

among the translation candidates

Ê = argmaxEP (E|F ) (1)

in a process called Viterbi decoding. As an alternative to this,

MBR attempts to find the hypothesis that minimizes risk

Ê = argminE

∑
E′∈E

P (E′|F )L(E′, E) (2)

considering the posterior probability P (E′|F ) of hypotheses

E′ in the space of all possible hypotheses E , as well as a

loss L(E′, E) which determines how bad a translation E is

if the true translation is E′. In this work (as with most others

on MBR in MT) we use one minus sentence-wise BLEU+1

score [13] as our loss function

L(E′, E) = 1− BLEU+1(E′, E). (3)

In initial research on MBR, the space of possible hy-

potheses E was defined as the n-best list output by the de-

coder. This was further expanded by [14], who defined MBR

over lattices. We tested both of these approaches (as imple-

mented in the Moses decoder).

Finally, one fine point about MBR is that it requires a

good estimate of the probability P (E′|F ) of hypotheses. In

the discriminative training framework of [15], which is used

in most modern SMT systems, scores of machine translation

hypotheses are generally defined as a log-linear combination

of feature functions such as language model or translation

model probabilities

P (E′|F ) =
1

Z
e
∑

i wiφi(E
′,F ) (4)

where φi indicates feature functions such as the language

model, translation model, and reordering model log proba-

bilities, wi is the weight measuring the relative importance

of this feature, and Z is a partition function that ensures that

the probabilities add to 1.

Choosing the weights wi for each feature such that the

answer with highest probability

Ê = argmaxEP (E|F ) (5)

is the best possible translation is a process called “tuning,”

and essential to modern SMT systems. However, in most

tuning methods, including the standard minimum error rate

training [16] that was used in the proposed system, while the

relative weight of each feature wi is adjusted, the overall sum

of the weights
∑

i wi is generally set fixed at 1. While this is

not a problem when finding the highest probability hypothe-

sis in 5, it will affect the probability estimates P (E′|F ), with
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Decoding dev2010 tst2010

Viterbi 27.59 31.01

MBR (λ = 1) 27.29 31.24

Lattice MBR (λ = 1) 26.70 31.25

Lattice MBR (λ = 5) 27.05 31.81

Table 6: BLEU Results using Minimum Bayes Risk decod-

ing.

larger s assigning a larger probability to the most probable

hypothesis, and a smaller s spreading the probability mass

more evenly across all hypotheses.

In order to improve the calibration of our probability esti-

mates, and thus improve the performance of MBR, we intro-

duce an addition scaling factor λ into the calculation of our

probability

P (E′|F ) =
1

Z
eλ

∑
i wiφi(E

′,F ). (6)

Using this lambda, we tried every value in 0.1, 0.2, 0.5, 1.0,

2.0, 5.0, and 10.0, and finally chose λ = 5.0, which gave the

best performance on tst2010.

The final results of our system with Viterbi decoding (no

MBR), regular MBR over n-best lists, and lattice MBR with

the scaling factors of 1 and 5, are shown in Table 6. It can be

seen that both MBR and lattice-based MBR give small im-

provements over the baseline without tuning λ, while tuning

λ gives a large improvement.3 The reason why MBR re-

duces the accuracy on dev2010 is because dev2010 was used

in tuning the parameters during MERT, so the one-best an-

swers tend to be better on average than they would be on a

held-out test set.

3. Additional Results on English-French
This section presents additional results obtained on the

English-French track. The results here, for the most part,

did not obtain worthwhile BLEU improvements in prelimi-

nary experiments, so we did not include them in the official

system as described in Section 2. Although the systems re-

ported in this section use the same dev and test set as that of

Section 2, the training conditions and system configurations

have slight differences, so the results should not be directly

compared. We include these (negative) results for reference

purposes, in order to aid understanding of the English-French

TED task.

