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Abstract
In this paper, we investigate lexicon models for hierarchi-
cal phrase-based statistical machine translation. We study
five types of lexicon models: a model which is extracted
from word-aligned training data and—given the word align-
ment matrix—relies on pure relative frequencies [1]; the
IBM model 1 lexicon [2]; a regularized version of IBM
model 1; a triplet lexicon model variant [3]; and a discrimi-
natively trained word lexicon model [4]. We explore source-
to-target models with phrase-level as well as sentence-level
scoring and target-to-source models with scoring on phrase
level only. For the first two types of lexicon models, we com-
pare several scoring variants. All models are used during
search, i.e. they are incorporated directly into the log-linear
model combination of the decoder.

Phrase table smoothing with triplet lexicon models and
with discriminative word lexicons are novel contributions.
We also propose a new regularization technique for IBM
model 1 by means of the Kullback-Leibler divergence with
the empirical unigram distribution as regularization term.

Experiments are carried out on the large-scale
NIST Chinese→English translation task and on the
English→French and Arabic→English IWSLT TED tasks.
For Chinese→English and English→French, we obtain the
best results by using the discriminative word lexicon to
smooth our phrase tables.

1. Introduction
Lexical scoring on phrase level is the standard technique
for phrase table smoothing in statistical machine translation
[1, 5]. As most of the longer phrases appear only sparsely
in the training data, their translation probabilities are over-
estimated when using relative frequencies to obtain condi-
tional probabilities. One way to counteract overestimation of
phrase pairs for which little evidence in the training data ex-
ists is to score phrases with word-based models and to inter-
polate these lexical probabilities with the phrase translation
probabilities. Interpolation of the models is usually done log-
linearly as part of the combination of feature functions of the
translation system [6]. In this way the interpolation param-
eter can be tuned directly against the metric of translation
quality, e.g. BLEU or TER, on a held-out development set.

Lexicon models in both source-to-target and target-to-
source direction are thus a crucial component of state-of-the-
art phrase-based systems, including hierarchical ones. Hi-
erarchical SMT systems use a generalization of the stan-
dard phrase model where in addition to contiguous lexical
phrases, hierarchical phrases with usually up to two gaps are
extracted from the parallel training data [7]. The hierarchical
phrase-based paradigm thus enables modeling of reorderings
and long-distance dependencies in a consistent way.

In addition to phrase table smoothing, lexicon models are
often applied on sentence level to rerank the n-best candi-
date translations of the decoder [8, 9, 10]. In reranking, the
complete target sentence is available and the model can ac-
count for global sentence-level context to judge the selection
of target words which was determined by the decoder. Both
source-to-target and target-to-source models may be used.

Lexicon models in source-to-target direction are some-
times applied to score the target side of phrases given the
whole source sentence during decoding already [4]. This can
be accomplished quite efficiently since the given source sen-
tence does not change. Phrase-level models, on the other
hand, have the advantage that their scores do not have to be
calculated on demand for each hypothesis expansion, but can
be precomputed in advance and written to the phrase table.

Two of the models that we study in this paper, the triplet
lexicon model and the discriminative word lexicon (DWL),
have only been applied using sentence-level context before.
For the DWL model, results in target-to-source direction
have never been reported. We demonstrate that especially
the DWL model performs very well on phrase level in both
directions compared to the other types of lexicon models, and
that limiting the context to phrase level does not harm trans-
lation quality in the hierarchical system.

While phrase table smoothing with the DWL model per-
forms better as with IBM model 1 with respect to both met-
rics we use (BLEU and TER) on two of our three tasks, the
conceptually appealing approach of extending IBM model 1
with a regularization term reduces the errors made by the
system with regard to our secondary metric (TER) only. We
show that the DWL model and both standard and regularized
IBM model 1 clearly outperform the lexicon model which is
extracted from word-aligned training data, though the latter

191



one is probably most commonly used in setups reported in
the literature.

