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Abstract
This paper describes our current Spanishspeech-to-text
(STT) system with which we participated in the 2011 Quaero
STT evaluation that is being developed within the Quaero
program. The system consists of 4 separate subsystems,
as well as the standard MFCC and MVDR phoneme based
subsystems we included a both a phoneme and grapheme
based bottleneck subsystem. We carefully evaluate the per-
formance of each subsystem. After including several new
techniques we were able to reduce the WER by over 30%
from 20.79% to 14.53%.

1. Introduction

In this paper we describe our Spanishspeech-to-text(STT)
system with which we participated in the 2011 Quaero STT
evaluation. Our STT makes extensive use of system com-
bination and cross-adaptation, by utilizing acoustic models
which are trained with different acoustic front-ends and are,
in addition to the normally used phonemes, also based on
graphemes.

1.1. Quaero

Quaero(http://www.quaero.org) is a French research and de-
velopment program with German participation. It targets to
develop multimedia and multilingual indexing and manage-
ment tools for professional and general public applications
such as the automatic analysis, classification, extraction, and
exploitation of information. The projects within Quaero ad-
dress five main application areas:

• Multimedia Internet search

• Enhanced access services to audiovisual content on
portals

• Personalized video selection and distribution

• Professional audiovisual asset management

• Digitalization and enrichment of library content, au-
diovisual cultural heritage, and scientific information.

Also included in Quaero is basic research in the tech-
nologies underlying these application areas, including auto-
matic speech recognition, machine translation, and speech-
to-speech translation. The vision of Quaero is to give the
general public as well as professional user the technical
means to access various information types and sources in dig-
ital form, that are available to everyone via personal comput-
ers, television, and hand-held terminals, across languages.

One of the technologies under investigation within
Quaero isautomatic speech recognition(ASR), i.e. the au-
tomatic transcription of human speech into written record.
Within Quaero research is driven by competitive evaluation
and sharing of results and technologies employed. This pro-
cess is calledcoopetition. Evaluations are conducted once a
year on a predefined domain and a set of languages. As the
project continues the number of languages to address will
grow. Also the performance of the recognition systems de-
veloped within the project is expected to improve.

The evaluation conducted in fall of 2011 was the third
full-scale evaluation of ASR technology within Quaero and
has shown considerable progress in the systems for the
Quaero domain on the languages that have been developed
for the last years. The test data for the evaluation consisted
of various audio files collected from the World Wide Web,
including broadcast news, lectures, and video blogs.

1.2. Structure

The rest of this paper is structured as follows. Section 2
provides a description of the front-ends used in our set-up
and we evaluate our new bottleneck feature front-end. An
overview of the techniques and data used to build our acous-
tic models is given in Section 3. Details of language models
are provided in Section 4. Section 5 describes the grapheme
based system and its influence on the WER. Our decoding
strategies are explained in Section 6 with Section 7 detailing
the evaluation results.
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Figure 1:The MLP architecture (4kx4k) that performed best
in our experiments: A 15 frame context window, with 13
MFCCs each, was used as the input feature; the 136 node
target layer (one node per sub-phone) and the 4k 3rd hidden
layer were discarded after the MLP was trained. A 9 frame
context window of the MLP output at the 42 node bottleneck
layer is then used as the new 378 dim BNF feature.

2. Front-ends

We trained systems for two different kinds of acoustic front-
ends. One is based on the widely usedmel-frequency cepstral
coefficients(MFCC) obtained from a discrete Fourier trans-
form and the other on thewarped minimum variance distor-
tionless response(MVDR). The second front-end replaces
the Fourier transformation with a warped MVDR spectral
envelope [1], which is a time domain technique to estimate
an all-pole model using a warped short time frequency axis
such as the mel-scale. The use of the MVDR eliminates the
overemphasis of harmonic peaks typically seen in medium
and high pitched voiced speech when spectral estimation is
based on linear prediction.

For training, both front-ends have provided features ev-
ery 10 ms. During decoding this was changed to 8 ms after
the first stage. In training and decoding, the features were
obtained either with the Fourier transformation followed by a
mel-scale filter bank or the warped MVDR spectral envelope.
For the MVDR front-end we used a model order of 22 with-
out any filter bank since the warped MVDR already provides
the properties of the mel-scale filter bank, namely warping
to the mel-frequency and smoothing. The advantage of this
approach over the use of a higher model order and a linear
filter bank for dimensionality reduction is an increase in res-
olution in low frequency regions which cannot be attained
with traditionally used mel-scale filter banks. Furthermore,
with the MVDR we apply an unequal modelling of spectral
peaks and valleys that improves noise robustness, due to the
fact that noise is mainly present in low energy regions.

