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Abstract
We present a novel translation quality informed procedure for both
extraction and scoring of phrase pairs in PBSMT systems.

We reformulate the extraction problem in the supervised learn-
ing framework. Our goal is twofold. First, We attempt to take the
translation quality into account; and second we incorporating arbi-
trary features in order to circumvent alignment errors. One-Class
SVMs and the Mapping Convergence algorithm permit training a
single-class classifier to discriminate between useful and useless
phrase pairs. Such classifier can be learned from a training corpus
that comprises only useful instances. The confidence score, pro-
duced by the classifier for each phrase pairs, is employed as a se-
lection criteria. The smoothness of these scores allow a fine control
over the size of the resulting translation model. Finally, confidence
scores provide a new accuracy-based feature to score phrase pairs.

Experimental evaluation of the method shows accurate assess-
ments of phrase pairs quality even for regions in the space of pos-
sible phrase pairs that are ignored by other approaches. This en-
hanced evaluation of phrase pairs leads to improvements in the
translation performance as measured by BLEU.

1. Introduction
In phrase-based statistical machine translation (PBSMT) systems,
the best translation e∗ for the source sentence f is selected by max-
imizing the conditional probability P (e|f). This term is computed
by marginalizing over all possible joint segmentations and align-
ments of the source and target a, as P (e|f) =

∑
a P (a, e|f),

where

P (a, e|f) = Z(f, λ)−1 exp

k∑
i=1

λihi(e, a, f), (1)

where Z is a normalization constant and each hi is a feature func-
tion that decomposes over atomic phrase translations and λi is the
corresponding feature weight which scales each feature’s contribu-
tion to the final model score. Typical features include language
model, reordering and conditional phrase translation probabilities,
word and phrase penalties and lexical weights. Additional feature
functions are also investigated in the literature [1, 2].

For a PBSMT to produce a good translation, two conditions
must be met: (i) good translations must exist in the search space
of the decoder, and (ii) the model score must be (positively) corre-
lated with translation quality. The first condition mainly depends on
the coverage of the phrase translation candidates that are stored in
the phrase table. A maximal coverage can be achieved by includ-
ing all possible phrase pairs encountered in the training corpus: in

this setting, the model scores are the only information used to select
suitable translations during decoding. Given the sheer number of
possible phrase pairs, the vast majority of which are in fact irrel-
evant, taking all possible phrase pairs into account is impractical,
and all methods for constructing phrase tables comprise a first step
where the quality of each phrase pair is estimated, and where phrase
pairs that look too bad are filtered out.

For this purpose, the standard approach [3] relies on binary
scores deduced from the underlying word alignment and discards
all phrase pairs that are not consistent with it. This technique, how-
ever, does not let the user control the size of the resulting phrase
table. More flexibility is gained by employing pruning techniques
that need to be applied a posteriori as in [4], where a second scor-
ing step is used to filter large phrase tables. An alternative is to
use weighted alignment matrices, assigning each phrase a smooth
score in the interval [0, 1] [5, 6]. Unlike computing the model score,
which typically combines several features, the phrase extraction ap-
proach is mostly heuristic and relies primarily on word or phrase
alignments [7, 8]. These alignments are error-prone and they are
obtained as the result of complex optimization programs maximiz-
ing an objective function (the likelihood of the training data) that
correlates only indirectly with the translation quality. If the same
can be said of the feature functions used in the model score, the
combined model is however enhanced during tuning to better cor-
relate with translation quality, where feature weights are set so as to
optimize an automatic quality measure, such as BLEU, on held-out
data via Minimum Error-Rate Training (MERT) [9].

As an attempt to improve these procedures, we study in this pa-
per novel extraction and scoring procedures that : (1) can straight-
forwardly handle arbitrary feature functions; (2) have a direct rela-
tionship to translation quality; and (3) give the user a finer control
over the size of the phrase table. This study has both practical and
methodological implications. From a practical perspective, the sce-
nario we consider is the use of a small set of parallel sentences, from
which we would like to extract as much phrases as possible, so as
to ensure the larger possible coverage. In this setting, finding better
ways to score phrases might prove necessary. From a more method-
ological perspective, our goal is to better understand the properties
that make a good phrase pair.

