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AbstratOriginally, statistial mahine trans-lation was based on the use of the"noisy hannel" approah. However,many of the urrent and suessfulstatistial mahine translation sys-tems are based on the use of a di-ret translation model or even onthe use of a log-linear ombinationof serveral diret and inverse trans-lation models. An attempt to jus-tify the use of these heuristi systemswas proposed within the frameworkof maximum entropy.We present a theoretial justi�a-tion under the deision theory frame-work. This theoretial frame en-tails new methods for inreasing theperformane of the systems ombin-ing translation models. We proposenew and more powerful translationrules that also �t within this the-oretial framework. The most im-portant theoretial properties devel-oped in the paper are experimentallystudied through a simple translationtask.1 IntrodutionMahine Translation (MT) deals with theproblem of automatially translating a sen-tene (f) from a soure language1(F∗) into a1

F
∗ is the set of all possible strings with a �nitelength on the lexion F.

sentene (e) from a target language (E∗). Ob-viously, these two languages are supposed tohave a very omplex set of rules involved in thetranslation proess that annot be properlyenumerated into a omputer system. Aord-ing to this, many authors have embraed a sta-tistial approah to the MT problem, wherethe only soure of information is a parallel or-pus of soure-to-target translated sentenes.Brown et al. (1993) approahed the prob-lem of MT from a purely statistial pointof view. In this approah, the MT problemis analysed as a lassial pattern reognitionproblem using the well-known Bayes' lassi�-ation rule (Duda et al., 2000). Therefore, sta-tistial mahine translation (SMT) is a lassi-�ation task where the set of lasses is the setof all sentenes of the target language (E∗),i.e. every target string (e ∈ E
∗) is regardedas a possible translation for the soure lan-guage string (f). The goal of the translationproess in statistial mahine translation anbe formulated as follows: a soure languagestring f is to be translated into a target lan-guage string e

2. Then the system searhes thetarget string (ê) with maximum a-posterioriprobability p(e|f):
ê = arg max

e∈E∗
{p(e|f)} (1)where p(e|f) an be approahed througha diret statistial translation model.Eq. (1) has proved to be the optimal2We will refer to p(e|f) as a diret statistial trans-lation model and to p(f |e) as an inverse statistialtranslation model.
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deision/lassi�ation rule under some as-sumptions and is alled the optimal Bayes'lassi�ation rule (obviously assumes thatthe atual probability distribution p(e|f) isknown). Applying the Bayes' theorem toEq. (1), the following rule is obtained:
ê = arg max

e∈E∗
{p(e) · p(f |e)} (2)Eq. (2) implies that the system has to searhthe target string (ê) that maximises theprodut of both, the target language model

p(e) and the inverse string translation model
p(f |e). Thus, the Bayes' lassi�ation ruleprovides the inverse translation rule (ITR),whih is also alled �the fundamental equa-tion of SMT�. Again, this rule is optimal ifthe atual models are known. Nevertheless,using this rule implies, in pratie, hangingthe distribution probabilities as well as themodels through whih the probabilities are ap-proahed. This is exatly the advantage ofthis approah, as it allows the modelling ofthe diret translation probability (p(e|f)) withtwo models: an inverse translation model thatapproximates p(f |e); and a language modelthat approximates p(e).This approah has a strong pratial draw-bak: the searh problem3. This searh isknown to be an NP-hard problem (Knight,1999; Udupa and Maji, 2006). However, sev-eral searh algorithms have been proposed inthe literature to solve this ill-posed probleme�iently (Brown and others, 1990; Wang andWaibel, 1997; Yaser and others, 1999; Ger-mann and others, 2001; Jelinek, 1969; Garía-Varea and Casauberta, 2001; Tillmann andNey, 2003).In order to alleviate this drawbak, manyof the urrent SMT systems (Oh et al., 1999;Oh and Ney, 2004; Koehn et al., 2003; Zens etal., 2002) have proposed the use of the direttranslation rule (DTR):