2. Related Work

The well-known IBM model 1 lexicon was introduced by
Brown et al. [2]. IBM model 1 is still employed within the
widely used GIZA++ toolkit [11] as part of the word align-
ment training, which is the basis of modern phrase-based
machine translation. Besides, it can be helpfull as an ad-
ditional model in the log-linear combination or in n-best
reranking [8, 9, 10]. Moore [12] suggested improvements
to IBM model 1 parameter estimation, including an add-
n smoothing technique which could be modeled within our
IBM model 1 regularization framework. Recently, Toutanova
and Galley [13] pointed out that the optimization problem for
IBM model 1 is not strictly convex.

Word lexicon models extracted from the alignment have
been proposed by Koehn, Och and Marcu [1] and Zens and
Ney [5] and applied in their respective translation systems
for phrase table smoothing. Foster et al. [14] compare sev-
eral strategies for phrase table smoothing, including the for-
mer two. Chiang et al. [15] suggested morphology-based and
provenance-based improvements to the Koehn-Och-Marcu
method recently.

Hasan et al. [10] proposed triplet lexicon models for sta-
tistical machine translation for the first time and applied them
in an n-best reranking framework. Hasan and Ney [3] inves-
tigated triplet lexicon scoring in a phrase-based decoder and
compared the translation performance of triplet models ap-
plied in reranking to a direct application in search, Vilar et
al. [16] integrated triplet as well as DWL models into a hier-
archical decoder. Variants of discriminatively trained lexicon
models have been utilized effectively within a phrase-based
system [4], within a hierarchical system [17] and within a
treelet translation system [18] before. The model we use is
most similar to the one proposed by Mauser et al. [4]. It fol-
lows the approach described by Bangalore et al. [19].

3. Lexicon Models

We describe the source-to-target directions of the models in
the following sections. The reverse models and scoring func-
tions are computed similarly.

3.1. Word Lexicon from Word-Aligned Data

Given a word-aligned parallel training corpus, we are able to
estimate single-word based translation probabilities pRF(e|f)
by relative frequency.

Let [fJs1 ; eIs1 ; {aij}s]s, 1 ≤ s ≤ S, be training samples
of S word-aligned sentence pairs, where {aij}s denotes the
alignment matrix of the s-th sentence pair. Let j ∈ {ai}
express that fj is aligned to the target word ei.

We can now define (possibly fractional) counts

Ns(e, f) =
∑

eis :eis=e

∑
fjs :fjs=f,j∈{ai}s

1

|{ai}s|
(1)

for 1 ≤ s ≤ S. If an occurence ei of e has multiple aligned
source words, each of the |{ai}| > 1 alignment links con-
tributes with a fractional count of 1

|{ai}| .
By summing over the whole corpus we obtain a count of

aligned cooccurrences of target word e and source word f

N(e, f) =
∑
s

Ns(e, f). (2)

The probabilities pRF(e|f) can then be computed as

pRF(e|f) =
N(e, f)∑
e′ N(e′, f)

. (3)

This model is most similar to the one presented by Koehn
et al. [1]. One difference we make is that we do not assume
unaligned words to be aligned to the empty word (NULL).
Probabilities with the empty word are thus not included in
our lexicon. If scoring with the empty word is desired, we use
a constant value of 0.05. The model does not comprise the
discounting technique of Zens and Ney [5]. We are going to
denote it as relative frequency (RF) word lexicon throughout
this paper.

3.2. IBM Model 1

The IBM model 1 lexicon (IBM-1) is the first and most sim-
ple one in a sequence of probabilistic generative models [2].
The following assumptions are made for IBM-1: The target
length I depends on the length J of the source sentence only,
each target word is aligned to exactly one source word, the
alignment of the target word depends on its absolute position
and the sentence lengths only, and the target word depends
on the aligned source word only. The alignment probability
is in addition assumed to be uniform for IBM-1.

The probability of a target sentence eI1 given a source
sentence fJ0 (with f0 = NULL) can thus be written as

Pr(eI1|fJ1 ) =
1

(J + 1)I

I∏
i=1

J∑
j=0

pibm1(ei|fj). (4)

The parameters of IBM-1 are estimated iteratively by
means of the Expectation-Maximization (EM) algorithm
[20] with maximum likelihood as training criterion.

3.3. Scoring Variants

Several methods to score phrase pairs with RF word lexicons
or IBM-1 models have been suggested in the literature and
are in common use. We apply and compare four of them.