To fulfill these goals, we propose to reformulate the extraction
problem in a supervised learning framework. Extracting or discard-
ing a phrase pair is indeed a binary decision, which can be learned,
using a set of labeled training examples. We would like to make
such decisions based on the expected utility of phrase pairs in a
translation pipeline. This leaves us with two problems: (a) defining
an operational notion of utility, and (b) finding examples of useful
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and useless phrase pairs with respect to this definition.
As discussed below, a good approximation of (a) will be to con-

sider that phrase pairs participating in derivations of good transla-
tions are useful; such phrase pairs are relatively easy to collect by
looking at good derivations of test data, and will provide us with
sets of positive training examples. Obtaining negative examples
proves more challenging, and would require to examine all the (non-
optimal) derivations of our test data, which is clearly unrealistic.
A nice walk-around is to use single-class classification [10] tech-
niques, which aim at learning concepts in the absence of counter
examples, by distinguishing one class of (positive) instances from
all other possible instances. Such techniques can handle arbitrary
feature functions to represent candidate phrase pairs, thus making
the extraction procedure more robust to alignment errors. A useful
by-product of the model is the computation of an accuracy-based
feature, analogous to the proposal in [11]. In short, our main con-
tribution can be viewed as a novel translation quality informed pro-
cedure for both extraction and scoring of phrase pairs.

The rest of the paper is organized as follows. In Section 2, we
motivate the formulation of phrase pair extraction as a single-class
classification problem and describe a practical extraction pipeline.
The One-Class SVM (OC-SVM) [12] and the Mapping Convergence
(MC) [13] algorithms, which are used to train the single-class clas-
sifier are presented in Section 3. In Section 4, we describe the oracle
decoder used to label positive examples. Our feature functions, de-
scribing various facets of a phrase pair are detailed in Section 5.
Experiments are reported in Section 6 before we conclude in Sec-
tion 7 and 8 with related and future works.

2. Supervised Phrase-Pair Extraction
2.1. Single-Class Classification (SCC)

In this section, we would like to learn the binary decision of ex-
tracting or discarding a phrase pair as a supervised classification
problem, in which we aim to discriminate useful (positive) from
useless (negative) phrase pairs from a translation perspective. The
model decision can then be used as a new feature function to score
candidate phrase pairs.

An obvious way to recast this problem as a supervised classifi-
cation problem requires labeled training examples of both classes,
which subsumes an understanding of what makes a useful phrase
pair. Such a task is tricky even for humans. From a phrase-based
model point of view, a phrase pair is useful if (1) each phrase is an
appropriate translation of the other and (2) it combines well with
neighbor phrase pairs to produce a good translation. While scores
associated to a phrase pair provide evidence regarding the validity
of the translational equivalence, the combination aspect is difficult
to judge without involving the translation process itself.

We therefore define a positive phrase pair as one that partic-
ipates in best scoring derivations of good translations, which are
easy to obtain. Unfortunately, negative phrase pairs are not so eas-
ily found: to identify bad phrase pairs, we would need to examine
all the possible translations where they occur and make sure none
is acceptable. In fact, the very concept of a negative phrase pair is
hard to define, and it is therefore difficult to develop a representative
sample of this class. Hopefully, unlabeled examples of phrase pairs
abound, a fact that will prove useful later.

A particularly attractive solution in this setting is Single-Class
Classification (SCC), which seeks to distinguish one class, for
which positive instances exist, from data in a universal set contain-
ing one or several classes, for which no sample is available. We
assume that the very large set of all possible phrase pairs contains a
small set of positive examples P = (x1, . . . ,xl) completed with a

large unlabeled set U = (x1, . . . ,xl+u). The ratio between posi-
tive and negative phrase pairs is unknown.

2.2. Phrase Translation Training Algorithm

The algorithm described here takes as input a parallel corpus, and
uses an oracle decoder and some other resources to compute phrase
pair features and output a phrase translation model, in the form of
phrase table.

In step (1), we build the set U of phrase pairs that are going
to be considered by the algorithm. For each one of them, a set of
feature functions is calculated. U can be constructed naively by
considering all possible phrase pairs found in the parallel corpus,
or by applying some prior knowledge, such as word alignments, to
filter the set;

In step (2), the set (or a subset) of phrase pairs in U is used to
build a phrase table, using the calculated features as scores. An ora-
cle decoder (Section 4) uses this phrase table on a held-out parallel
corpus, to produce the best phrasal derivations of this corpus. The
best derivation is the one that maximizes a combination of model
score and translation quality metric. All phrase pairs involved in
these derivations are labeled as positive phrase pairs in P ;

In step (3), we seek to generalize beyond the scope of the phrase
pairs actually used by the decoder. As discussed in Section 2.1,
the oracle decoder acquires a subset of positive phrase pairs, that
we want to expand, by learning its characteristics using a classi-
fier. In the next section, we introduce a One-Class Support Vector
Machines (OC-SVM) algorithm, designed to learn from positive ex-
amples P only, by estimating the support of their distribution [12].
In practice, this approach is sensitive to the choice of features and
parameter settings and is likely to underfit or overfit easily [14].
Therefore, we employ the Mapping Convergence (MC) algorithm
[13], a semi-supervised framework, which, in addition to learning
from positive examples, exploits unlabeled data to improve the ac-
curacy of the classifier.