Both front-ends applyvocal tract length normalization
(VTLN) [2]. For MFCC this is done in the linear domain, for
MVDR in the warped frequency domain. The MFCC front-
end uses 13 cepstral coefficients, the MVDR front-end uses

15. The mean and variance of the cepstral coefficients were
normalized on a per-utterance basis. For both front-ends 15
adjacent frames were combined into one single feature vec-
tor. The resulting feature vectors were then reduced to 42
dimensions usinglinear discriminant analysis(LDA).

2.1. Bottle Neck Features

In recent years neural network based features have been
shown to improve ASR systems [3]. A typical setup involves
training a neural network to recognize phones (or phone-
states) from a window of ordinary (e.g. MFCC) feature vec-
tors. With the help of a hidden bottleneck layer the trained
network can be used to project the input features onto a fea-
ture with an arbitrarily chosen dimension; a schematic of our
setup can be seen in Figure 1 [4]. The input vector is de-
rived from a 15 frame context window with each frame con-
taining 13 MFCCs. Previously we used LDA to reduce the
dimensionality of this input vector which limits the resulting
LDA-features to linear combinations of the input features. A
multi layer perceptron(MLP) with the bottle-neck in the 2nd
hidden layer can make use of non-linear information.

The MLP was trained with all 313 hours of audio data
available. After using our Janus ASR toolkit to extract and
align the required features the quicknet tool [5] was used to
train the MLP. Our basic topology consisted of a 195 node
input layer, a first hidden layer having 2000 to 4000 nodes,
and the 42 nodes bottleneck layer. Between the bottleneck
layer and the 136 node output layer lies an optional 2000–
4000 node 3rd hidden layer. We refer to a network with 2000
nodes in the first hidden layer and without a 3rd hidden layer
as2k, networks including a 3rd hidden layer, e.g. also with
2000 nodes, are then named2kx2k.

Running a 2nd MLP training pass with only the 100 hours
of 2011 Quaero training data gave us a constant 0.2-0.4 per-
centage point (pp) improvement. After a series of experi-
ments using different topologies we came to the conclusion
that larger (non-bottleneck) hidden layer(s) perform better
(see Table 1). The inclusion of the 3rd hidden layer between
the bottleneck layer and the output layer resulted in further
improvements. We also examined how topology changes af-
fected the final system combination result. The bottleneck
features provided us with further gains when we included
the first pass output of our BNF system in a first CNC and
adapted all 2nd pass systems on its results. With the 4k BNF
system this resulted in a 0.45 pp reduction in WER compared
to adapting the 2nd pass systems only on their first pass out-
put and then combining them.

3. Acoustic Modeling

For a given front-end our standard method of training an
acoustic model requires first performing an LDA to reduce
the input dimension. All models are context dependent quin-
phone systems with three states per phoneme, and a left-to-
right topology without skip states. All models use 6,000 dis-
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Topo EM Training System Combination
2k 19.29% 17.27% / -
3k 18.99% -
4k 18.99% 17.12% / 16.67%

2kx2k 19.10% -
4kx4k 18.66% - / 16.63%

Table 1: Comparison of different bottleneck features. The
EM Training column refers to a single BNF system trained
to that stage. The System Combination column displays the
WER of the final CNC of all 3 2nd pass systems, either self
adapted or adapted on the CNC of the first pass.

tributions and codebooks compared to 2,000 in our 2010 set-
up. Simply increasing the number of distributions and code-
books improved our initial system from a WER of 23.71% to
22.57%. The models were trained usingincremental splitting
of Gaussians(MAS) training, followed bysemi-tied covari-
ance(STC) [6] training using one global matrix, and 2 iter-
ations of Viterbi training. All models usevocal tract length
normalization(VTLN). In addition to thatmaximum likeli-
hood linear regression(MLLR) [7] and feature space MLLR
(fMLLR) speaker adaptive training(SAT) [8] was applied
on top.

