
Chapter 1

An IDE for the Grammatical
Framework
John J. Camilleri

University of Gothenburg

Abstract
The GF Eclipse Plugin provides an integrated development environment (IDE)
for developing grammars in the Grammatical Framework (GF). Built on top of
the Eclipse Platform, it aids grammar writing by providing instant syntax check-
ing, semantic warnings and cross-reference resolution. Inline documentation and
a library browser facilitate the use of existing resource libraries, and compila-
tion and testing of grammars is greatly improved through single-click launch
configurations and an in-built test case manager for running treebank regression
tests. This IDE promotes grammar-based systems by making the tasks of writing
grammars and using resource libraries more efficient, and provides powerful tools
to reduce the barrier to entry to GF and encourage new users of the framework.

The research leading to these results has received funding from the European Union’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement no. FP7-ICT-247914.

1.1 Introduction

1.1.1 Grammatical Framework (GF)
GF is a special-purpose framework for writing multilingual grammars targeting multiple parallel
languages simultaneously. It provides a functional programming language for declarative grammar
writing, where each grammar is split between an abstract syntax common to all languages, and
multiple language-dependent concrete syntaxes, which define how abstract syntax trees should be
linearised into the target languages. From these grammar components, the GF compiler derives

1



both a parser and a lineariser for each concrete language, enabling bi-directional translation between
all language pairs. (Ranta, 2011)

Apart from being a standalone logical and natural language framework, there also exists an
open-source collection of GF resource grammars for a number of natural languages, collectively
known as the Resource Grammar Library (RGL) (Ranta, 2009). Currently comprising 24 natural
languages from around the world, the libraries cover low-level syntactic features like word order
and agreement in each particular language. These details are abstracted away from the application
grammar developer through the RGL’s common language-independent API, making it possible to
write multilingual grammar applications without necessarily having any extensive linguistic training.

1.1.2 GF grammar development
As a grammar formalism, GF facilitates the writing of grammars which can form the basis of
various kinds of rule-based machine translation applications. While it is common to focus on the
theoretical capabilities and characteristics of such formalisms, it is also relevant to assess what
software engineering tools exist to aid the grammar writers themselves. The process of writing
a GF grammar may be constrained by the framework’s formal limits, but its effectiveness and
endurance as a language for grammar development is equally determined by the real-world tools
which exist to support it.

Whether out of developer choice or merely lack of anything better, GF grammar development
typically takes place in traditional text editors, which have no special support for GF apart from
a few syntax highlighting schemes made available for certain popular editors1. Looking up library
functions, grammar compilation and running of regression tests must all take place in separate
windows, where the developer frequently enters console commands for searching within source files,
loading the GF interpreter, and running some test set against a compiled grammar. GF developers
in fact often end up writing their own script files for performing such tasks as a batch. Any syntax
errors or compiler warnings generated in the process must be manually interpreted.

While some developers may actively choose this low-level approach, the number of integrated
development environments (IDEs) available today indicate that there is also a big demand for
advanced development setups which provide combined tools for code validation, navigation, refac-
toring, test suite management and more. Major IDEs such as Eclipse, Microsoft Visual Studio and
Xcode have become staples for many developers who want more integrated experiences than the
traditional text editor and console combination.

1.1.3 Motivation
The goal of this work is to provide powerful development tools to the GF developer community,
making more efficient the work of current grammar writers as well as promoting the Grammatical
Framework itself and encouraging new developers to use the framework.

By building a GF development environment as a plugin to an existing IDE platform, we are
able to obtain many useful code-editing features “for free”. Thus rather than building generic
development tools, we only need to focus on writing IDE customisations which are specific to GF,
of course reducing the total effort required.

The rest of this paper is laid out as follows: section 2.2 describes the design choices which
guided the plugin’s development, section 1.3.1 then covers each of the major features provided by
the plugin, and in section 3.8 we discuss our plans for evaluation along with some future directions
for the work.