ê = arg max
e∈E∗

{p(e) · p(e|f)} (3)whih an be seen as an heuristi version ofthe ITR (Eq. (2)), where p(f |e) is substituted3The method for solving the maximisation (or thesearh) of the optimal ê in the set E
∗, i.e. arg max

e∈E∗

by p(e|f). This rule allows an easier searhalgorithm for some of the translation models.Although the DTR has been widely used, itsstatistial theoretial foundation has not beenlear for long time, as it seemed to be againstthe Bayes' lassi�ation rule if an asymmetrimodel4 is used for modelling the translationprobability. Other authors (Andrés-Ferrer etal., 2007) have provided an explanation ofits use within deision theory. In this work,we expand that theory to other translationmodels and other loss funtions, providing ageneral framework to ombine translation sys-tems.Some of the urrent SMT systems (Oh andNey, 2004; Marino et al., 2006) use a log-linearombination of statistial models to approxi-mate the diret translation distribution:
p(e|f)≈

exp
[

∑M
m=1

λmhm(f , e)
]

∑

e′
exp

[

∑M
m=1

λmhm(f , e′)
] (4)where hm is a logarithmi statistial modelthat approximates a probability distribution(i.e. translation or language probabilities).The paper is organised as follows: setion 2summarises the Bayes' deision theory. Se-tion 3 takles SMT under the deision theoryframework. Finally, setion 4 demonstrates inpratie the theoretial ideas explained in thepaper. Conlusions are ondensed in the se-tion 5.2 Bayes Deision TheoryA lassi�ation problem suh as the SMTproblem an be seen as an instane of a Dei-sion Problem (DP). From this point of view,a lassi�ation problem is omposed of threedi�erent items:1. A set of Objets (X ) the system might ob-serve and has to lassify (i.e., translate).2. A set of lasses (Ω = {ω1, . . . , ωC}) inwhih the system has to lassify eah ob-served objet x ∈ X .4Given two sentenes e and f from the target andsoure language: a symmetri model assigns the sameprobability to p(e|f) and to p(f |e); and an asymmetrimodel does not.
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3. A Loss funtion (l(ωk|x, ωj)). This fun-tion evaluates the loss of lassifying anobserved objet x in a lass, ωk ∈ Ω,knowing that the optimal lass for the ob-jet x is ωj ∈ Ω.Therefore, when an objet x ∈ X is ob-served in a lassi�ation system, the systemhooses the �orret� lass from all possiblelasses (Ω). The term �orret� is used in thesense of the ation that minimises the loss inwhih the system ould inur if it makes an er-ror, aording to the loss funtion. For reasonsof simpliity, the 0-1 loss funtion is usuallyassumed, i.e.:
l(ωk|x, ωj) =

{

0 ωk = ωj

1 otherwise (5)This loss funtion does not penalise the or-ret lass, nevertheless it does not distinguishbetween the importane of lassifying an ob-jet in a spei� wrong lass or in anotherwrong lass. Therefore, the penalty of las-sifying the objet x in the lass ωi or ωj is thesame. This is only sensible in some small andsimple ases. For example, if the set of lassesis large, or even in�nite (but still enumerable),then it is not very appropiate to penalise allwrong lasses the same. Note that in this aseit is impossible to de�ne a uniform distribu-tion over the lasses. This implies that thereare lasses that have a very small probabil-ity, and then it does not make sense to de�nea uniform loss funtion for those lasses. In-stead, it is better to penalise the zones wherethe probability is high.In order to build a lassi�ation system thelassi�ation funtion must be de�ned, say
c : X → Ω. The lass provided by the lassi�-ation funtion may not be the orret lass.Thereby, the lassi�ation funtion yields anerror or risk, the so-alled Global Risk,