In step (4), the best classifier, output of the previous step, is
applied to the unlabeled phrase pairs (U − P ), estimating to what
extent they resemble the positive samples, and which ones ought to
be extracted. The distance to the decision boundary (the hyperplane
in the SVM feature space) is interpreted as a confidence measure,
and used for two purposes: it is thresholded to extract phrase pairs;
and injected into the final phrase table as an accuracy-based fea-
ture function, similar to [11, 15]. Final phrase table contains all
phrase pairs labeled as positive either by the oracle decoder or by
the learned classifier. Any subset of the calculated features, in ad-
dition to the standard phrase translation probabilities (normalized
frequencies) can be used to score phrase pairs in the output phrase
table.

Training phrase translation model needs to address precision
and recall issues, following an information retrieval scheme [16].
High precision requires that extracted phrase pairs are accurate,
while high recall seeks to increase coverage by extracting as much
valid phrase pairs as possible. Precision of standard phrase tables
can be improved by filtering out most of the entries, using some sta-
tistical significance test [4, 17]. On the other hand, there are valid
translation pairs in the training corpus that are not learned due to
word alignment errors [6]. The algorithm presented here attempts
to circumvent alignment errors and increase accuracy by integrat-
ing multiple features and combining them discriminatively. At the
same time, the threshold on the classifier score presents a control
point over the balance between precision and recall, and introduces
an additional parameter that can be tuned via grid search, for an
optimal performance on a specific translation task.
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3. Learning the Single-Class Classifier
3.1. One-Class SVM (OC-SVM)

Extensions of SVM have been proposed to allow learning in single-
class setting. Both the Support Vector Data Description algorithm
(SVDD) [10] and the One-Class SVM (OC-SVM) [12] are shown
to be equivalent when data vectors are scaled to unit length. We use
OC-SVM, in which the optimization problem is formulated as in ν-
SVM parametrization [18], which allows us to control the fraction
of outliers.

Given some dataset drawn from an underlying probability dis-
tribution, the task of OC-SVMs is to estimate a subset S of the input
space such that the probability of a test point drawn from outside of
S equals some a priori specified value between 0 and 1. This is
done by estimating a function f which is positive on S and negative
on its complementary, which is an easier problem than full density
estimation. The functional form of f is given by a kernel expansion
in terms of a subset of the training data; it is regularized by control-
ling the length of the weight vector in an associated feature space.
The expansion coefficients are found by solving a quadratic pro-
gramming problem, which carries out sequential optimization over
pairs of input patterns.

The main idea behind OC-SVMs is to create a hyperplane in
the feature space where the projections of data points are separated
from the origin with a large margin. The data is separable from the
origin if there exists a vector w such that ∀i,K(w,xi) > 0. In
such a case, there exists a unique supporting hyperplane. This is al-
ways true for the special case of a Gaussian (Radial Basis Function)
kernel: K(xi,xj) = e−γ||xi−xj ||.

As pointed out in [12], there exists a strong connection
between OC-SVMs and binary classification. Assuming we
have a parametrization (w, ρ) for the supporting hyperplane
of a data set {x1, . . . ,xl}, then (w, 0) is the parametrization
of the maximally separating hyperplane for the labeled data
set {(x1,+1), . . . , (xl,+1), (−x1,−1), . . . , (−xl,−1)}.
Also, assuming that we have a maximally separat-
ing hyperplane parametrized by (w, 0) for a data set
{(x1, y1), . . . , (xl, yl)} , (yi ∈ {±1}) and with a margin
ρ/ ||w||, we know that the supporting hyperplane for the unlabeled
dataset {y1x1, . . . , ylxl} is parametrized by (w, ρ). For the
non-separable case, margin errors in the binary setting correspond
to outliers in the one-class case. This connection allows us to
reuse the optimization problem of ν-SVM to find the supporting
hyperplane, such that in the one-class setting, ν represents an upper
bound on the fraction of outliers (margin errors) and a lower bound
on the fraction of support vectors.

3.2. Mapping Convergence (MC)

OC-SVM draws a nonlinear boundary around the positive data set
in the feature space using two parameters: ν (to control the number
of outliers) and γ (to control the smoothness of the boundary). They
have the same advantages as regular SVMs, such as efficient han-
dling of high dimensional spaces and nonlinear classification using
the kernel trick.

