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Abstract

In this paper, we present the Moses-based 
infrastructure we developed and use as a pro-
ductivity tool for the localisation of software 
documentation and user interface (UI)  strings 
at Autodesk into twelve languages. We de-
scribe the adjustments we have made to the 
machine translation (MT) training workflow 
to suit our needs and environment, our server 
environment and the MT Info Service that 
handles all translation requests and allows the 
integration of MT in our various localisation 
systems. We also present the results of our 
latest post-editing productivity test, where we 
measured the productivity gain for translators 
post-editing MT output versus translating 
from scratch. Our analysis of the data indi-
cates the presence of a strong correlation be-
tween the amount of editing applied to the raw 
MT output by the translators and their produc-
tivity gain. In addition, within the last calen-
dar year our system has processed over thir-
teen million tokens of documentation content 
of which we have a record of the performed 
post-editing. This has allowed us to evaluate 
the performance of our MT engines for the 
different languages across our product portfo-
lio, as well as spotlight potential issues with 
MT in the localisation process.

1 Introduction

Autodesk is a company with a very broad range of 
software products that are distributed worldwide. 
The high-quality localisation of these products is a 

major part of our commitment to a great user expe-
rience for all our clients. The translation of soft-
ware documentation and UI strings plays a central 
role in our localisation process and we need to 
provide a fast turnaround of very large volumes of 
data. To accomplish this, we use an array of tools 
— from document– and localisation–management 
systems to machine translation.

In this paper, we focus on the effect of the inte-
gration of MT in our localisation workflows. We 
start in Section 2 with an in-depth look at our MT 
infrastructure. Section 3 focuses on the productiv-
ity test we organised to evaluate the potential 
benefit of our MT engines to translators. In Section 
4, we turn to the analysis of our production post-
editing data from the last calendar twelve months. 
Finally, we conclude in Section 5.

2 MT Infrastructure at Autodesk

In this section, we present the MT infrastructure 
that we have built to support the localisation effort 
at Autodesk. We actively employ MT as a produc-
tivity tool and we are constantly improving our 
toolkit to widen our language coverage and 
achieve better perceived quality. At the core of this 
toolkit are the tools developed and distributed with 
the open-source Moses project (Koehn et al., 
2007). Currently, we use MT for translating from 
US English into twelve languages: Czech, German, 
Spanish, French, Italian, Japanese, Korean, Polish, 
Brazilian Portuguese, Russian, Simplified and Tra-
ditional Chinese (hereafter, we will use standard 
short language codes). We are introducing MT for 
translating into Hungarian as a pilot this year.



2.1 MT Training Workflow

We start with the training of our MT engines.

Training Data
Of course, no training is possible unless sufficient 
amount of high-quality parallel data is available. In 
our case, we create the parallel corpora for training 
by aggregating data from three internal sources. 
The smallest source by far consists of translation 
memories (TMs) used for the localisation of mar-
keting materials. The next source are our reposito-
ries for translated UI strings. This data contains 
many short sentences and partial phrases, as well 
as some strings that contain UI variables and/or 
UI-specific formatting. The biggest source of paral-
lel data are our main TMs used for the localisation 
of the software documentation for all our products.

To ensure broader lexical coverage, as well as to 
reduce the administrative load, we do not divide the 
parallel data based on product or domain. Instead, 
we lump all available data for each language together 
and use them as one single corpus per language. 
The sizes of the corpora are shown on Chart 1.

Chart 1: Training Corpora Sizes in Millions of Segments

You may notice that we have the least amount 
of data for PT-BR and HU, while our biggest cor-
pus by far is for JA. You can refer to this chart 
when we discuss the evaluation of MT perform-
ance — it turns out that language difficulty is a 
stronger factor there than training data volume.

Data Preprocessing
After we have gathered all available data from the 
different sources, we are ready to train our MT sys-
tems. For this, we have created a dedicated script 
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that handles the complete training workflow. In 
effect, we simply need to point the script to the 
corpus for a particular language and — after a cer-
tain amount of time — we get a ready-to-deploy MT 
system. The first step in this training workflow is the 
preprocessing of the data, which we turn to now.