R(c)=Ex[R(c(x)|x)]=

∫

X

R(c(x)|x) p(x)dx(6)where R(ωk|x) (with ωk = c(x)) is the Con-ditional Risk given x, i.e. the expeted loss oflassifying in the lass determined by the de-

ision funtion. This Conditional Risk is ex-pressed as follows:
R(ωk|x) =

∑

ωj∈Ω

l(ωk|x, ωj) p(ωj|x) (7)The well-known Bayes' lassi�ation ruleis the rule that minimises the Global Risk.Moreover, as minimising the Conditional Riskfor eah objet (x) is a su�ient ondition tominimise the Global Risk, without loss of gen-erality we an say that the optimal Bayes las-si�ation rule is the rule that minimises theConditional Risk, i.e.:
ĉ(x) = arg min

ω∈Ω

R(ω|x) (8)Loss funtions that are more appropriate thanthe 0-1 an be designed. If we only assumethat the loss of orretly lassifying an objetis 0, then a very general loss funtion is ob-tained:
l(ωk|x, ωj) =

{

0 ωk = ωj

ǫ(x, ωk, ωj) otherwise (9)In the ase of Eq.(9), the optimal Bayes' las-si�er is given by:
ĉ(x) = arg min

ωk∈Ω

∑

ωj 6=ωk

ǫ(x, ωk, ωj) p(ωj|x)(10)Note that in order to perform the searh forthe optimal lass ĉ(x) it is neessary to �ndthe lass ωk, for whih the sum over all the re-maining lasses ωj is mimimun. This requiresa omputation time5of O(|Ω|2). This ost anbe prohibitive in some problems. For instane,in mahine translation, the set of lasses is ex-ponential with the length of the sentene. Inthis ase, having to ompute the sum for eahlass is a pratial problem that an ruin theadvantages obtained by using a more appro-priate loss funtion.In this sense, there is a partiular set of lossfuntions of the form of Eq. (9), that preservesthe simpliity of the optimal lassi�ation rulefor the 0-1 loss funtion. If ωk is the lass pro-posed by the system and ωj is the orret lass5Note that we are assuming that the ost of evalu-ating ǫ(x, ωk, ωj) and p(ωj |x) is ostant in time
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that the system should hoose (ωk is expetedto be equal to ωj) the following loss funtion
l(ωk|x, ωj) preserves this simpliity:

l(ωk|x, ωj) =

{

0 ωk = ωj

ǫ(x, ωj) otherwise (11)where ǫ(·) is a funtion depending on the ob-jet (x) and the orret lass (ωj) but not de-pending on the wrong lass proposed by thesystem (ωk). This funtion must verify that
∑

ωj∈Ω
p(ωj |x) ǫ(x, ωj) < ∞; and it evaluatesthe loss funtion when the system fails.In suh ases, it an be easily proved thatthe Conditional Expeted Risk is:

R(ωk|x) = S(x) − p(ωk|x) ǫ(x, ωk) (12)where S(x) =
∑

ωj∈Ω
p(ωj|x) ǫ(x, ωj) and

S(x) < ∞, i.e. the weighted sum over allpossible lasses onverges to a �nite numberwhih only depends on x. Therefore, ǫ(·) isrestrited to funtions that hold the previous�niteness property.As a result, the lassi�ation rule is verysimilar to the optimal Bayes' lassi�ationrule for the 0-1 loss funtion and simpli�es tothe following equation (Andrés-Ferrer et al.,2007):̂
c(x) = arg max

ω∈Ω

{p(ω|x) ǫ(x, ω)} (13)It is worth noting that the omputationaltime6 needed to sovle the searh of the op-timal lass in Eq. (13). is O(|Ω|).In onlusion, for eah loss funtion thereexists a di�erent optimal Bayes' lassi�ationrule, spei�ally using a loss funtion like theone in Eq. (11) yields one of the simplest op-timal lassi�ation rules, Eq. (13).3 Statistial Mahine TranslationSMT is a spei� instane of a lassi�ationproblem where the set of possible lasses isthe set of all the possible sentenes that mightbe written in a target language, i.e. Ω = E∗.6Note that we are assuming that the ost of evalu-ating ǫ(x, ωj) and p(ωj |x) is ostant in time