In hierarchical phrase-based translation, we deal with
rules X → 〈α, β,∼ 〉 where 〈α, β〉 is a bilingual phrase
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pair that may contain symbols from a non-terminal set, i.e.
α ∈ (N ∪ VF )+ and β ∈ (N ∪ VE)+, where VF and VE
are the source and target vocabulary, respectively, and N is
a non-terminal set which is shared by source and target. The
left-hand side of the rule is a non-terminal symbol X ∈ N ,
and the ∼ relation denotes a one-to-one correspondence be-
tween the non-terminals in α and in β. For notational conve-
nience, we define Jα to be the number of terminal symbols
in α and Iβ to be the number of terminal symbols in β. In-
dexing α with j, i.e. the symbol αj , 1 ≤ j ≤ Jα, denotes
the j-th terminal symbol on the source side of the phrase pair
〈α, β〉, and analogous with βi. 1 ≤ i ≤ Iβ , on the target
side.

Our first scoring variant tNorm(·) uses an IBM-1 or RF
lexicon model p(e|f) to rate the quality of a target side β
given the source side α of a hierarchical rule with an included
length normalization:

tNorm(α, β) =

Iβ∑
i=1

log

(
p(βi|NULL) +

∑Jα
j=1 p(βi|αj))

1 + Jα

)
(5)

This variant has e.g. been used by Vilar et al. [16].
By dropping the length normalization we arrive at our

second variant tNoNorm(·):

tNoNorm(α, β) =

Iβ∑
i=1

log

p(βi|NULL) +
Jα∑
j=1

p(βi|αj))


(6)

Among others, Mauser et al. [9] apply this variant in their
standard phrase-based system.

Our third scoring variant tNoisyOr(·) is the noisy-or model
proposed by Zens and Ney [5]:

tNoisyOr(α, β) =

Iβ∑
i=1

log

1−
Jα∏
j=1

(1− p(βi|αj))

 (7)

The fourth scoring variant tMoses(·) is due to Koehn, Och
and Marcu [1] and is the standard method in the open-source
Moses system [21]:

tMoses(α, β, {aij}) = (8)
Iβ∑
i=1

log

({
1

|{ai}|
∑
j∈{ai} p(βi|αj)) if |{ai}| > 0

p(βi|NULL) otherwise

)
This last variant requires the availability of word align-

ments {aij} for phrase pairs 〈α, β〉. We store the most fre-
quent alignment during phrase extraction and use it to com-
pute tMoses(·).

Note that all of these scoring methods generalize to hier-
archical phrase pairs which may be only partially lexicalized.
Unseen events are scored with a small floor value.

If not stated otherwise explicitly, we score with tNorm(·)
(Eq. (5)) in our experiments. Source-to-target sentence-level
scores are calculated analogous to Eq. (5), but with the dif-
ference that the quality of the target side β of a rule currently
chosen to expand a partial hypothesis is rated given the whole
input sentence fJ1 instead of the source side α of the rule
only.

3.4. Regularized IBM Model 1

Despite the wide use of the IBM model 1, basic modeling
problems as non-strict convexity, overfitting and the use of
heuristics for unseen events were not resolved algorithmi-
cally so far. We propose extending IBM-1 with the Kullback-
Leibler (KL) divergence of the IBM-1 probabilities with re-
spect to a smooth reference distribution pref as a regulariza-
tion term:

r(p) =
∑
f

DKL(pref(·|f)‖p(·|f))

=
∑
f

∑
e

pref(e|f) log
pref(e|f)
p(e|f)

(9)

For pref we choose the empirical unigram distribution

pref(e|f) = p(e) . (10)

An advantage of the KL regularization term is that it
can be easily integrated into the EM algorithm. Taking the
derivative of the new auxiliary function which includes the
regularization term, we obtain a weighted average of the ref-
erence distribution and the unregularized update as the EM
update formula of the regularized IBM-1 model:

p(e|f) = 1

Z(f)

(∑
s

cs(e|f) + C · pref(e|f)
)
, (11)

where
Z(f) =

∑
e′

∑
s

cs(e
′|f) + C . (12)

With s we denote the training samples, cs(e′|f) is the ex-
pected count of e′ given f calculated exactly as in the original
IBM-1 model, C > 0 denotes the regularization constant.