1See the GF Editor Modes page at http://www.grammaticalframework.org/doc/gf-editor-modes.html

2



1.2 Design choices

1.2.1 Eclipse
Eclipse2 is a multi-language software development environment which consists of both a standalone
IDE, as well as an underlying platform with an extensible plugin system. Eclipse can also be used for
the development of self-contained general purpose applications via its Rich Client Platform (RCP).
The Eclipse Platform was chosen as the basis for a GF IDE for various reasons:

1. It is written in Java, meaning that the same compiled byte code can run on any platform
for which there is a compatible virtual machine. This allows for maximum platform support
while avoiding the effort required to maintain multiple versions of the product.

2. The platform is fully open-source under the Eclipse Public License (EPL)3, is designed to be
extensible and is very well documented.

3. Eclipse is a widely popular IDE and is already well-known to a number of developers within
the GF community.

4. It has excellent facilities for building language development tools via the Xtext Framework
(see below).

1.2.2 Xtext
Xtext4 is an Eclipse-based framework for development of programming languages and domain spe-
cific languages (DSLs). Given a language description in the form of an EBNF grammar, it can
provide all aspects of a complete language infrastructure, including a parser, linker and compiler or
interpreter. These tools are completely integrated within the Eclipse IDE yet allow full customisa-
tion according to the developer’s needs. Xtext can be used both for creating new domain specific
languages, as well as for creating a sophisticated Eclipse-based development environment.

By taking the grammar for the GF syntax as specified in Ranta (2011, appendix C.6.2), and
converting it into a non-left recursive (LL(*)) equivalent, we used Xtext’s ANTLR5-based code
generator to obtain a basic infrastructure for the GF programming language, including a parser
and serialiser. With this infrastructure as a starting point, a number of GF-specific customisations
were written in order to provide support for linking across GF’s module hierarchy system. Details
of this implementation as well as other custom-built IDE features are described in section 1.3.1.

1.2.3 Design principles
Preserving existing projects

As users may wish to switch back and forth between a new IDE and their own traditional devel-
opment setups, it was considered an important design principle to have the GF IDE not alter the
developer’s existing project structure. To this end, the GF Eclipse Plugin does not have any folder
layout requirements, and never moves or alters a developer’s files for its own purposes. For storing
any IDE-specific preferences and intermediary files, meta-data directories are used which do not
interfere with the original source files.

Preventing application tie-in in this way reduces the investment required for users who want to
switch to using the new IDE, and ensures that developers retain full control over their GF projects.

2http://www.eclipse.org/
3http://www.eclipse.org/legal/epl-v10.html
4http://www.eclipse.org/Xtext/
5http://www.antlr.org/

3



This is especially important for developers using version control systems, who would want to use
the plugin without risking any changes to their repository’s directory tree.

Interaction with GF compiler

It is clear that an IDE which provides syntax checking and cross-reference resolution is in some
sense replicating the parsing and linking features of that language’s compiler. With this comes the
decision of what should be re-implemented within the GF IDE itself, and what should be delegated
to the existing GF compiler. In terms of minimising effort required, the obvious option would be to
rely on the compiler as much as possible. This would conveniently mean that any future changes
to the language, as implemented in updates to the compiler, would require no change to the IDE
itself.

However, building an IDE which depends entirely on an external program to handle all parsing
and linking jobs on-the-fly is not a practical solution. Thanks to Xtext Framework’s parser generator
as described above, keeping all syntax checking within the IDE platform becomes a feasible option,
in terms of effort required versus performance benefit. When it comes to reference resolution and
linking however, it was decided that the IDE should delegate these tasks to the GF compiler in a
background process (see section 1.3.4). This avoids the work of having to re-implement GF’s module
hierarchy system within the IDE implementation. Communication of scope information from GF
back to the IDE is facilitated through a new “tags” feature in the GF compiler, as described in
section 1.3.3. This delegation occurs in a on-demand fashion, where the GF compiler is called
asynchronously and as needed, when changes are made to a module’s header.

1.3 The GF Eclipse Plugin (GFEP)
This section covers the major features provided by the plugin and their relevance to developers of
GF grammars.