3.1. Exploiting Out-of-domain Data

We experimented with the simplest approach to exploiting

out-of-domain bitext in translation models: data concatena-

tion. This can be seen as adaptation at the earliest stage of the

3It should be noted that due to constraints in the available data for these

MBR experiments we are both tuning on testing on tst2010, but the tuning

of λ also demonstrated gains in accuracy on the official blind test on tst2011

and tst2012 (37.33→37.90 and 38.92→39.47 respectively).

translation pipeline, and has achieved competitive results on

TED En-Fr [17]. Three conditions were tried: (1) TED-only

data, (2) TED + News (NC), (3) TED + NC + EuroParl (EP).

Results are shown in Table 7.

First, we observe that adding data gives slight improve-

ments (29.32 to 29.57). To analyze the potential for improve-

ment, we also measured BLEU using “CheatLM” decoding

[18]. “CheatLM” is an analysis technique for TM adapta-

tion where the language model is trained on the reference;

this gives a optimistic estimate on what can be achieved by

the translation model, if other components are tuned almost

perfectly. Here we see that TED+NC+EP (59.93 BLEU) can

achieve large improvements over TEDonly (55.10 BLEU),

indicating the potential value of out-of-domain bitext. How-

ever, note that the corresponding OOV rate reduction is rel-

atively small (1.2% to 0.52%). We hypothesize that out-of-

domain probably is not helping because of improved word

coverage, but rather because of improved word alignment es-

timation. In any case, the improvements are slight so we do

not attempt to draw any further conclusions.

Data standard CheatLM force OOV

TEDonly 29.32 55.10 16% 1.2%

TED+NC 29.43 58.64 17% 0.85%

TED+NC+EP 29.57 59.93 21% 0.52%

Table 7: Translation Model Adaption by simple out-of-

domain data concatenation. The “standard” and “CheatLM”

columns show the BLEU scores on tst2012, using standard

Moses decoding and “CheatLM” decoding. The column

“force” shows the percentage of tst2010 sentences that can

be translated into the reference using forced decoding. OOV

indicates the token out-of-vocabulary rate.

3.2. Word Alignment & Phrase Table Combination

We investigated different alignment tools and ways to com-

bine them, as shown in Table 8. Observations are as follows:

• GIZA++ and BerkeleyAligner achieve similar BLEU

on this task.

• Concatenating GIZA++ and BerkeleyAligner word

alignment results, prior to phrase extraction, achieves

a small boost (29.57 to 29.89 BLEU).

• We also experimented with pilaign [19], a Bayesian

phrasal alignment toolkit. This tool directly extracts

phrases without resorting to the preliminary step of

word alignments, and achieves extremely compact

phrase table sizes (0.8M entries) without significantly

sacrificing BLEU (29.24).

• Combining the GIZA++ and pialign phrase tables by

Moses’ multiple decoding paths feature did not im-

prove results. Overall, we did not find much differ-
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ence among these various approaches so we used the

standard GIZA++ tool chain in the official submission.

Tool BLEU TableSize

1: GIZA++ 29.57 109

2: BerkeleyAligner 29.39 170

3: pialign 29.24 0.8

1+2: ConcatAlign (GIZA,Berkeley) 29.89 200

1+3: TwoTable (GIZA,pialign) 29.56 201

Table 8: BLEU scores on tst2010 of various combinations

of alignment and phrase training tools. TableSize shows the

phrase-table size of corresponding method (in millions of

entries). GIZA++ and BerkeleyAligner are trained the the

TED+NC+EP bitext; pialign is trained only on TED, due to

time constraints in our preliminary experiments.

3.3. Lexical Reordering Models

Several reordering models available in the Moses decoder

were tried. In general, we found the full “msd-bidir-fe” op-

tion to perform best, despite the small number of word order

differences between English and French. Results are shown

in Table 9.