For the majority of the languages that we sup-
port, the preprocessing step consists simply of to-
kenisation, masking of problematic characters and 
lowercasing. Some languages require additional 
preprocessing and we will discuss the details later 
in this section.

To perform the tokenisation, we have developed 
a custom Perl tool that consists mostly of a cascade 
of highly specialised regular expressions. We opted 
for this tailored approach as our data contains a 
large number of file paths and URLs, as well as 
specific formatting conventions and non-content 
placeholders that could be broken by a non-
specialised tool. We also built abbreviation lists 
based on abbreviations observed in our data.

Another preprocessing step is lowercasing, 
which is a standard procedure used to improve 
lexical coverage and reduce lexical ambiguity.

The preprocessing scripts are used both to pre-
pare the corpora for the MT engine training and to 
handle any data that has been received for transla-
tion at run time.

Data Post-processing
Although this is not a part of the training workflow, 
we will have a quick look at the post-processing 
tools we use, as they are closely related to the pre-
processing tools we just discussed.

Post-processing takes place after a sentence has 
been translated and we have obtained the transla-
tion from the MT engine. As we tokenise and low-
ercase the data before training, we need to restore 
the proper case and detokenise the output of the 
MT engine to make it usable to humans.

For the former task, we use a statistical recaser. 
This is realised as an additional monolingual MT 
engine per language which is trained to translate 
lowercased input into proper-case output. Of 
course, this adds an additional element of uncer-
tainty and opportunity to produce errors, but with 
the amount of data that we have available the per-
formance is subjectively reasonable. On the other 
hand, it is much simpler to maintain statistical re-



casers — they are trained each time we train the 
regular MT engines — rather than rule-based re-
caser tools. The latter might require constant adap-
tation as new data is added to our TMs.

In an effort to recover from some potential er-
rors the statistical recaser might introduce, we have 
added two specific rules. The first makes sure that 
the sentence-initial capitalisation of the MT output 
matches that of the English input. The second rule 
handles the capitalisation of unknown tokens. 
These tokens will most likely be new variable 
names or new URLs that the MT engine does not 
recognise. The recaser is not able to restore the 
proper case, which leads to hard-to-detect errors 
and frustration for the translators. Thus, we make 
sure that the casing of unknown tokens in the final 
MT output matches the provided input.

The detokenisation is a much simpler task and 
is realised as a cascade of regular expressions.

Language-specific Processing
Due to their specific makeup, some languages re-
quire extra preprocessing before we are able to 
handle them with MT. In our case, these languages 
are JA, KO, ZH-HANS and ZH-HANT.

Firstly, JA, ZH-HANS and ZH-HANT do not 
use spaces in written text, which makes it impossi-
ble to directly use a phrase-based MT system like 
Moses. We need to segment the data into word-like 
tokens that will then be used to align against Eng-
lish words. From the available tools on the market, 
we chose the open-source tool KyTea (Neubig et 
al., 2011), because it allows us to handle all three 
languages in question with the same process.

As expected, after translation we need to re-
verse these preprocessing actions to produce the 
final MT output. The de-segmentation for ZH-
HANS and ZH-HANT is straightforward. We need 
to take extra care when desegmenting JA, however, 
as there are cases where the spaces need to remain 
in place — mostly within transliterated multipart 
English terms.

A harder issue to resolve with JA arises from 
the significant difference in syntactic structure be-
tween EN and JA, namely, EN is a Subject-Verb-
Object language, while JA is a Subject-Object-
Verb language. Hence, the linear distance between 
the verb in the EN source and its translation in the 
JA target may be very big making it difficult to 
handle by a phrase-based system like Moses.