Several attempts to take advantage of large sets of unlabeled
data have been studied (see [19] for a survey). The Mapping Con-
vergence (MC) algorithm [13] assumes the presence of a “gap” be-
tween positive and negative points in the feature space and uses
it by incrementally marking as negative unlabeled samples using
the margin maximization property of SVM. MC has been shown to
generate as accurate boundaries as standard SVM with fully labeled
data. A key intuition of MC is that negative examples can be sorted
by their distance to the decision boundary, the farthest ones being

Figure 1: Mapping Convergence in 1-dimensional space

Algorithm 1 Mapping Convergence (MC)
Require: positive data set P ; unlabeled data set U ; negative data
set N = φ; OC-SVM: C1; SVM: C2

Ensure: boundary function hi
1: h0 ← train C1 on P
2: N̂0 ← strong negatives (≤10%) from U by h0

P̂0 ← U − N̂0

3: i← 0
4: while N̂i 6= φ do
5: N ← N ∪ N̂i
6: hi+1 ← train C2 on P and N
7: N̂i+1 ← negatives from P̂i by hi+1

8: P̂i+1 ← positives from P̂i by hi+1

9: i← i+ 1
10: end while

called the strong negatives.
MC, described in Algorithm 1, is thus composed of two stages:

the mapping stage and the convergence stage. In the mapping stage,
the algorithm uses OC-SVM (C1) to compute an initial approxima-
tion of strong negatives in U . Based on this initial approximation,
the convergence stage runs iteratively using a binary SVM (C2) to
maximize the margin in order to make a progressively better ap-
proximation of negative data. When no new negatives are discov-
ered, MC converges and the boundary comes to a hold.

Figure 1, adopted from [13, 20], illustrates the MC process on
a data set U composed of seven data clusters in 1-D, of which only
the middle one is positive. Everything is unlabeled except for the
dark subset of positives. The optimal boundary is represented by the
dashed lines. OC-SVM would end up tightly fitting the positive data
on (bp, b

′
p). MC starts with identifying strong negative examples, by

employing a OC-SVM with a high threshold to favor higher recall
and install the initial hypothesis (h0, h

′
0) far from the positive data.

Subsequent convergence steps improve boundary (hi, h
′
i) toward

the optimal one by adding unlabeled data recognized as negatives to
N , then employing binary SVM and taking advantage of its margin
maximization property, which avoids stopping in an arbitrary gap in
the feature space.

3.3. P̂P measure and classifier selection

Cases when the positive class is severely undersampled or when
too much unlabeled items act as noise would result in incapacity
of detecting the gap between positive and negative data in the fea-
ture space, which makes MC over-iterate and overfit. An example
is illustrated in [20], where a measure called P̂P is introduced and
shown to be effective in detecting convergence and is hence em-
ployed as stopping criterion. Here, we describe this approach with
a slight modification to incorporate a parameter to control the SVM
decision threshold. This parameter regulates the size of rejected un-
labeled data and hence the size of the resulting phrase table. Here-
after, a classification hypothesis h and a threshold α identify a clas-
sifier hα, using the following decision function

fhα(x) = sgn(δh(x)− α) (2)
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where δh(x)1 is the SVM decision value, on which α acts as a
threshold and allows to shift the decision boundary in the fea-
ture space. The standard SVM decision function fh is obtained at
α = 0.

Every such classifier hα is represented as a point in the P̂P
plot as shown in Figure 2. On the x-axis, we plot the percentage
of the entire data set positively classified |P̂α|/|U |, while on the
y-axis, we plot the percentage of positive data positively classified
|h+
α (P ) ∩ P |/|U |. In Figure 2, each dotted curve depicts the per-

formance of different threshold values α for a certain classifier hi,
resulting from MC iterations. The standard curve (solid line) traces
the performance of the standard classifier (α = 0) for each MC
iteration. It can be interpreted in a ROC-like fashion. The upper
left corner represents a perfect classifier, while points on the diag-
onal are hypothesis performing random selection from U . The first
point in the convergence will be close to the upper right corner: the
mapping stage is about selecting a small part of the data set contain-
ing only near-certain negatives. Subsequent convergence steps will
try to produce a smaller selection, moving left on the curve, while
maintaining performance on the positive subset. Contrary to a gen-
uine ROC curve, the P̂P -curve is not continuous, and the step-like
behavior of points (xi, yi) is not guaranteed, which makes it impos-
sible to calculate the area under the curve (AUC). An alternative is
to identify the point in the curve that discards most of the data in
U , while keeping a large part of the positive data P . The point on
the curve that is closest to (0, 100) is considered as the best classi-
fier. To assign more importance to precision or recall, the distance
measure can be weighted and/or different values of α can be used.