1.3.1 Code editing
Figure 1.1 shows a screenshot of the main IDE window. Note how multiple editor panes can be
viewed simultaneously, by partitioning the workbench into arbitrary tabbed sections. Various source
code-level features such as code folding, block-level indentation and commenting, and matching
bracket highlighting are also provided. These basic code editing features, including the project
navigation view in the top-left of the screen, are all provided directly by the Eclipse Platform.

Automatic formatting The built-in code formatter can be used to tidy one’s code automat-
ically, adhering it to the line break and indentation conventions as used in the GF book (Ranta,
2011). Figure 1.2 shows screenshots before and after invoking the code formatter.

Wizards The plugin also provides some wizards for guiding developers in quickly creating new
resources in the project, such as creating a new GF module from scratch, or cloning an existing
module in one language into a new one.

Syntax validation As the basic language infrastructure for the IDE was generated from a
grammar of the GF syntax, the plugin provides fully customisable syntax highlighting as well as
instant syntax validation and marking of lexical errors. A variety of semantic warnings may also be
shown to the user, for example indicating that a linearisation rule has no corresponding abstract
function, or that an implemented interface has not been fully instantiated. Note that these features

4



Figure 1.1: Screenshot of the GF Eclipse Plugin in use.

Figure 1.2: Before and after applying the automatic code formatting feature.

5



are all provided directly by the plugin implementation, without needing to call the standard GF
compiler in the background.

Outline view The outline view in the bottom-left of figure 1.1 offers a complete overview of
the current module structure. Every definition in the module is listed in a tree structure, along
with its type information and helpful icons for quickly distinguishing the different judgement types.
Clicking any of the terms will make make cursor jump to that point in the file, allowing for easy
and quick navigation in large modules.

1.3.2 Launch configurations
Making use of Eclipse’s launching framework, grammar writers have the ability to compile and
run their modules with GF with a single click or button press. The plugin allows multiple launch
configurations to be set up; each specifying the source modules to be compiled, any additional
compiler flags, and any commands which should be passed to the GF shell for batch processing.
Launch configurations can also be configured to automatically linearise treebank files for grammar
regression testing (for more about this, refer to section 1.3.5). The GF compiler can also optionally
be launched into interactive shell mode, such that the user can interact with the GF interpreter in
the traditional way without leaving the development environment.

Once set up, any launch configuration can be run quickly from within the IDE, avoiding the need
to type in long terminal commands or scroll through one’s shell history each time. A screenshot of
the options available in the launch configuration dialog window is shown in figure 1.3.

1.3.3 Cross-reference resolution and scoping
As in most other programming languages, GF comes with a hierarchical module system which allows
grammars to be split between multiple source files (modules), and for these modules to import and
extend each other in an inheritable way. An identifier in a module which points to a function or
value defined in another module is known as a cross-reference. The GF IDE must thus link all
such cross-references between modules, allowing the developer to “jump” to their original points of
definition, and indicate when a referenced identifier cannot be resolved.

A byproduct of this is the ability to display a list of all functions available in the module
hierarchy, which are visible from any given point in a grammar. This is provided as an auto-
completion pop-up dialog, which filters the displayed list of available functions by the characters
preceding the current cursor position.

All this is achieved through the scoping infrastructure of the GF Eclipse Plugin, which can
quickly find all visible definitions (i.e. the scope) for any part of a grammar. As this scope calculation
is highly specific to GF’s module system and inheritance syntax, rather than attempting to re-
implement this behaviour within the IDE, it was decided that this task should be handled by the
standard GF compiler system. The delegation of this work from the IDE to the GF compiler
is handled by a custom Eclipse builder (see section 1.3.4). In order to facilitate communication
between the IDE and the standalone compiler, a new tags-generation feature was added to GF.
This is described in the following section.

GF tags generation

Tags files are used as a means of providing module scope information to the IDE from the GF
compiler, when the latter is invoked as a background process via the GFEP automatic builder as
depicted in figure 1.4. The tags generation in GF is inspired by popular tools like Ctags and Etags6.

6http://ctags.sourceforge.net/ctags.html

6



Figure 1.3: The launch configuration dialog, allowing developers to save their compilation
flags and arguments for quick re-use.