Our solution to the problem is to reorder the EN 
source to make it more Japanese-like, thus reduc-
ing the linear distance between corresponding to-
kens in the EN and JA sentences. First, the EN 
source is assigned its phrase-based syntactic struc-
ture using the OpenNLP parser (opennlp.apache.org). 
Then, we use a rule-based tool developed in-house 
to move the syntactic heads of the EN sentence to 
positions corresponding to JA syntax. Our tests 
have shown this reordering to significantly increase 
the translators’ post-editing productivity, compared 
to translating from scratch. In fact, using a plain 
(non-reordered) JA engine does not lead to a mean-
ingful productivity increase, even though we have 
by far the largest amount of parallel data for the 
pair EN→JA compared to our other corpora.

Improvements to the Moses Training Toolkit
As stated above, we use the de facto standard 
Moses toolkit for training and decoding. However, 
early in the process of integrating MT in our local-
isation workflow, we ran into resource issues dur-
ing the MT training. The main problem for us was 
that we could not reliably predict the amount of free 
disk space that might be required during training, 
which lead to many interrupted trainings due to our 
servers running out of disk space. Also, the training 
process appeared to perform an excessive amount 
of disk input-output (I/O) operations, which lead to 
significant slowdowns exacerbated by the particu-
lar server architecture we use at our company.

These issues lead us to embark on an initiative 
to improve the Moses training toolkit to reduce the 
number of I/O operations and the peak disk usage. As 
a starting point we took a Moses release from mid-
2010, as we considered it the most stable at the time.

The improvements we introduced were focused 
mostly on avoiding the generation of temporary 
files during the training process unless absolutely 
necessary. Where two tools could not directly talk 
to one another, we used UNIX-style named pipes 
to handle the data flow, which significantly reduced 
peak disk usage.

Finally, we noticed that a number of the training 
steps are independent of one another and could be 
run in parallel. We exploited this feature by modi-
fying the training script (train-model.perl) to run 
the relevant training steps in parallel. The resulting 
memory-based data flow during the parallel execu-
tion of training steps is shown in Figure 1.
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Figure 1: Data Flow for the Parallel Steps
of the Moses Training Workflow

A comparison of the peak disk usage and I/O 
operations during the training of an EN→JA en-
gine with the original and improved workflows is 
shown in Table 1.

Original 
Workflow

Improved 
Workflow

extract file size 7,5GB uses pipe

phrase-table.half size 1,7GB uses pipe

phrase-table size 2GB uses pipe

reordering-table size 2,5GB uses pipe

total disk I/O 196GB 23GB

peak disk usage 45GB 12GB

disk usage after 
training 9GB 6GB

Table 1: Disk Usage Statistics for EN→JA MT Training

The modifications to the Moses training toolkit 
listed above were provided to the MosesCore FP7 
project for merging with the main Moses tree.

2.2 MT Info Service
We now turn to the MT Info Service that is the 
centrepiece of our MT infrastructure, handling all 
MT requests from within Autodesk. This service 
and all its components are entirely Perl-based and 
interact both internally and externally over TCP.

The first element of this infrastructure are the 
MT servers that provide the interface to the avail-
able MT engines running in a data centre. At 
launch time, the server code initiates the Moses 
decoder for the requested language, together with 
any necessary pre- and post-processing tools. The 
MT servers read data one segment per line and 
output translations as soon as they are available, 
with the communication occurring over TCP. For 
each language that we use in production, we cur-
rently have seven MT engines running simultane-
ously on different servers to provide higher overall 
throughput.

The MT Info Service itself acts as a central dis-
patcher and hides the details of the MT servers’ 
setup, number and location from the clients. It is 
the single entry point for any MT-related queries, 
be it requests for translation, for information on the 
server setup or administrative functions. It has real-
time data on the availability of MT servers for all 
supported languages and performs load balancing 
for all incoming translation requests to best utilise 
the available resources. In real-life production, we 
often see up to twenty concurrent requests for 
translation that need to be handled by the system — 
some of them for translation into the same language. 
We have devised a simple and ease-to-use API for 
communication with the MT Info Service clients.

During the last twelve months, the MT Info 
Service received over 180 000 translation requests 
that were split into almost 700 000 jobs for load 
balancing. Among these requests were over one 
million documentation segments, as well as a large 
volume of UI strings.