In every iteration of MC the resulting classifier scores are
thresholded with several values of α and the corresponding P̂P
points are calculated. Convergence is achieved when degradation
or no more improvements of P̂P are observed.

4. Oracle Decoder for Building the Set of
Positive Examples

The approach for supervised learning of phrase extraction intro-
duced in Section 2.2 relies on a set of positive phrase pairs. In
the PBSMT paradigm, good phrase pairs are required to fulfill two
criteria: (1) participate in derivations of good translations with the
highest BLEU scores (or another translation quality measure) with
respect to some reference translation(s); and (2) have a good intrin-
sic quality as measured by the phrase-based model score.

This implies that, for identifying positive examples, we need
to search among all possible translations, represented as a scored
lattice, for the one that jointly optimizes the model score and the
translation quality. Once the optimal path in the lattice is found
we harvest all phrase pairs used in the derivation to be labeled as
positive and added to P .

There are several methods to find the best path, of which we em-
ploy two in our experiments. The first method is constrained decod-
ing, as implemented in MOSES2: the lattice is searched for the path
with the highest model score that exactly matches the reference, and
thus has a local BLEU score of one. However, if the reference is not
attainable the sentence is discarded. The second method relaxes this
constraint by using an oracle decoder that searches for the hypoth-
esis that explicitly optimizes an approximation of the BLEU score
at the sentence level as an objective. We implemented the lattice
oracle decoder from [21], which, while being less conservative than
constrained decoding (all source sentences are decoded), is agnos-
tic about the model score which, therefore, needs to be optimized

1δh(x) = w.Φ(x)− ρ, where w is the classifier weight vector.
2http://www.statmt.org/moses/

indirectly by pruning the lattice input of the decoder.

5. Feature Functions
One of the main motivation of this work is to incorporate fea-
tures into phrase pairs extraction, so as to smooth the conventional,
alignment-based, phrase scores. We consider features from the lit-
erature [6, 16, 22, 4, 23], which evaluate various aspects of the
association between a source and a target chunk. Most features
are data-driven and language-independent, based on statistical word
alignment and language models. A small set of language-dependent
morpho-syntactic features is also used.

Weighted Alignment Matrix (WAM) feature is a score com-
puted using discriminative Weighted Alignment Matrices [6] sim-
ilar to the model-based phrase pair posterior metric described in
[16]. Each cell in a weighted matrix [5] contains the posterior prob-
ability of aligning the corresponding source and target words. A
phrase pair splits the underlying weighted matrix in two areas: in-
side and outside the phrase pair, where consistent and inconsistent
links respectively live. The WAM feature is a score that combines
two factors characterizing these areas and quantifies the consistency
of the given phrase pair with respect to the entire probability distri-
bution over all possible alignments.

Word Alignments (WA) induced features, similar to [16, 22],
allow the evaluation of the quality of the association between source
and target phrases according to the number of consistent and incon-
sistent word links. Given a standard alignment matrix obtained by
thresholding the weighted matrix, and a phrase pair, a consistent
link associates words inside the phrase pair boundary, while an in-
consistent link crosses the phrase pair boundary. This feature is the
ratio between the number of consistent links and the sum of the
number of consistent and inconsistent links.

Bilingual and Monolingual Information (BI, MI) features are
proposed in [16] as measures of the reliability of a phrase pair. Ex-
tracting candidate translations for every phrase to maximize cover-
age, is not always feasible and might hurt precision. Some phrases
could not be accuratly aligned due to data sparsity and limitations
of alignment models; while other phrases carry no linguistic mean-
ing, such as phrases that are parts of non-compositional phrases or
metaphorical expressions.

The BI feature addresses the first issue by estimating how re-
liably the model aligns a phrase pair. Given a weighted alignment
matrix, we calculate the WAM score for all phrase pairs, and nor-
malize them to estimate for every source phrase (f i2i1 ) a conditional
distribution over all target phrases: PWAM(.|f i2i1 ). The same com-
putation is performed for every target phrase (ei2i1 ). The BI score
of a source or a target phrase is defined as the entropy of the corre-
sponding distribution. Low entropy implies a high confidence that
the source/target phrase can be reliably aligned by the model. Con-
versely, high value of the entropy signals the impossibility to cor-
rectly identify the right alignment.