By using regularization, we gain two advantages: (i)
over-fitting is avoided and training can be performed until
“convergence”; (ii) the use of small probabilities for unseen
events is not required anymore, and unseen event probabil-
ities can be computed on the fly when the model is applied
during decoding.

3.5. Triplet Lexicon

The triplet lexicon relies on triplets which are composed of
two source language words triggering one target language
word, i.e. it models probabilities ptriplet(e|f, f ′). We use the
path-constrained (or path-aligned) triplet model variant in
this work. In the path-constrained triplet model, the first
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Table 1: Data statistics for the preprocessed Chinese-English
parallel training corpus.

Chinese English
Sentences 3.0M
Running words 77.5M 81.0M
Vocabulary 83K 213K

trigger f is restricted to the aligned target word e. The sec-
ond trigger f ′ is allowed to range over all remaining source
words. Like IBM model 1, triplets are trained iteratively with
the EM algorithm. We refer to Hasan et al. [10] for details
about the path-constrained triplet model and the triplet train-
ing procedure.

With the same notational conventions as in Sections 3.3
and 3.1, we apply tTriplet(·) to score a phrase pair with the
path-constrained triplet lexicon model:

tTriplet(α, β, {aij}) = (13)
Iβ∑
i=1

log

 1

Zi

∑
j∈{ai}

Jα∑
j′=1

ptriplet(βi|αj , αj′)


The double summation is normalized with Zi = Jα ·

|{ai}|. In fact, we score with NULL as a trigger as well.
In favor of notational convenience, we omitted this in the
formula.

3.6. Discriminative Word Lexicon

The discriminative word lexicon model acts as a classifier
that predicts the words contained in the translation from the
words given on the source side. The sequential order or any
other structural interdependencies between the words on the
source side as well as on the target side are ignored.

The model we use is very similar to the one of Mauser et
al. [4], and we refer to their description for a more in-depth
exposition. Our model differs in the training algorithm: we
use the improved RProp+ algorithm [22] instead of the L-
BFGS method. The scoring procedure has been transfered to
phrase pairs. In our English→French and Arabic→English
experiments, we employed sparse models comparable to the
sparse DWLs presented by Huck et al. [17].

4. Experiments
We present empirical results obtained with the different lex-
icon models and scoring variants on the Chinese→English
2008 NIST task1 as well as on the English→French and
Arabic→English 2011 IWSLT TED tasks2.

1http://www.itl.nist.gov/iad/mig/tests/mt/2008/
2http://iwslt2011.anthropomatik.kit.edu/doku.

php?id=06_evaluation

Table 2: Data statistics for the preprocessed English-French
parallel training corpus.

English French
Sentences 2.0M
Running words 54.3M 59.9M
Vocabulary 136K 159K

Table 3: Data statistics for the preprocessed Arabic-English
parallel training corpus.

Arabic English
Sentences 89.8K
Running words 1.6M 1.7M
Vocabulary 56.3K 34.0K

4.1. Hierarchical System

We employ the open source Jane toolkit [16] as a basis for
our translation setups. The cube pruning algorithm [23]
is used to carry out the search. For Arabic→English and
English→French, we translate with a shallow grammar [24].

Word alignments are created by aligning the parallel
training data in both directions with GIZA++ and applying
the refined heuristic that was proposed by Och and Ney [11]
on the two trained alignments to obtain a symmetrized align-
ment. The symmetrized alignment is used to compute the
counts for the RF lexicon model, to train path-constrained
triplets and to extract the phrase table. For language model
training the SRILM toolkit [25] is utilized. We optimize the
model weights against BLEU with standard Minimum Error
Rate Training [26] on 100-best lists.

All our lexicon models are trained on the full parallel
data, the DWL models have been pruned after training with
a threshold of 0.01 for the Arabic→English task and 0.1 for
the other two tasks, respectively. The IBM-1 models are pro-
duced with GIZA++. Phrase-level scores are precomputed
and added to the phrase tables.