2.3 Integrating MT
in the Localisation Workflow

Once we have our MT infrastructure in place and 
we have trained all MT engines, we need to make 
this service available within our localisation work-
flow so that raw data is machine translated and the 
output reaches the translators in due course. We 
use two main localisation tools — SDL Passolo for 
UI localisation and SDL WorldServer for docu-
mentation localisation.

Unfortunately, the current version of Passolo 
that we use does not provide good integration with 
MT and requires a number of manual steps. First, 
the data needs to be exported into ‘Passolo bun-
dles’. These are then processed with in-house Py-



thon scripts that send any data that has not been 
matched against previous translations to the MT 
info service. The processed bundles are then 
passed on to the translators for post-editing. Due to 
limitations of Passolo, the MT output is not visibly 
marked as such and Passolo has no way to distin-
guish it from human-produced data. We expect this 
to be addressed in an upcoming version of the tool.

It is much easier to integrate MT within World-
Server. As this is a Java-based tool, it allows us to 
build Java-based plugins that provide additional 
functionality. In particular, we have developed an 
MT adapter for WorldServer that communicates 
directly with the MT Info Service over TCP and 
sends all appropriate segments for machine transla-
tion. The MT output is then clearly marked for the 
convenience of the translators both in the on-line 
workbench provided by WorldServer and in the 
files used to transfer data from WorldServer to 
standalone desktop CAT tools.

WorldServer, however, does present us with its 
own specific issues to handle — with its use of 
placeholders (PHs) to mask XML tags. The major-
ity of our software documentation is authored us-
ing DITA-based XML and one goal of World-
Server is to hide the XML tags from the transla-
tors, as they do not represent actual content. The 
first issue here is that WorldServer only stores the 
PHs in the TMs and not the actual content they 
mask. For example, the segment

The <b>new</b> features of AutoCAD <ver/> are:

will be stored as
The {1}new{2} features of AutoCAD {3} are:

Please note, that any PH may be either an opening 
or closing formatting tag, or a standalone tag with 
or without semantic meaning in the structure of the 
sentence.

An major issue is that in the TMs the PHs are 
stored with IDs numbered by segment, i.e. in each 
segment the PHs start from 1; while during transla-
tion, the PHs are numbered continuously for the 
whole project, sometimes reaching IDs into the 
thousands. This means that any PH with an ID 
above about 40 will be treated as an unknown 
word, thus adding significant penalty during trans-
lation. We avoid this issue by temporarily renum-
bering PHs during translation making sure that — 
for any segment that the MT engines see — the PHs 
start with ID 1. The original IDs are then restored 

in the MT output. We found out that, with this 
process, our MT engines produce very little errors 
in the placement of PHs and we do not expect to 
achieve better performance by, say, first removing 
the PHs and then using word and/or phrase align-
ment information to reinsert them in the target.

Finally, as most PHs mask formatting XML 
tags, the whitespace surrounding the PHs is signifi-
cant. It, however, gets lost during tokenisation and 
could lead to errors that are hard to identify and fix 
for the translators. For this, we added an extra 
processing layer during MT that preserves to the 
largest extent possible the whitespace surrounding 
the PHs in the source, regardless of the output of 
the MT engine and detokeniser.

So far we perused in detail the complex MT in-
frastructure at Autodesk. The question that arises is 
if there is any practical benefit of the use of MT for 
localisation and how do we measure this potential 
benefit. We present our answer in the next section.

3 Post-editing Productivity Test

We now turn to the setup of our last productivity 
test and analyse the data that we collected. The 
main purpose of the productivity test was to meas-
ure the productivity increase (or decrease) when 
translators are presented with raw MT output for 
post-editing, rather than translating from scratch.

This is already the third productivity test that 
Autodesk performs. The results of the first test in 
2009 are discussed in (Plitt and Masselot, 2010). 
Each of the tests has had a specific practical goal in 
mind. With the first productivity test we simply 
needed a clear indicator that would help us decide 
whether to use MT in production or not and it only 
included DE, ES, FR and IT. The second test fo-
cused on a different set of languages, for which we 
planned to introduce MT into production, like RU 
and ZH-HANS.