As of GF version 3.3.3, running the compiler with the -tags flag will begin the regular compilation
pipeline, starting with the usual phases for parsing and analysing of the grammar code but stopping
before any actual code generation. Instead, the compiler will write a set of .gf-tags files (one for
each .gf source module) containing lists of every identifier in the scope of the current module.
These files are saved in a tab-delimited format with one identifier per line, as shown in figure 1.5.

The first two fields of each line indicate the identifier name and the kind of declaration; that is,
the keyword that is used for introducing the identifier, i.e. fun, cat, lin, lincat or oper. If the
identifier is defined in the current module, then the third field contains the path to the source file
along with the line number(s) for the definition. When the type is either fun, oper or overload
then the final field contains the type signature for the identifier.

In addition to the declaration kinds listed above, the kind could also be specified as indir, which
indicates that the identifier is imported from some other module, and that its definition should be
looked up there. In this case, the following fields on the same line respectively contain the module
name and alias under which the identifier was imported (where applicable), and the path to the
.gf-tags file which contains the actual definition of the identifier. This is exemplified in the final
line of figure 1.5 (mkNoun).

7



IDE

GF compiler
Background invocation

using '--tags' flag

Tags files

 GenerationRead and build
scope information

Figure 1.4: Tags files created by the GF compiler in a background process are used by the
GF Eclipse Plugin for building scope information about the GF source files opened in the
IDE.

mkN3 oper-def .../ParadigmsEng.gf:406
mkN3 oper-type .../ParadigmsEng.gf:118 {s : Number => Case => Str;...
mkPN overload-def .../ParadigmsEng.gf:390-393
mkPN overload-type .../ParadigmsEng.gf:390-393 Str -> {s : Case =>...
mkPN overload-type .../ParadigmsEng.gf:390-393 {s : Number => Case...
mkNoun indir ResEng R ResEng.gf-tags

Figure 1.5: Example of the .gf-tags file format, for the resource grammar library module
ParadigmsEng.gf (some lines truncated for brevity).

1.3.4 Automatic builder
The reliance on the GF compiler for providing scoping information means that repeated calls to
this external program must be made by the IDE. This is handled by a custom Eclipse builder,
which listens for changes in the project workspace, analyses the resource deltas and calls the GF
compiler to refresh the scoping information. This generally happens each time a file is saved,
however the plugin also attempts to detect when changes to the current module may have effects
on its dependents, in which case it will update the scoping information for these descendants also.
To reduce the total number of calls to the builder, the scoping information is only refreshed when
changes are made to the module’s header information.

In addition to obtaining scoping information as described in section 1.3.3 above, calling the GF
compiler as a background task also allows any type errors not caught by the IDE directly to still
be relayed back to the user. Since all GF grammars written in the IDE will ultimately have to
be compiled with GF, it is important that all errors are bubbled up to the developer as soon as
possible so that they do not go undetected for long.

1.3.5 Test case manager
As described in Ranta (2011, section 10.5), the typically recommended development-test cycle for
GF grammars is as follows:

1. Create a file test.trees which contains a list of abstract syntax trees (one per line) to be
tested.

8



Figure 1.6: Viewing regression test output in the Test Manager view. In this example we
see that the input tree doctor_N is incorrectly linearised as läkaran and läkarans for the
singular definite cases in Swedish. The correct forms are läkaren and läkarens, respectively.

2. Compile the grammar and linearise each tree to all forms, using a command such as:

rf -lines -tree -file=test.trees | l -table -treebank

and capture the output in a file test.trees.out.

3. Manually correct the output in test.trees.out and save it as your gold standard file test.trees.gold.

4. Each time the grammar is updated, repeat step 2 and compare the new output against the
gold standard using Unix diff or some other comparison tool.