Reordering model BLEU

msd-bidir-fe 29.57
msd-bidir-f 29.43

monotonicity-bidir-fe 29.29

msd-backward-fe 29.22

distance 28.99

msd-bidir-fe-collapse 28.86

Table 9: Comparison of Reordering models on tst2010.

3.4. MERT vs. PRO tuning

We compared two tuning methods: MERT and PRO [20].

We used the implementations distributed with Moses. For

both MERT and PRO, we set the size of k-best list to k =
100, used 14 standard features, and removed duplicates in

k-best lists when merging previously generated k-best lists.

We ran MERT in multi-threaded setting until convergence.

Since the number of random restarts in MERT greatly affects

on the translation accuracy [21], we tried various number of

random restarts for 1, 10, 20, and 50.4 For PRO, we used

MegaM5 as a binary classifier with the default setting. We

ran PRO for 25 iterations. We tried two kinds of PRO: [20]

interpolated the weights with previously learned weights to

improve the stability (henceforth “PRO-interpolated”)6, and

4Currently, Moses’s default setting is 20.
5http://www.cs.utah.edu/˜hal/megam/
6We set the same interpolation coefficient value of 0.1 as [20] noted.

Time (m)

# of random restarts Iteration Dev BLEU Wall CPU

1 11 28.18 0.59 0.82

10 11 28.17 2.21 17.22

20 12 28.29 4.91 57.88

50 12 28.31 9.72 171.91

Table 10: The effect of the number of random restarts in

MERT on BLEU score and multi-threaded time. “Iteration”

denotes the number of iterations which MERT needs to be

converged. “Time” denote the average time of weight opti-

mization for each iteration, averaged over all iterations.

Method Dev BLEU

MERT 28.29
PRO-basic 26.99

PRO-interpolated 27.11

Table 11: Comparison with MERT and PRO. For MERT, the

number of random restarts was set to 20.

the version that do not use such a interpolation (henceforth

“PRO-basic”).

We first investigate the effect of the number of random

restarts in MERT on BLEU score and run-time for each it-

eration. Table 10 shows the result. As the number of ran-

dom restarts increases, BLEU score improves. However, the

run-time increases as well. We used 20 random restarts to

compare to PRO.

Table 11 shows the results of MERT and PRO. As can be

seen in Figure 11, MERT exceeds PRO-basic by 1.3 points

and PRO-interpolated by 1.18 points. As a result, we used

MERT for tuning in Sections 2 and 4.

4. Systems for Translation into English
We participated in the translation of all 10 additional

language-pairs of the TED Talk track. The source lan-

guages are Arabic (ar), German (de), Dutch (nl), Polish (pl),

Brazilian-Portuguese (pt), Romanian (ro), Russian (ru), Slo-

vak (sk), Turkish (tr), and Chinese (zh). The target language

for all tasks is English (en).

Since all tasks translate into the same language, we are

able to share the language model as well as many of the

configurations for the Experimental Management System

(EMS). This setup provides an invaluable chance to compare

the same techniques across structurally-different languages,

and is the focus of our work. Rather than optimizing for spe-

cific languages, we concentrate on building common systems

under the same EMS framework and on comparing the per-

formance of existing techniques cross-lingually.

It is interesting to note that the 10 language-pairs cover a

diverse range of linguistic phenomenon. In terms of histori-

cal relationships, the Italic family (pt,ro) and Germanic fam-

ily (de, nl) are expected to be closer to the target language

of English. The Slavic family (pl,ru,sk), Arabic, and Turkish
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languages exhibit rich morphology (fusional, non-catenative,

or agglutinative). Additionally, the Germanic family may

show word order differences (V2 and SOV) and Chinese re-

quires word segmentation.