The MI feature addresses the second issue by evaluating to
what extent a certain n-gram is a “good” phrase, and to measure
how the choice of the phrase boundaries affects the quality of the
phrase. The boundaries of a good phrase are assumed to be the
right places to break. This feature evaluates the quality of the phrase
pair boundaries using monolingual language models. Given a sen-
tence of length N and a history of n words before a boundary (be-
tween words i and i + 1), the forward language model probability
p(∗|wi−(n−1) . . . wi) defines a conditional distribution. A similar
distribution is defined for the “history” after the boundary, and, in
this case, a backward language model is used. The predictive uncer-
tainty (PU) of the boundary between word i and i+1 is computed
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as the sum of the entropy of the forward and backward language
models conditional distributions. The larger the predictive uncer-
tainty is, the more likely is the boundary to be located in a “rea-
sonable” place in the sentence. A good phrase pair is hence char-
acterized with high PU values on its four boundaries, the product
of which is the value of the MI feature. This feature captures how
well a phrase pair combines with its neighbors to form new parallel
sentences.

Statistical Significance (Pval) feature, as proposed in [4], cap-
tures the fact that not all phrase pairs are equally supported by the
training data. By including corpus level statistics, this feature gives
an overall view of the statistical properties of phrase pair. For a
given phrase pair and a parallel corpus, we compute the source, tar-
get and joint source/target frequencies and draw a 2x2 contingency
table representing the unconditional relationship between source
and target phrases. We then calculate the one-tail p-value of the
Fisher’s Exact test, interpreted as the probability that the observed
table or a more extreme one could occur by chance assuming a
model of independence. We take |log(p-value)| as the value of
this feature: that means that the higher it is, the more significant is
the phrase pair.

Morphosyntactic Similarity (SIM) feature, unlike the previ-
ous ones, is language dependent and takes morphosyntactic infor-
mation into account. This feature resembles the measure proposed
in [23], which captures morphosyntactic Part-Of-Speech (POS)
similarity between source and target phrases. We use here co-
occurrence statistics of source/target POS tags, linked in the word
aligned parallel corpus, to build a matching table similar to an IBM
model’s translation table, which provides association scores be-
tween source and target POS tags. The sum of these scores, for
aligned words inside the phrase pair, normalized by the number of
consistent links, is used as the value of the POS similarity feature.
The higher this value is, the stronger the syntactic similarity of the
given phrase pair.

Lexical Probability (LEX) features, as described in [3], and
found in standard phrase tables, use word translation probabilities
to quantify the extent to which words inside the phrase pair trans-
late each others. These features are similar to POS similarity, but
computed using surface word instead of POS tags.

6. Experiments
The experiments presented here aim to evaluate and compare the
performance of different methods of training the translation model,
including heuristics and the single-class classifier, first according
to P̂P measure (Section 3.3), and second according to translation
performance.

6.1. Data and experimental setup

For one-class SVM and the mapping convergence algorithm we use
LIBSVM3. In our method we need to estimate a confidence mea-
sure in the classifier’s output, for which we would ideally use a
calibrated posterior probabilities. Although standard SVMs do not
produce such probabilities, they can be estimated using a method
proposed in [24] that fits a logistic function to the output of an SVM.
This algorithm assumes equal distribution of positive and negative
examples in training and test sets. This is not the case in a one-class
setting, nor in the convergence steps where the distribution in the
training set actually changes on each step and converges to the ac-
tual one. Therefore, we slightly altered the code of LIBSVM so that
it directly outputs the distance to the decision hyperplane and used
it as a confidence measure of prediction.

3http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Figure 2: P̂P measure: OC-SVM and MC

For translation experiments we built several phrase-based, Ara-
bic to English state-of-the-art SMT systems with Moses, of which
the parameters are tuned with Minimum Error-Rate Training [9] on
a held-out development corpus. For this corpus, we used the NIST
MT’06 evaluation test set, containing 1,797 Arabic sentences (46K
words) with four English references (53K words). The performance
of each system is assessed by calculating the multi-reference BLEU
on NIST MT’08 evaluation test set, which contains 1,360 Arabic
sentences (43K words), each with four references (53K words).
Training data for translation, reordering and language models, are
subsets of the LDC resources made available by the NIST MT’09
constrained track4. For the language model, we train a 4-gram back-
off model with SRILM5 on the NIST MT’09 constrained English
data. Arabic sentences are pre-processed using MADA+TOKAN6

[25] and segmented according to the D2 tokenization scheme as
an attempt to reduce the sparseness problem associated with the
rich morphology of the Arabic language. The IBM Arabic-English
Word Alignment Corpus [26] is used to train the discriminative
alignment models. Part-of-speech tags for English are generated
using the Stanford Tagger7, while Yamcha8 is used for Arabic.