Likewise, the objets to be lassi�ed7are sen-tenes of a soure language, i.e. f ∈ F
∗.In a SMT system, the Bayes' lassi�ationrule is Eq. (2). As stated above, this lassi�-ation rule an be obtained by using the 0-1loss funtion:

ê = ĉ(f) = arg max
ωk∈Ω

{p(ωk|f)} (14)where ωk = ek. This loss funtion is notpartiularly appropriate when the number oflasses is huge as ours in SMT problems.Spei�ally, if the orret translation for thesoure sentene f is ej , and the hypothesis ofthe translation system is ek; using the 0-1 lossfuntion (Eq. (5)) has the onsequene of pe-nalising the system in the same way, indepen-dently of whih translation (ek) the systemproposes and whih is the orret translation(ej) for the soure sentene (f).3.1 Quadrati loss funtionsEquation (9) produes searh algorithmswhih have a quadrati ost depending onthe size of the set of lasses. As statedabove, mahine translation an be understoodas a lassi�ation problem with a huge set oflasses. Hene, these loss funtions yield di�-ult searh algorithms. There are some worksthat already have explored this kind of lossfuntions (Ue�ng and Ney, 2004; R. Shlüterand Ney, 2005).The more appealing appliation of this lossfuntions is the use of a metri loss fun-tion (R. Shlüter and Ney, 2005). For in-stane, in mahine translation one widespreadmetri is the WER (see Setion 4 for a de�ni-tion), sine the loss funtion in Equation (9)depends on both, the proposed translationand the referene translation, the WER anbe used as loss funtion (Ue�ng and Ney,2004). Nevertheless, due to the high omplex-ity, the use of these quadrati and interestingloss funtions, is only feasible in onstrainedsituations like n-best lists (Kumar and Byrne,2004).7In this ontext to lassify an objet f in the lass
ωk is a way of expressing that ek is the translation of
f .
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Another interesting loss funtion would bethe one obtained by introduing a kernel asthe loss funtion in Equation (9):
l(ek|f , ej) =

{

0 ek = ej

Kn(ek, ej) otherwise (15)with
Kn(ek, ej) =

∑

u∈En

|ej|u|ek|u (16)where |e|u stands for the number of our-renes of the sequene of n words u inside thesentene e (Cortes et al., 2005).3.2 Linear loss funtionEquation (11) produes searh algorithmswhih have a linear ost depending on the sizeof the set of lasses. For instane, a more suit-able loss funtion than the 0�1 loss, an beobtained using Eq. (11) with ǫ(f , ej) = p(ej):
l(ek|f , ej) =

{

0 ek = ej

p(ej) otherwise (17)This loss funtion seems to be more appropri-ate than the 0-1. This is due to the fat thatif the system makes an error translating a setof soure sentenes, this loss funtion tries tofore the system to fail in the soure sentene(f) whose orret translation8(ej) is one of theleast probable in the target language. Thus,the system will fail in the least probable trans-lations, whenever it gets onfused; and there-fore, the Global Risk will be redued.In addition, it is easy to prove (usingEq. (13)) that this loss funtion leads to theDiret Translation Rule in Eq. (3). Then, theDTR should work better than the ITR, froma theoretial point of view.Nevertheless, the statistial approximationsemployed for modelling translation probabil-ities might not be symmetri, as is the asewith IBM Models (Brown and other, 1993).Thus, the model error, ould be more impor-tant than the advantage obtained from the use8Here lies the importane of distinguishing betweenthe translation proposed by the system (ek) and theorret translation (ej) of the soure sentene(f).

of a more appropriate loss funtion. There-fore, it seems a good idea to use the diretrule in the equivalent inverse manner so thatthe translation system will be the same andthen these asymmetries will be redued. Bysimply applying the Bayes' theorem to Eq. (3),we obtain the equivalent rule:
ê = arg max

e∈E∗

{

p(e)2p(f |e)
} (18)The di�erene between the Eq (3) and Eq (18)an be used to measure the asymmetries of thetranslation models.An alternative funtion to the proposed inEq (17) is the loss funtion in Eq. (11) with