The performance of the systems is evaluated using the
two metrics BLEU and TER. As BLEU is the optimized mea-
sure, TER mainly serves as an additional metric to verify the
consistency of our improvements and avoid over-tuning. The
results on the test sets are checked for statistical significance
over the baseline. Confidence intervals have been computed
using bootstrapping for BLEU and Cochran’s approximate
ratio variance for TER [27].

4.2. Chinese→English NIST Task

For the Chinese→English task we work with a parallel train-
ing corpus of 3.0M Chinese-English sentence pairs. The En-
glish target side of the data is lowercased, truecasing is part
of the postprocessing pipeline. We employ MT06 as devel-
opment set to tune the model weights, MT08 is used as un-
seen test set. Detailed statistics about the parallel training
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Table 4: Comparison of phrase table smoothing with different lexicon models for the NIST Chinese→English translation task
(truecase). s2t denotes source-to-target scoring, t2s target-to-source scoring. The 95% confidence interval is given for the baseline
system. Results in bold are significantly better than the baseline.

MT06 (Dev) MT08 (Test)
NIST Chinese→English BLEU[%] TER[%] BLEU[%] TER[%]
Baseline 1 (no phrase table smoothing) 32.0 62.2 24.3±0.9 67.8±0.8

+ phrase-level s2t+t2s RF word lexicons 32.6 61.2 25.2 66.6
+ phrase-level s2t+t2s IBM-1 33.9 60.5 26.7 65.6
+ phrase-level s2t+t2s regularized IBM-1 33.7 60.2 26.6 65.2
+ phrase-level s2t+t2s path-constrained triplets 32.6 61.8 25.5 66.7
+ phrase-level s2t+t2s DWL 33.7 60.5 27.0 65.6

Table 5: Comparison of lexical scoring variants for the NIST Chinese→English translation task (truecase). s2t denotes source-
to-target scoring, t2s target-to-source scoring. The 95% confidence interval is given for the baseline system. Results in bold are
significantly better than the baseline.

MT06 (Dev) MT08 (Test)
NIST Chinese→English BLEU[%] TER[%] BLEU[%] TER[%]
Baseline 1 (no phrase table smoothing) 32.0 62.2 24.3±0.9 67.8±0.8

+ phrase-level s2t+t2s RF word lexicons, Eq. (5): tNorm(·) 32.6 61.2 25.2 66.6
+ phrase-level s2t+t2s RF word lexicons, Eq. (6): tNoNorm(·) 32.7 61.8 25.6 66.7
+ phrase-level s2t+t2s RF word lexicons, Eq. (7): tNoisyOr(·) 32.4 61.2 25.5 66.4
+ phrase-level s2t+t2s RF word lexicons, Eq. (8): tMoses(·) 32.7 61.8 25.4 66.9
+ phrase-level s2t+t2s IBM-1, Eq. (5): tNorm(·) 33.9 60.5 26.7 65.6
+ phrase-level s2t+t2s IBM-1, Eq. (6): tNoNorm(·) 33.8 60.5 26.6 65.7
+ phrase-level s2t+t2s IBM-1, Eq. (7): tNoisyOr(·) 33.7 60.5 26.7 66.0
+ phrase-level s2t+t2s IBM-1, Eq. (8): tMoses(·) 33.2 61.3 26.0 66.0

Table 6: Results by adding sentence-level or phrase-level lexicon models in source-to-target or target-to-source direction to a
standard baseline for the NIST Chinese→English translation task (truecase). s2t denotes source-to-target scoring, t2s target-to-
source scoring. The 95% confidence interval is given for the baseline system. Results in bold are significantly better than the
baseline.

MT06 (Dev) MT08 (Test)
NIST Chinese→English BLEU[%] TER[%] BLEU[%] TER[%]
Baseline 2 (with s2t+t2s RF word lexicons) 32.6 61.2 25.2±0.8 66.6±0.7