In the experiments we randomly select 30K sentences from the
NIST’09 training data as an input to the algorithm described in Sec-
tion 2.2. U contains all possible phrase pairs with maximum phrase
size of 3, for each of which we compute the set of features described
in Section 5. We then use a phrase table built from U with both or-
acle decoders presented in Section 4 to decode a held-out parallel
corpus of 2K sentences. Phrase pairs used by the decoder constitute
positive examples, of which 80% are added to the training set P
while the remaining are used for evaluation Ptest.

6.2. Classification performance: P̂P

We use positive examples in P to train a one-class SVM that is em-
ployed to score all phrase pairs in U , of which the worst scoring
10% examples are considered strong negatives, and used to boost
the MC algorithm. The parameters ν and γ of OC-SVM and all
classifiers trained in MC iterations are tuned using grid search and
cross-validation to maximize the P̂P measure. The performance of

4http://www.itl.nist.gov/iad/mig/tests/mt/2009/
5http://www-speech.sri.com/projects/srilm/
6http://www1.ccls.columbia.edu/~cadim/MADA.html
7http://nlp.stanford.edu/software/tagger.shtml
8http://www.chasen.org/~taku/software/yamcha/
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Figure 3: P̂P measure: SCC and some feature functions

the OC-SVM and the binary classifiers resulting from subsequent it-
erations of MC, are displayed in Figure 2. Each curve is obtained as
described in Section 3.3, by quantizing the related classifier scores
to divide the set U −P into 300 quantiles of equal sizes and use the
boundaries as different values for the threshold α. Each point on the
plot reflects on the y-axis the percentage of selected positive phrase
pairs from Ptest, against the selected percentage of U − P on the
x-axis. The OC-SVM, depicted by the solid curve, achieves already
a reasonable performance, identifying about 82% of positive exam-
ples while discarding about 90% of the rest. Better percentages are
successfully achieved by subsequent iterations of MC, identifying
91% of positive examples and discarding 94% of the rest. The solid
line connecting different points across curves plots the performance
of the standard SVM classifiers at the threshold α = 0.

Similarly to classifier scores, the different feature scores are
quantized to obtain the curves depicted in Figure 3, where the curve
corresponding to the best classifier is reproduced for comparison
purpose. 9

We note that the SCC classifier, which combines several fea-
tures, achieves the best P̂P performance, improving on any feature
acting solely.

6.3. Translation performance: BLEU

We study in this section the translation performance in BLEU for
each phrase pair selection score. Similarly to the previous section,
scores produced by the best classifier and different feature func-
tions, are quantized into several quantiles per scoring method10.
Each corresponding threshold α is used to construct a phrase ta-
ble by retaining all phrase pairs having a higher score and estimat-
ing standard models described in [3]. After tuning the parameters
of the translation systems11 on the development corpus, BLEU is
computed for each phrase table as the translation performance on
the test corpus. Figure 4 9 plots BLEU on the y-axis as a function
of the percentage of retained phrase pairs, which corresponds to the
size of the phrase table, from U − P , as on Figure 1.

Figure 4 shows that for any given threshold, extraction based
on the weighted alignment matrix (WAM) feature achieves the best

9Missing feature curves from figures 3 and 4 show similar or worse per-
formance than displayed features, and are omitted for clarity.

10Note that different dynamics of feature scores result in different number
of quantiles per feature

11In total we have 19 systems for the SCC classifier, 16 for the WAM
feature, and 5 for each of the remaining features
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Figure 4: BLEU: SCC and some feature functions

performance in BLEU, with improvements over the standard base-
line that ranges from slight to significant with different sizes of the
phrase table. The SCC classifier improves over WAM scores only
for smaller values of α corresponding to larger phrase tables, while
attaining comparable results for higher values of α (smaller phrase
tables). Extraction based on scores by any other feature function,
results in deterioration of performance. We note also that for SCC
classifier and WAM perform better than the standard extraction for
the same size of phrase table, and require fewer phrase pairs in or-
der to obtain comparable performance, thus can be used for pruning
large phrase tables.

We conducted an additional experiment where we incorporate
the classifier score as an additional accuracy-based feature to the
translation log-linear model and let MERT tune its weight. Fig-
ure 5 shows, for different phrase table sizes, slight improvements in
BLEU scores for systems that use this feature over the baselines that
do not. Nevertheless, this feature is effective only for larger, nois-
ier phrase tables. Similar behaviors are observed when adding all
the other feature functions described in Section 5 are incorporated
simultaneously12.