4.1. Experiments

Table 12 summarizes all the results (BLEU scores) for trans-

lation into English. In all language pairs, the baseline con-

sists of a standard phrase-based Moses system (GIZA++

alignment, grow-diag-final-and heuristic, lexical ordering,

4-gram language model) trained on the TED Talks portion

of the training data. MERT tuning is performed on the

“dev2010” portion of the data and Table 12 shows test re-

sults on “tst2010.”7 While it is not possible to directly com-

pare BLEU across languages, we do observe that the Italic

and Germanic languages fare better on this TED task (> 25
BLEU), while Chinese, Turkish, and the Slavic languages

perform poorly at 10− 17 BLEU.

We then proceeded to improve on these baseline results.

First, adding additional out-of-domain data (nc=News Com-

mentary, ep=Europarl, un=UN Multitext) to the language

model increased results uniformly for all language pairs (line

(b) of Table 12). We used an interpolated language model,

trained in the same fashion as in our English-French system.

Next, we tried two strategies for handling rich morphol-

ogy in the input. The “CompoundSplit” program in the

Moses package was developed for languages with extensive

noun compounding, e.g. German, and breaks apart words

if sub-parts are seen in the training data over a certain fre-

quency [22]. The alternate “Morfessor” program [23] is an

unsupervised morphological analyzer based on the Minimum

Description Length principle – it tries to find the the small-

est set of morphemes that parsimoniously cover the training

set. Morfessor is expected to segment more aggressively than

CompoundSplit, especially because it can find both bound

and free morphemes. However, we empirically found that

Morfessor segments too aggressively for unknown words

(i.e. each character becomes a morpheme), so we do not seg-

ment OOV words in dev/test.8 The results in line (c) of Table

12 shows that German benefit most from CompoundSplit,

while Arabic, Russian, and Turkish benefit from Morfessor.

The remaining languages perform approximately equal or

slightly better with these morphology enhancements, so in

further experiments we keep the morphology pre-processing

(de & ro uses CompoundSplit; others use Morfessor).

In line (d) of Table 12, we further added the Giga cor-

pus to the interpolated language model. For some languages,

this gave a large improvement (ar, de, pl, sk), while for other

7For Slovak, which lacked an official dev/test split, we split the develop-

ment data, with the first half for tuning and the second half for testing. All

source languages, except for Slovak, have comparable amounts of in-domain

data (130k-145k sentence pairs).
8In other words, we keep OOV words as is and propagate it to the output.

This implies that we lose the opportunity to translate OOV words whose

component morphemes are seen in the training data. However, we think this

conservative option is safer in the presence of potential over-segmentation.

languages the results remain similar. Some of these results

represent our official submission. In line (e), adding Lattice

MBR decoding uniformly degraded results, so we chose not

to include it. This is in contrast with our English-French re-

sults. We suspect that in this case uniformity of the train-

ing data and lack of diversity in the n-best list may have

damaged MBR; the resulting translations appear similar in

structure, but many have extraneous articles and determin-

ers, which hurts BLEU. It should also be noted that unlike

English-French, we did not calibrate the probability distribu-

tion by adjusting λ, which might also had a significant effect

on the results. Finally in line (f), we added additional out-

of-domain bitext for Translation Model training. This only

helped slightly for pl and tr, while degrading other language

pairs: we conclude that more advanced TM adaptation meth-

ods is necessary, and simply concatenating the bitext does

not help.

Finally, we note that our submitted systems for each lan-

guage achieve a 0.7-2.5 BLEU improvement over the re-

spective baselines. We also achieve slight improvements in

METEOR, despite not tuning for it. While the feature that

helped most depends on language, we observe that morpho-

logical pre-processing and larger language models are gener-

ally worthwhile efforts.

5. Conclusion
This paper described our experiments with a number of exist-

ing machine translation techniques for the IWSLT 2012 TED

task. Some of these techniques, such as minimum Bayes

risk decoding with calibrated probabilities, language model

interpolation, unsupervised morphology processing, transla-

tion model smoothing, and the use of large data proved to

be effective. We also found that a number of techniques, in-

cluding tuning using PRO, alignment combination, and data

filtering had less of a positive effect.
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