While in the past we improved theexpectation maximiza-
tion (EM) trained models further with the help ofmaximum
mutual information estimation(MMIE) training [9], this year
we performed discriminative training withboosted MMIE
(bMMIE) training (see Section 3.3). We applied bMMIE
training firstly to the models after the 2 Viterbi training it-
erations, and secondly to the models after the fMLLR-SAT
training, taking the adaptation matrices from the last iteration
of the fMLLR-SAT training and keeping them unchanged
during the bMMIE training.

3.1. Training Data

In addition to the supplied 200 hours of Quaero audio train-
ing data we also used 11 hours of broadcast news data and
95 hours of EPPS training data. This data was filtered based
on absolute segment duration (discard if> 300 s) and rel-
ative phone duration (discard if< 0.03 s or> 10 s). Rela-
tive phone duration is measured as utterance duration divided
by number of letters in utterance, as there is a close relation
between letters and sounds in Spanish. The 10 s allow for
noise phones to have long durations. Also utterances con-
taining+noise nontrans+were discarded. Figure 2 presents
an overview of the used training data and the results of the
filtering.

3.2. Shared Memory Training

Computational speed for training the ASR systems was in-
creased by using the RAM disk temporary file storage facility
(tmpfs) on the clusters computing nodes.

Corpus unfiltered filtered
Broadcast News Speech Corpora11:00:21 10:59:42
TC STAR EPPS Transcriptions 100:17:45 100:14:58
Quaero 2009 dev data 2:28:18 2:16:21
Quaero 2010 training data 95:23:37 58:46:55
Quaero 2011 training data 104:08:58 99:47:22
total 313:19:01 272:05:21

Table 2:Acoustic Model training data before and after filter-
ing

Step tmpfs NAS (1 node) NAS (4 nodes)
LDAs ≈ 16 min ≈ 20 min ≈ 5 min
Samples ≈ 9 min ≈ 68 min ≈ 17 min
MAS ≈ 9 min ≈ 104 min ≈ 26 min
OFS ≈ 116 min ≈ 184 min ≈ 46 min
Viterbi ≈ 54 min ≈ 80 min ≈ 20 min
total ≈ 204 min ≈ 456 min ≈ 114 min
SAT ≈ 194 min ≈ 252 min ≈ 63 min

Table 3: Runtime of different training steps comparing use
of tmpfs (RAM disk) and shared network memory (NAS). All
training steps using tmpfs are run on a single node, training
steps using NAS are run on 4 nodes. The middle column,
NAS (1 node), was computed from the NAS (4 node) column
in order to better demonstrate the resources saved by using
tmpfs. SAT being optional is not included in the total time.

In order to achieve an acceptable computation time the
training steps are parallelized by splitting the training data.
Most steps only require a single final merging step. For
past systems a shared network memory partition (network-
attached storage (NAS)), which all nodes can access, was
used since this merging can only be done by a single pro-
cess and all the fragmental results need to be available to that
process. This method however leads to enormous cluster net-
work traffic and therefore large memory access times.

The new approach uses the nodes tmpfs, a small RAM
disk partition, which can be used by all processes running
on one node. Since the tmpfs is in local RAM the access
times are short and there is no need to send data over the net-
work. We limited the maximal number of processes per step
to 16, the number of cores in a node. Table 3 compares the
runtime of several training steps computed on one node with
16 cores using tmpfs to their runtime using shared network
memory and more nodes, with an extra column showing the
hypothetical runtime of the NAS setup if only a single node
is used. It can be seen that most steps are absolutely faster us-
ing tmpfs or at least relatively faster according to the number
of processes.
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MMIE bMMIE
MFCC - 1st pass 20.04% 18.99%
MVDR - 1st pass 19.95% 19.45%
BNF - 1st pass 18.66% 18.02%
1st CNC 18.18% 17.22%
MFCC - 2nd pass 17.77% 17.33%
MVDR - 2nd pass 17.93% 17.20%
BNF - 2nd pass 17.68% 17.85%
2nd CNC 16.63% 15.99%

Table 4:Improvments from replacing MMIE with BMMIE

Text corpus Word Count sources
EPPS & news texts 245.7 million 9
Gigaword 1050.5 million 4
Quaero 2010 data 1180.0 million 5
Quaero 2011 data 459.4 million 17
google Ngrams 1.6 bln ngrams 1
total 2935.6 million 36

Table 5:Language Model training data word count per cor-
pus and number of text sources included in corpus. The total
word count does not include the google ngrams.