6.4. Discussion

We would like to further analyze the dynamics of the scores com-
puted with different methods. We consider three methods: the
single-class classifier, the weighted alignment matrix and the stan-
dard extraction heuristic. Figure 6 shows for each method and for
a given source phrase, the score of all corresponding phrase pairs
on the y-axis. The x-axis enumerate the target phrases in the order
of the descendant score of the standard extraction heuristic. Fig-
ure 6 reveals that substituting the standard heuristic scores with
the weighted alignment matrix scores and further with the classifier
score, has two effects: (1) it modifies the score and the rank of some
phrase pairs causing the extraction of previously missed ones; (2) it
smooths the scores and allows increased control over the selection
process using the threshold α.

We note that while all of these three scoring methods identify
well most of the best phrase pairs and rank them high in the list, they
differ in their ability to rank phrase pairs of worst quality. While
scores based on the weighted alignment matrix may be sufficient to

12We had to run MERT 3 times for each point and take the maximum
BLEU score in this experiment since it was less stable when optimizing all
the new features.
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construct high precision phrase tables with the best phrase pairs, re-
call oriented phrase tables require more sophisticated decision pro-
cedures to retrieve good translations in the large set of candidates
that are difficult to distinguish and ignored by standard methods.

7. Related Work
In [16] phrase pairs extraction is formulated as an information re-
trieval problem, aiming to achieve a good precision/recall balance
for the training corpus. They incorporate several feature func-
tions into a log-linear model parametrized with {λk}, used to score
phrase pairs and then apply a threshold τ for extraction. The set
of parameters {λk, τ} are tuned to maximize a translation quality
measure using the downhill simplex method. However, to obtain
optimal solution, each optimization iteration that involves training
a standard phrase table with parameters {λk, τ}, should tune its
weights with MERT, which is expensive and hence omitted in their
experiments. A similar model is used in [22] to add features to
extraction, without any parameter tuning. Our work is similar in re-
spect of incorporating additional features to extraction, whereas our
formulation of the problem in the supervised classification frame-
work, unlike [16], allows much less expensive incorporation of the
translation quality measure, which is ignored in [22].

In [27] the standard features in the log-linear translation model
tuned with MERT is used to score phrase pairs already existing
in the phrase table and employ a competitive linking algorithm to
keep the best one-to-one phrase matching while discarding the rest.
Contrarily tou our approach, feature weights selected by MERT, al-
though directly optimizing translation quality, they are learned for a
given phrase table and do not generalize to unseen phrase pairs.

In [28], the whole set of phrasal translation rules that should be
extracted from a sentence-pair is predicted at once instead of pre-
dicting one phrase pair at a time. Word and phrase level features are
incorporated into a discriminative model for extraction. Manually
annotated word alignments are used to automatically obtain training
extraction sets, whereas we use the oracle decoder.

Another related line of research is phrase table pruning, which
is carried out by first assigning scores to phrase pairs, by ways of
statistical significance tests [4, 17], or by computing the decoder us-
age statistics [29]. Our method takes advantage of different pruning
criteria and integrates them into the filtering procedure.

The introduction of the translation process into the definition
of useful phrase pairs has also been investigated in the literature.
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In [30] an oracle decoder is used to compute forced phrasal align-
ment, that are then used in a leaving-one-out smoothing technique,
which results in a better estimation of translation probabilities. In
[11] an oracle decoder is used to identify the best hypothesis in the
n-best list output of the decoder and use an average edit-distance
between phrase pairs occurring in the oracle hypothesis and other
phrase pairs in other hypothesis in the n-best list, to compute a trans-
lation quality-based feature that is added to the phrase table. Unlike
these methods, our procedure applies the oracle decoder to the prob-
lem of phrase pairs extraction and not only to estimating features of
already extracted phrase pairs. Additionally, the proposed method
estimates a similar quality-based feature but differs from this work
as it uses the complete search space instead of a limited n-best list
as input to the oracle decoder, and involves supervised learning of
the additional scoring feature and hence generalizes better to unseen
phrase pairs.

8. Conclusions and Future Work
In this paper we presented a novel translation quality informed pro-
cedure for both extraction and scoring of phrase pairs. The model
at the center of our procedure combines arbitrary features to assess
phrase quality. It is parametrized with a threshold that allows im-
proved control over the size of the resulting phrase table, which is
useful for fine tuning of the precision/recall balance. The proposed
method helps exploring regions in the space of possible phrase pairs
that are ignored by the standard extraction approach, which leads to
improvements in BLEU scores for recall-oriented translation mod-
els. Additionally, we experimentally studied the effect on BLEU of
adding new features to the phrase table and learning their weights
with MERT, including a feature trained as a by-product of our pro-
cedure. This procedure can be viewed as a method to combine sev-
eral criteria for filtering large phrase tables. We leave the verifica-
tion of its effectiveness to future work.
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