The goal of the productivity test described in 
this paper was mainly to confirm our findings from 
the previous tests, as well as to help us pick among 
several MT options for some languages, as well as 
compare MT performance across products. In the 
following discussion we will only concentrate on 
the overall outcome of the productivity test and on 
our analysis of the post-editing performance versus 
automatic edit-distance-based indicators.



3.1 Test Setup

The main challenge for the setup of the productiv-
ity test is the data preparation. It is obviously not 
possible for the same translator to first translate a 
text from scratch and then post-edit an MT version 
without any bias — the second time around the text 
will be too familiar and this will skew the produc-
tivity evaluation. Instead, we need to prepare data 
sets that are similar enough, but not exactly the 
same, while at the same time taking into account 
that the translators cannot translate as much text 
from scratch as they can post-edit—as our experi-
ence from previous productivity tests has shown. 
This is further exacerbated by the fact that we need 
to find data that has not been processed yet during 
the production cycle and has not yet been included 
in the training data for the MT engines.

We put together test sets with data from four 
different products, but most translators only man-
aged to process meaningful amounts of data from 
two products, as they ran out of time due to various 
reasons (connectivity issues; picked the wrong data 
set; etc.). These included three tutorials for Auto-
CAD users and a users manual for PhysX (a plug-
in for 3ds Max).

Due to resource restrictions, we only tested nine 
out of the twelve production languages: DE, ES, 
FR, IT, JA, KO, PL, PT-BR and ZH-HANS. For 
each language, we engaged four translators — one 
each from our usual localisation vendors — for two 
business days, i.e. sixteen hours. We let our vendors 
select the translators as per their usual process.

The translators used a purpose-built online 
post-editing workbench that we developed in-
house. While this workbench lacked a number of 
features common in traditional CAT tools (like e.g. 
TM and terminology search), it allowed us to cal-
culate the time the translators took to look at and 
translate / post-edit each individual segment. For 
future productivity tests we plan to move away 
from this tool and use a modified version of Pootle 
(translate.sourceforge.net) instead, as it is easier 
to manage and provides typical CAT functionality.

3.2 Evaluating Productivity

After gathering the raw productivity data, we 
automatically removed any outlier segments, for 
which the translators took unreasonably long time 
to translate or post-edit. From the remaining data, 

we averaged the productivity (measured in words 
per eight-hour business day — WPD) for translat-
ing from scratch, taking a specific average for each 
translator and product combination. We had to use 
these separate baselines, as the variation between 
individual translators, as well as between different 
products for the same translator, is very big.

Comparing to the thus established correspond-
ing baselines, we calculated the apparent produc-
tivity delta for each segment that the translators 
post-edited. The calculated average productivity 
increase per language is presented in Chart 2.

Chart 2: Average Productivity Increase per Language

A caveat is in order here. We need to point out 
that — due to the setup of our online workbench — 
we exclude certain translator tasks that are inde-
pendent of the quality of MT from the productivity 
calculation. This includes in particular the time that 
translators would usually spend looking up termi-
nology and consulting the relevant style guides. 
The calculation also does not include any pauses 
taken for rest, coffee, etc.

3.3 Analysing the Post-editing Performance

Going deeper, we went on to analyse the post-
edited data using a battery of metrics. The metric 
scores were computed on a per-segment basis so 
that we could look for a correlation between the 
amount of post-editing undertaken by the transla-
tors and their productivity increase.

The metrics we used were the following. 
METEOR (Banerjee and Lavie, 2005) treating 
punctuation as regular tokens, GTM (Turian et al., 
2003) with exponent set to three, TER (Snover et 
al., 2006), PER (Position-independent Error 
Rate—Tillmann et al., 1997) calculated as the in-
verse of the token-based F-measure, SCFS 
(Character-based Fuzzy Score, taking whitespace 
into account), CFS (Character-based Fuzzy Score, 
on tokenised data), WFS (Word-based Fuzzy 
Score). The Fuzzy Scores are calculated as the in-
verse of the Levenshtein edit distance (Leven-
shtein, 1965) weighted by the token or character 
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count of the longer segment. They produce similar, 
but not equal, results to the Fuzzy Match scores 
familiar from the standard CAT tools. All score 
calculations took character case into account.