ǫ(f , ej) = p(f , ej):
l(ek|f , ej) =

{

0 ek = ej

p(f , ej) otherwise (19)whih leads to:
ê = arg max

e∈E∗

{p(f , e)p(e|f)} (20)Equation (20) is able to provide several op-timal lassi�ation rules depending on whihapproximation is used to model the jointprobaility (p(f , e)). The most important ruleprodued by this funtion is the Inverse andDiret translation rule (I&DTR), whih is ex-pressed by the following equation:
ê = arg max

e∈E∗

{p(e)p(f | e)p(e | f)} (21)The interpretation of this rule is a re�nementof the diret translation rule. In this ase, ifthe system makes a mistake it is done in theleast probable pairs (f , e) in terms of p(e, f).More interesting loss funtions an be ob-tained using information theory. For instane,we an penalise the system by the remaininginformation. That is, if we knew p(e), thenthe information assoiated with a target sen-tene ej would be − log(p(ej)). The remain-ing information, or the information that thesystem has learnt when it fails is given by
− log(1 − p(ej)). Hene, the system an bepenalised with this sore:
l(ek|f , ej) =

{

0 ek = ej

− log(1 − p(f , ej)) otherwise(22)
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Figure 1: The information of the ontraryevent, or the remaining information.Figure 1, shows the remaining information of aprobability funtion. Note that the remaininginformation has a singularity at 1, i.e. if thesystem has not been able to learn a sure event,whih has probability of 1, then the loss isin�nity. Note that this loss an be de�ned forany probability suh as p(e) or p(x, e).Some works (Oh and Ney, 2004; Marino etal., 2006), explore the idea of using maximumentropy models to design a translation system,obtaining in this way a translation rule of theform of:
ê = arg max

e∈E∗

M
∑

m=1

λmhm(f , e) (23)where hm is a logarithmi statistial modelthat approximates a probability distribution(i.e. translation or language probabilities).The Eq (23) an be analysed from a Bayes'deision theory frame. Into this sope, whatthe log-linear systems are doing is to use theloss funtion in Eq (11) with:
ǫ(f , e) = p(e | f)−1

M
∏

m=1

fm(f , e)λi (24)where fm(f , e) = exp[hm(f , e)].From the deision theory, the log-linearmodels learn the best loss funtion among afamily of loss funtions. This family is de�nedby a vetor of hyperparameters (λM

1
):

{

p(e | f)−1

M
∏

m=1

fm(f , e)λi

∣

∣

∣
∀λi

} (25)