3.3. Boosted MMIE

Boosted MMIE(bMMIE) is an updated version of MMIE
proposed by Povey [10] where the lattice confusions with
the largest phone error are given more weight,boosted, in
order to improve the discriminative capability of the acous-
tic model. We replaced MMIE training with boosted MMIE
training in all three of our systems. As can be seen in Table 4,
all of our individual systems improved with use of bMMIE,
with improvements varying about 0.4% to 1.0% absolute.

4. Language Modeling

A 4gram case sensitive language model with modified
Kneser-Ney smoothing was built for each of the text sources
listed in Table 5. This was done using the SRI Language
Modelling Toolkit [11]. The effects of the different text
sources on the performance of language model can be seen
in Table 6. The transcripts of the Quaero training data were
cleaned and split into a1, 097k word training set and a390k
word tuning set. The aforementioned language models built
from the text sources in Table 5 were interpolated using in-
terpolation weights estimated on this tuning set resulting in
a 20 GB language model with59, 293k 2grams,153, 979k
3grams and344, 073k 4grams.

4.1. Vocabulary Selection

To select the vocabulary we used the same tuning set that
we used to estimate LM interpolation weights. For each of
our Spanish text sources (see Table 5) we built a Witten-Bell

System discription WER
LM01 Baseline 20.79%
LM04 +googleNgrams +gigaword 19.78%
LM05 +Quaero 2011 text data 19.80%
LM06 +retuning with Q2011 transcripts 19.72%

Table 6: Language Model development. The the tuning set
used to estimate the interpolation weights in LMs 1 through
5 did not contain the transcripts of the Quaero 2011

smoothed unigram language model using the union of the
text sources’ vocabulary as the language models’ vocabulary
(global vocabulary). With the help of the maximum likeli-
hood count estimation method described in [12] we found
the best mixture weights for representing the tuning set’s vo-
cabulary as a weighted mixture of the sources’ word counts
thereby giving us a ranking of all the words in global vo-
cabulary by their relevance to the tuning set. The top 150k
words were selected as our vocabulary. Unknown pronunci-
ations were automatically generated using a set of grapheme
to phones rules.

4.2. Memory Mapped LM

The final LM, LM06, contains over 500 million n-grams and
at 17 GB data size was more than 11 times larger than our
2010 language model. Even compressed in an easy to load
binary format our language model required about 4.5 GB of
RAM. Our ASR system deals with this by loading the lan-
guage model into a region of shared memory and allows mul-
tiple decoder instances running on different cores to access
it. On a fully utilized 16 core compute node for example the
language model will only require about 0.3 GB per instance.

5. Grapheme Based System

In order to get acoustic models that contain more diverse in-
formation and that produce complementary outputs for sys-
tem combination and cross-adaptation, we trained models
that use graphemes as sub-word units, instead of phonemes.

The feasibility of using graphemes instead of phonemes
in ASR systems has been shown in several different works
[13, 14, 15]. How well the use of graphemes works, heavily
depends on the language and the nature of its grapheme-to-
phoneme relation. In general, however, grapheme based sys-
tems produce higher word error rates than phoneme based
ones—also in our case here. However, when using the
grapheme based models in a system combination and adap-
tation we see improvements.

Table 7 compares the results of the individual phoneme
and grapheme based systems and how the inclusion of the
grapheme based system into the system combination reduces
the word error rate. It shows that including the grapheme
based models in the combination lowers the word error rate
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Single systems

# System WER
1 MFCC 17.33%
2 MVDR 17.20%
3 BNF 16.85%
4 Grapheme based BNF system18.38%

System combinations

# System WER
1+2+3 CNC 1st pass 17.22%

1+2+3+4 CNC 1st pass 16.76%
1+2+3 CNC 2nd pass 15.99%

1+2+3+4 CNC 2nd pass 15.68%

Table 7: Results of system combinations with and without
grapheme based systems.

by 0.46 percentage points in the 1st pass and 0.31 pp in the
2nd pass.

The training set-up for the grapheme based systems was
the same as for the phoneme based systems. Since there
was no former grapheme based system it was not possible
to write fixed alignments and VTLN parameters similar to
the phoneme based systems. We initialized the grapheme
models by bootstrapping from the phoneme models using a
rough, manually created mapping, instead.

When clustering quinphone models for the graphemes we
used only questions about the identity of graphemes in the
context of the poly-graphemes, as this is known to perform
quite well [14].