After calculating the scores for all relevant seg-
ments, we obtained an extensive data set that we 
used to evaluate the correlation between the listed 
metrics and the measured productivity increase. 
The correlation calculation was performed for each 
language individually, as well as lumping the data 
for all languages together. We used Spearman’s ! 
(1907) and Kendall’s " (1938) as the correlation 
measures. The results are shown in Table 2.

ProdIncreaseProdIncrease
! "

JFS
SCFS
CFS
WFS
METEOR
GTM
TER
PER
Length

0,609 0,439
0,583 0,416
0,581 0,414
0,603 0,436
0,541 0,386
0,577 0,406

-0,594 -0,427
-0,578 -0,415
-0,143 -0,097

Table 2: Automatic Metric Correlation with
Translator Productivity Increase

We see that among the metrics listed above, 
WFS exhibits the highest correlation with the 
measured productivity increase, while METEOR 
shows the least correlation. The results also show 
that there is no significant correlation between the 
productivity increase and the length of the transla-
tion. This suggests, for example, that a segment-
length-based payment model for MT may not be a 
fair option. Also, we do not need to impose strong 
guidelines for segment length to the technical writers.

Considering the results, we decided to look for 
a possibility to create a joint metric that might ex-
hibit even higher level of correlation. The best 

available combination turned out to be taking the 
minimum of SCFS and WFS, which we list in the 
table as JFS (Joint Fuzzy Score). This metric repre-
sents the worst-case editing scenario based on the 
character and token levels. All other metric combi-
nations we evaluated resulted in lower correlation 
than WFS. Chart 3 presents the JFS scores per lan-
guage and the corresponding average productivity 
increase and post-editing speed. It also lists the 
total number of segments that were post-edited for 
each language.

In Charts 4–11, we investigate the distribution 
of the JFS scores for the different languages tested. 
The per-segment data is distributed into categories 
based on the percentile rank. Due to their particular 
makeup, we separate the segments that received a 
score of 0% (worst translations) and those that re-
ceived a score of 100% (perfect translations) from 
the rest. For each rank, we show the maximum ob-
served JFS (on the right scale). This gives us the 
maximum JFS up to which the observed average 
productivity increase is marked by the lower line 
on the chart (on the left scale). For all languages, 
we can observe a sharp rise in the productivity in-
crease for the perfect translations, while otherwise the 
productivity increase grows mostly monotonically.

Additionally, for each percentile rank the left 
bar on the graph shows the percentage of the total 
number of tokens, while the right bar shows the 
percentage of the total number of segments.

We do not include a chart for KO, as it does not 
appear to follow the monotonicity trend and, in-
deed, our evaluation of the KO data on its own 
showed a ! coefficient of only 0,361. We suspect 
that this is due to one of the KO translators ignor-
ing the MT suggestions and translating everything 
from scratch. Because of this peculiarity of the KO 
data, we excluded it when calculating the overall 
results shown in Table 1. This also suggests that 
the productivity increase for KO shown in Chart 2 
might not be realistic.
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Chart 4: JFS to Productivity Correlation FR

Chart 5: JFS to Productivity Correlation IT

Chart 6: JFS to Productivity Correlation PT-BR

Chart 7: JFS to Productivity Correlation ES
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Chart 8: JFS to Productivity Correlation JA

Chart 9: JFS to Productivity Correlation ZH-HANS

Chart 10: JFS to Productivity Correlation DE

Chart 11: JFS to Productivity Correlation PL
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A common observation for all languages is that 
both the worst and the perfect translations are pre-
dominantly short segments, which is as expected. 
First, it is much easier to achieve a perfect transla-
tion for a relatively short segment—especially 
given that JFS takes whitespace into account and 
our detokeniser is not perfect. Second, a complete 
rewrite of the MT suggestion usually results from 
an out-of-context translation of very short segments.