In order to perform the optimisation, �rstlythe fm funtions (usually an exponential fun-tions of probability distributions) are esti-mated using maximum likelihood (or someother estimation tehnique). Seondly, theME algorithm (Berger et al., 1996) is used to�nd the optimal weights or hyperparameters
λi, i.e., the ME algorithm is used to �nd theoptimal loss funtion among all the possiblefuntions in the family.Some works explore the idea of using thesehyperparameters to redue the evaluation er-ror metri, suh as the Bleu (Papineni etal., 2001). For instane, in Oh (2003), someimprovements were reported when estimatingthe hyperparameters λ in aordane with theevaluation metri.4 Experimental ResultsThe aim of this setion is to demonstrate withpratial results, how to use the theory statedin the work to improve the performane ofa translation system. Obtaining a state-of-art system is out of sope of this paper. Inthis way, the previously stated properties willbe analysed in pratie with a simple trans-lation model. In other works, some of theloss funtions presented here has been anal-ysed using state-of-art models, phrase-basedmodels, (Andrés-Ferrer et al., 2007)Before starting the setion we need to de-�ne two new onepts (Germann and others,2001). When a SMT system proposes a wrongtranslation, this is due to two reasons: thesuboptimal searh algorithm whih has notbeen able to ompose a good translation; orthe model whih is not able to make up agood translation (and so is unable to �nd it).Then we will say that a translation error isa searh error (SE) if the probability of theproposed translations is less than the refer-ene translation; otherwise we will say thatit is a model error, i.e. if the probability ofthe proposed translations is greater than thereferene translation.We use the IBM Model 2 (Brown andother, 1993) and the orresponding searh al-gorithms to design the experiments of thiswork. That hoie was motivated by several
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reason. Firstly, the simpliity of the transla-tion model allows to obtain a good estimationof the model parameters. Seondly, there areseveral models that are initialised using thealignments and ditionaries of the IBM model2. Finally, the searh problem an be solvedexatly using dynami programming for theDTR.In order to train the IBM Model 2 weused the standard tool GIZA++ (Oh, 2000).We re-implemented the algorithm presentedin (Garía-Varea and Casauberta, 2001) toperform the searh proess in translation forthe ITR. Even though this searh algorithmis not optimal, we set the parameters to min-imise the searh errors, so that all the errorsshould be model errors. In addition we im-plemented the orresponding version of thisalgorithm for the DTR and for the I&DTR.All these algorithms were developed by dy-nami programming. For the I&DTR, we im-plemented two versions of the searh: oneguided by the diret model (a non-optimalsearh algorithm, namely I&DTR-D) and theother guided by the inverse translation model(whih is also non-optimal but more aurate,namely I&DTR-I). Due to the length on-straint of the artile, the details of the algo-rithms are omitted.We seleted the Spanish-English Touristtask (Amengual et al., 1996) to arry outthe experiments reported here. The Spanish-English sentene pairs orrespond to human-to-human ommuniation situations at thefront-desk of a hotel whih were semi-automatially produed. The parallel orpusonsisted of 171,352 di�erent sentene pairs,where 1K sentenes were randomly seletedfrom testing, and the rest (in sets of exponen-tially inreasing sizes: 1K, 2K, 4K, 8K, 16K,
32K, 64K, 128K and 170K sentenes pairs) fortraining. The basi statistis of this orpusare shown in Table 1. All the �gures show theon�dene interval at 95%.In order to evaluate the translation quality,we used the following well-known automati-ally omputable measures:1. Word Error Rate (WER):Word ErrorRate is the minimum number (in %) of

Test Set Train SetSpa Eng Spa Engsentenes 1K 170Kavg. length 12.7 12.6 12.9 13.0voabulary 518 393 688 514singletons 107 90 12 7perplexity 3.62 2.95 3.50 2.89Table 1: Basi statistis of the Spanish-English Tourist task.deletions, insertions, and substitutionsthat are neessary to transform the trans-lation proposed by the system into thereferene translation.2. Sentene Error Rate (SER): Sentene Er-ror Rate is the number (in %) of sentenesthat di�ers from the referene transla-tions.3. BiLingual Evaluation Understudy(BLEU): it is based on the n-grams ofthe hypothesized translation that ourin the referene translations. In thiswork, only one referene translation persentene was used. The BLEU metriranges from 0.0 (worst sore) to 1.0 (bestsore) (Papineni et al., 2001):Figure 2 shows the di�erenes in terms ofthe WER among all the mentioned forms ofthe DTR: �IFDTR� (Eq. 18), �DTR� (Eq. 3),and �DTR-N� (Normalised Length version ofDTR). Note the importane of the modelasymmetry in the obtained results. The bestresults were the ones obtained using the in-verse form of the DTR. The normalised ver-sion was developed due to the fat that theIBM Model 2 (in its diret version) tries toprovide very short translations. This be-haviour is not surprising, sine the only meh-anism that the IBM Model 2 has to ensurethat all soures words are translated is thelength distribution. The length distributionusually allows the model to ommit the transla-tion of a few words. Nevertheless, the �DTR�and �DTR-N� performed worse than the ITR(Table 2).
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Figure 2: Asymmetry of the IBM Model 2measured with the respet to the WER for theTourist test set for di�erent training sizes.
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Figure 3: WER results for the Tourist testset for di�erent training sizes and di�erentlassi�ation rules.
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Figure 4: SER results for the Tourist testset for di�erent training sizes and di�erentlassi�ation rules.