5. Extend the tree set and gold standard file for every new implemented function.

The Tree Manager view in the GF Eclipse plugin provides a convenient graphical interface for
managing this treebank testing process. This feature works together with the launch configurations
to make the process of running grammar regression tests and gold standard comparisons quick and
easy. As shown in the left-hand side of figure 1.6, all valid test input files in the project are shown
together, and a simple double click on any will invoke the GF compiler, linearise the trees with the
current version of the grammar and present comparisons against the corresponding gold standard
in the right-hand panel. Various options are available for sorting and filtering the test results given,
so that developers can quickly locate in which cases their grammar is failing.

Parsing While grammar testing is often focused on the linearisation of abstract syntax trees,
the same procedure can be used equally as effectively for testing the parsing performance of the
grammar under development. In this case, one would use .sentences instead of .trees files,
containing plain-text sentences instead of abstract syntax trees, and the gold standard and output
files would conversely contain the parse trees produced by the grammar.

1.4 Conclusions
Based on the Eclipse Platform an the Xtext framework, we have built a development environment
for GF to replace the standard text editor and console window combination. While the GF Eclipse
Plugin is not any more powerful in a computational sense, it does make available a number of
development tools and user interfaces for speeding up the writing and testing of GF grammars, as
well as the use of existing resource libraries in application grammars.

9



The GF Eclipse Plugin is a new tool for the GF community, and as such its popularity and
ability to increase grammar writing productivity remain to be seen.

1.4.1 IDE use and evaluation
Inevitably, it will often be the case that seasoned GF developers are happy with their current
development environments and would be unwilling to switch to a new IDE-based setup. As a
result, such developers are not considered the primary target for users of the GF Eclipse Plugin.
Rather, the expected target group would be those developers who are already familiar with Eclipse
or at least some similar IDE platform, even if they are not necessarily experienced in GF.

For this reason, plans are underway for an objective evaluation of the plugin to be carried out
by a private company who already work in Eclipse but are new to GF. The experience of these
developers with the new IDE will provide valuable information about the effectiveness of the GF
plugin, where the normal learning curve for Eclipse itself will not be an issue.

1.4.2 Future work
Apart from optimisations in performance and addressing the issues already identified with the plugin
to date, the following two major directions for future work have been identified.

Refactoring tools A highly useful component of many IDEs—which is currently missing from
the GF Eclipse Plugin—is the availability of source code refactoring tools. Such tools could include
generic refactoring tasks such as renaming identifiers (both locally and across modules) and moving
function definitions, to more GF-specific ones such as extracting functors from groups of concrete
syntaxes. Such tools have the potential to minimise time spent on repetitive programming tasks,
minimise human error and indirectly promote adherence to coding conventions.

Source module API In order to perform syntax checking and module scoping the plugin must
build internal models of a GF module’s source code using the Eclipse Modelling Framework (EMF)
and the derived language infrastructure as described in section 1.2.2. These models are only used
internally and not exposed via any API. However, having this level of access to GF modules could
open up many interesting possibilities, including graphical tools for grammar writing and integration
with ontology management software. Implementing such an interface to the plugin’s inner modelling
information is certainly possible, although the effort required could only be justified if an appreciable
demand for such a feature was expressed.

1.4.3 Availability
The GF Eclipse Plugin is freely available and any be used for any purpose. It is open source and
released under the GNU General Public License (GPL)7 (note that Xtext and the Eclipse Platform
are covered by the Eclipse Public License8).

The official GF Eclipse Plugin web page9 contains installation instructions, a user guide and
tutorial screencast, the plugin’s release history and links to the project’s source code repository and
issue tracker.

7http://www.gnu.org/licenses/gpl-3.0.txt
8http://www.eclipse.org/legal/epl-v10.html
9http://www.grammaticalframework.org/eclipse/

10



Bibliography

Ranta, Aarne. 2009. The GF resource grammar library. Linguistic Issues in Language Technology
2(2).

Ranta, Aarne. 2011. Grammatical Framework: Programming with Multilingual Grammars. Stan-
ford: CSLI Publications. ISBN-10: 1-57586-626-9 (Paper), 1-57586-627-7 (Cloth).

The Eclipse Foundation. 2011. Xtext 2.1 documentation. http://www.eclipse.org/Xtext/
documentation/2_1_0/Xtext%202.1%20Documentation.pdf. Accessed March 2012.

11