We also see that the JFS scores for the lan-
guages with the highest productivity increase (see 
Chart 2) are predominantly in the higher ranges, 
while for DE and PL there is a larger amount of 
segments with lower JFS.

In the next section, we try to apply the same 
evaluation methods to real-live post-editing data.

4 Evaluating Real-life Data

A new initiative at Autodesk, which will be extended 
significantly in the future, provided for the archival 
of all documentation segments that are post-edited 
in production. Currently, we store the EN source, 
the TM or MT target and the final target produced 
by the translators, but we do not have available any 
statistics on this data. In the future, we will store 
the original Fuzzy Match score from our TMs, as 
well as other metrics that we still need to decide on.

Of course, we do not have productivity data 
attached to the production segments, as our pro-
duction environment does not provide for the ag-
gregation of such data. Nonetheless, this is a 
wealth of post-editing data that we can analyse 
using the automatic metrics from Section 3.
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Chart 12: Proportion of Worst and Perfect MT

The first interesting piece of information is the 
proportion of worst and perfect MT translations, 
based on the performed post-editing. It is taken as 

the number of tokens in the worst / perfect transla-
tions versus all tokens for each language. Remem-
ber that only documentation segments that receive 
a fuzzy match score below 75% against our TMs are 
sent to MT. This statistic is presented in Chart 12.

The most important takeaway from this chart is 
that the proportion of worst translations is negligi-
bly low. On the other hand, there are many perfect 
translations, despite the disadvantage of Machine 
Translating only those source segments that were 
not found in the TMs.

As a further analysis step, we can order the MT 
engines for the individual languages based on a spe-
cific metric per software product. The language or-
der based on the derived JFS metric is presented on 
Chart 13 for the eight products with the largest 
translation volume.
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Chart 13: Language Order per Product according to JFS

Although this chart does not include data across 
all languages for all products, some trends are 
clearly visible. Namely, ES, IT and PT-BR often 
present the best JFS, while KO, JA and RU per-
form poorly on average. While we could expect 
lower quality MT for KO and JA, the data for RU 
need an extra explanation. In this case, the poor 
performance was due to a Unicode-related bug in 
the recaser for RU that was not detected until late 
in the production cycle. If we had analysed the data 
earlier on, we would have found the bug earlier on.



Another trend is for lower performance on av-
erage for App5. As it turned out, this was due to 
one single component within that product, for 
which the segmentation had failed and many seg-
ments contained new line characters. This could 
not be handled by the MT infrastructure and resulted 
in MT output that did not match the EN source.

We plan to integrate this type of analysis in a 
dedicated monitoring system, where we will auto-
matically point our teams to potential issues with 
the localisation process. This will be accomplished 
by looking for suspicious patterns in the evolution 
of the JFS metric — a larger number of over- or 
under-edited segments may often be to either MT 
issues or translator under-performance.

For example, we are currently investigating the 
higher-than-average number of unedited PT-BR 
segments, given that there we have the smallest 
training corpus across all languages. We suspect 
that this could be due to translators leaving the raw 
MT output unedited without properly checking its 
correctness. This suspicion is also supported by the 
presence of a very large number of unedited Fuzzy 
matches for PT-BR.

5 Conclusion
In this paper, we described the MT infrastructure at 
Autodesk that is used to facilitate the localisation 
of software documentation and UI strings from 
English into twelve languages. We also investi-
gated the data collected during our last post-editing 
productivity test and found a strong correlation 
between the edit distance after post-editing and the 
productivity increase compared to translating from 
scratch. Finally, we had a look at the post-edited 
data generated during production in the last twelve 
months comparing the MT engine performance for 
some of our products.

We plan to use the insights from the presented 
data analysis to continuously monitor the perform-
ance of our MT engines and for the (semi-) auto-
matic detection of potential issues in the MT process.
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