Model WER SER BLEU SE TI&DTR I 10.0 49.2 0.847 1.3 34I&DTR D 10.6 51.6 0.844 9.7 2IFDTR 10.5 60.0 0.837 2.7 35ITR 10.7 58.1 0.843 1.9 43DTR N 17.9 74.1 0.750 0.0 2DTR 30.3 92.4 0.535 0.0 2Table 2: Translation quality results with dif-ferent translation rules for Tourist test setfor a training set of 170K sentenes. Where Tis the time expressed in seonds.Figure 3 shows the results ahieved withthe most important rules. All the I&DTRobtain similar results to the ITR. Neverthe-less, the non-optimal searh algorithm guidedby the diret model (�I&DTR-D�) was an or-der of magnitude faster than the more au-rate one (�I&DTR-I�) and the ITR. The in-verse form of the DTR (�IFDTR�) behavedsimilarly to these, however improve the resultsreported by DTR. Therefore, there are nosigni�ant di�erenes between the rules anal-ysed in terms of WER. However, the exeutiontimes were signi�antly redued by the diretguided searh in omparison with the othersearhes. Table 2 shows these exeution timesand the �gures with the maximum trainingsize. Although the di�erent searh algorithms(based on loss funtions) do not onvey a sig-ni�ant improvement in WER. Note that theloss funtion only evaluates the SER, i.e. theloss funtion minimises the SER, and does nottry to minimise the WER. Thus, hanging theloss funtion, does not neessarily derease theWER.In order to support this idea, Figure 4 showsthe analogous version of Figure 3 but withSER instead of WER. It should be notedthat as the training size inreases, there isa di�erene in the behaviour between theITR and both I&DTR. Consequently, the useof these rules provides better SER, and thisdi�erene beomes statistially signi�ant asthe estimation of the parameters beomesbetter. In the ase of the inverse form ofthe DTR (�IFDTR�), as the training size in-
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reases, the error tends to derease and ap-proximate the ITR error. However, the dif-ferenes are not statistially signi�ant andboth methods are equivalent from this pointof view.In onlusion, there are two sets of rules:the �rst set is made up of IFDTR and ITR,and the seond is omposed by the two ver-sions of the I&DTR. The �rst set reportsworse SER than the the seond set. How-ever, the I&DTR guided with the diret model(�I&DTR-D�) has many good properties inpratie.5 ConlusionsThe analysis of the loss funtion is an appeal-ing issue. The results of analysing di�erentloss funtions range from allowing to use met-ri loss funtions suh as BLEU, or WER;to proving the properties of some outstandinglassi�ation rules suh as the diret transla-tion rule, the inverse translation rule or eventhe maximumn entropy rule. For eah dif-ferent funtion ǫ(f , ej , ek) in the general lossfuntion of Eq. (9), there is a di�erent optimalBayes' rule. The point of using one spei�rule is an heuristi and pratial issue.An interesting fous of study is the use ofmetris suh as BLEU, or WER; as the lossfuntion. Nevertheless due to the high om-plexity, it is only feasible on onstrained situ-ations like n-best lists.This work fouses on the study of loss fun-tions that have a linear omplexity and thatare outstanding due to historial or prati-al reasons. In this sense, we have provideda theoretial approah based on deision the-ory whih explains the di�erenes and resem-blanes between the Diret and the InverseTranslation rules. This theoretial frame pre-dits an improvement (in terms of SER), animprovement that has been on�rmed in pra-tie.In order to inrease performane, we should�nd the best loss funtion with the form inEq (9) or with the form in Eq (11). As futurework, we will develop this idea into detail un-der the sope of funtional optimisation. Wealso intend to analyse the pratial behaviour
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