+ sentence-level s2t IBM-1 32.9 61.6 25.7 66.6
+ sentence-level s2t path-constrained triplets 33.1 61.1 26.0 66.3
+ sentence-level s2t DWL 33.0 61.0 26.2 65.5
+ phrase-level s2t IBM-1 33.0 61.4 26.4 66.1
+ phrase-level s2t path-constrained triplets 33.1 61.3 26.0 66.3
+ phrase-level s2t DWL 33.4 61.3 26.4 66.3
+ phrase-level t2s IBM-1 33.4 60.7 26.5 65.7
+ phrase-level t2s path-constrained triplets 33.0 61.5 26.3 66.3
+ phrase-level t2s DWL 33.8 60.5 26.5 65.7
+ phrase-level s2t+t2s IBM-1 33.8 60.5 26.9 65.4
+ phrase-level s2t+t2s path-constrained triplets 33.3 61.3 26.3 66.1
+ phrase-level s2t+t2s DWL 34.0 60.2 27.2 65.2
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Table 7: Comparison of phrase table smoothing with different lexicon models for the IWSLT English→French TED translation
task (truecase). s2t denotes source-to-target scoring, t2s target-to-source scoring. The 95% confidence interval is given for the
baseline system. Results in bold are significantly better than the baseline.

Dev Test
IWSLT English→French BLEU[%] TER[%] BLEU[%] TER[%]
Baseline (no phrase table smoothing) 25.7 58.9 28.8±0.9 53.3±0.9

+ phrase-level s2t+t2s RF word lexicons 26.0 58.1 29.6 51.8
+ phrase-level s2t+t2s IBM-1 26.3 58.1 30.0 52.0
+ phrase-level s2t+t2s regularized IBM-1 26.3 57.9 30.0 51.5
+ phrase-level s2t+t2s path-constrained triplets 25.9 58.6 29.2 52.9
+ phrase-level s2t+t2s DWL 26.3 58.0 30.2 51.8

Table 8: Comparison of phrase table smoothing with different lexicon models for the IWSLT Arabic→English TED translation
task (truecase). s2t denotes source-to-target scoring, t2s target-to-source scoring. The 95% confidence interval is given for the
baseline system. Results in bold are significantly better than the baseline.

Dev Test
IWSLT Arabic→English BLEU[%] TER[%] BLEU[%] TER[%]
Baseline (no phrase table smoothing) 25.0 56.6 23.6±0.9 59.3±1.0

+ phrase-level s2t+t2s RF word lexicons 26.3 55.0 24.9 57.7
+ phrase-level s2t+t2s IBM-1 26.9 54.0 25.5 56.8
+ phrase-level s2t+t2s regularized IBM-1 26.9 53.8 25.3 56.8
+ phrase-level s2t+t2s path-constrained triplets 26.0 55.4 24.6 57.8
+ phrase-level s2t+t2s DWL 27.1 53.7 25.4 56.9

data are given in Table 1. The language model is a 4-gram
with modified Kneser-Ney smoothing which was trained on a
large collection of monolingual data including the target side
of the parallel corpus and the LDC Gigaword v3 corpus.

The empirical evaluation of all our Chinese→English se-
tups is presented in Tables 4, 5 and 6. In the experiments
shown in Table 4, we applied each one of the five types of
lexicon models separately for phrase table smoothing—i.e.
on phrase level in both translation directions—over a base-
line that does not comprise any lexical features (Baseline 1).
The impact of the scoring variant on the performance of RF
word lexicons and IBM-1 models is examined in the series
of experiments presented in Table 5. In Table 6, we took a
standard setup including lexical smoothing with the RF word
lexicon as a baseline (Baseline 2) to which we added IBM-1,
path-constrained triplet and DWL models separately in ei-
ther source-to-target direction or target-to-source direction
or both. For the source-to-target direction, we also set up
systems with sentence-level scoring for each of these three
models.

Applying IBM-1 for phrase table smoothing brings about
a considerably better result than resorting to lexical smooth-
ing with the RF lexicon model (+1.5% BLEU / -1.0% TER).
The regularized IBM-1 yields improvements over standard
IBM-1 in TER only (-0.4% TER). Path-constrained triplets
perform slightly better than the RF lexicon. The best phrase

table smoothing result is obtained with the DWL model
(+1.8% BLEU / -1.0% TER over the RF lexicon model and
+0.3% BLEU over IBM-1).

For the RF word lexicon, scoring with tNorm(·) is a bit
worse than the other scoring variants. For IBM-1, tMoses(·)
does not perform very well, which could be explained by
the fact that this scoring variant is little consistent with the
training conditions of IBM-1.