6. Decoding Strategy

The decoding was performed with theJanus Recognition
Tool-kit (JRTk) developed at Karlsruhe Institute of Tech-
nology and Carnegie Mellon University [16]. Our decod-
ing strategy is based on the principle of system combination
and cross-system adaptation. System combination works on
the principle that different systems commit different errors
that cancel each other out. Cross-system adaptation profits
from the fact that the unsupervised acoustic model adaptation
works better when performed on output that was created with
a different system that works approximately equally well
[17]. The set-up used for our evaluation system consists of
two stages. In each stage multiple systems are being run, and
their output is combined with the help ofconfusion network
combination(CNC) [18]. On this output the acoustic models
of the next stage are then adapted usingVocal Tract Length
Normalization(VTLN) [2], Maximum Likelihood Linear Re-
gression(MLLR) [7], and feature space constrained MLLR
(fMLLR) [19].

6.1. Segmentation and Speaker Clustering

Segmenting the input data into smaller, sentence-like chunks
used for recognition was performed with the help of a fast de-

MVDR
phoneme
1st pass

MFCC
phoneme
1st pass

MFCC BNF
grapheme
1st pass

CNC 1

CNC 2

ROVER

MFCC BNF
phoneme
1st pass

MVDR
phoneme
2nd pass

MFCC
phoneme
2nd pass

MFCC BNF
grapheme
2nd pass

MFCC BNF
phoneme
2nd pass

Figure 2:Architecture of the KIT Spanish speech recognition
system.

coding pass on the unsegmented input data in order to deter-
mine speech and non-speech regions [20]. Segmentation was
then done by consecutively splitting segments at the longest
non-speech region that was at least 0.3 seconds long. The
resulting segments had to contain at least eight speech words
and had to have a minimum duration of six seconds and a
maximum length of 30 seconds.

In order to group the resulting segments into several clus-
ters, with each cluster, in the ideal case, corresponding to
one individual speaker we used the same hierarchical, ag-
glomerative clustering technique as last year which is based
on tied Gaussian mixture model generalized likelihood ratio
TGMM-GLR distance measurement and theBayesian Infor-
mation Criterion(BIC) stopping criterion [21]. The resulting
speaker labels were used to perform acoustic model adapta-
tion in the multi-pass decoding strategy described below.

6.2. ROVER Combination

The final step in our system decoding set-up is the ROVER
combination of several outputs [22]. We optimized the se-
lection of languages and combination method by trying out
several set-ups on the development set. It turned out that a
majority vote among the first, second CNC and all other sys-
tem outputs from the second stage, gave the best results.

7. Evaluation Results

We evaluated our systems using both the Quaero 2010 de-
velopment data as well as the Quaero 2010 evaluation data.
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System WER
KIT 20.79%

+ LM2011 19.80%
+ Quaero2011 data

18.03%
+ 6000er Tree

+ BNF(2k) 17.27%
+ BNF(4k) 17.12%

+ X-adapt with BNF(4k) 16.67%
+ BNF(4kx4k) 16.63%

+ BMMIE 15.99%
+ Grapheme System 15.68%
+ new Segmentation 14.87%

+ ROVER 14.53%

Table 8:WER of our System as we gradually added new tech-
niques

The combined dataset contained about 6 hours of audio
gathered from pod-casts with about 300 different speakers.
Whereas our 2010 system only contained two subsystems
(MFCC&MVDR) we now employ 4 subsystems (MFCC,
MVDR, BNF & GRAPHEME) for each pass and adapt the
2nd pass on the CNC of the first. Table 8 presents the
final system improvement of each new step that we per-
formed. The first few steps (+LM2011, +Quaero2011 data
& +6000er Tree) resulting in a total improvement of 2.66%
mainly involve using more data and increasing some parame-
ters. The addition of the BNF(2k) system initially contributes
0.75% to the total WER reduction and although topology
changes provide some slight improvements it was not until
we performed a 1. pass CNC including the BNF system on
which all 2nd pass systems were adapted that we were able
to get an absolute improvement of 1.4% out of our new BNF
system.

8. Conclusion

In this paper we presented our Spanish LVCSR system, with
which participated in the Quaero 2011 evaluation. We de-
scribe the incorporation of new features over the 2010 sys-
tems, such as the use of bMMIE training, bottle-neck fea-
tures, and grapheme based systems. In combination the ad-
dition of the new features reduces the WER on the Quaero
task by 30% relative.
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