Source-to-target sentence-level scoring is not better than
phrase-level scoring in any of our experiments. Adding
target-to-source triplet or DWL models to a standard base-
line (Baseline 2), which was not done in any previous work,
results in significantly better translations. The best hypothe-
ses are produced with the system that includes phrase-level
DWLs in both directions in addition to lexical smoothing
with RF lexicon models (+2.0% BLEU / -1.4% TER over
Baseline 2). Note that, though they perform worse in the
phrase table smoothing experiments, RF lexicon models are
still valuable in combination with IBM-1, triplet or DWL
models.

4.3. English→French IWSLT Task

The parallel training data of our setups for the
English→French IWSLT TED translation task is taken
from TED talks, news-commentary and Europarl sources
and totals to 2.0M sentence pairs. Training data statistics are
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given in Table 2. Our systems include a 4-gram language
model which was trained using additional monolingual data,
in particular a selection of French shuffled news.

Table 7 presents lexical smoothing results for the
English→French task. IBM-1 outperforms RF word lexicons
by +0.4% BLEU. As for the Chinese→English task, we at-
tain the best BLEU result by smoothing the phrase table with
DWL models (+0.2% BLEU / -0.2% TER over IBM-1) and
the best TER result by smoothing with regularized IBM-1
(±0.0% BLEU / -0.5% TER over standard IBM-1).

4.4. Arabic→English IWSLT Task

We finally experimented with a small-scale setup for the
Arabic→English IWSLT TED translation task. Here, we re-
strict the amount of parallel training data to the in-domain
TED talks only. Table 3 contains statistics about the corpus
we used. The 4-gram language model we employ was trained
with a large amount of additional monolingual data from
news-commentary, Europarl, UN and shuffled news sources.

Lexical smoothing results for the Arabic→English task
are given in Table 8. IBM-1, regularized IBM-1 and DWL
are again clearly better than the RF word lexicons (up
to +0.6% BLEU / -0.9% TER). Unlike our findings for
Chinese→English and English→French, DWL models do
not yield improvements over IBM-1 here.

5. Discussion
Strictly speaking, our improvements over well-known
models—more precisely, over source-to-target and target-to-
source IBM-1 on phrase level—are rather small (e.g. up to
+0.3% BLEU / -0.2% TER with DWL models instead of
IBM-1 on top of Baseline 2 on the Chinese→English task).
The potentially large gain by simply resorting to a stronger
lexical smoothing method is however easily overlooked. As
an example, phrase table smoothing with the method we
found to perform weakest for the Chinese→English task—
word lexicons obtained with relative frequencies from the
word alignment and phrase scoring according to Eq. (5)—is
the standard technique in the freely available Jane toolkit and
has been applied by several system builders in their baseline
setups. We thus do not only give a survey and a comparison
of known as well as several novel lexical smoothing tech-
niques in this paper, but also point out the weakness of estab-
lished lexical feature functions that have been widely used in
state-of-the-art systems.

6. Conclusion
We investigated five types of lexicon models in source-to-
target and target-to-source direction with sentence-level or
phrase-level context in a hierarchical phrase-based decoder.
For triplet and discriminative word lexicon models, we pre-
sented a novel restriction to the phrase level. Restricting
the scoring to phrase level has the advantage that the model
scores can be precomputed and written to the phrase table. In

our translation experiments on the Chinese→English NIST
task, we were able to obtain the same or better results by
phrase-level scoring as by considering sentence-level lexical
context.

On three different translation tasks, we showed that
phrase table smoothing with IBM model 1 or discriminative
word lexicons clearly outperforms smoothing with lexicon
models which are extracted from word-aligned training data.
Furthermore, our novel lexical smoothing with DWL models
yields improvements over IBM model 1 on two large-scale
translation tasks for the Chinese-English and English-French
language pairs. Our best Chinese→English system scores
+2.0% BLEU / -1.4% TER better than a standard baseline.

We gave an empirical comparison of several commonly
applied scoring variants. We finally suggested a regulariza-
tion technique for IBM model 1 and evaluated it within our
systems, obtaining reduced error rates with respect to TER.
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