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Abstract
The goal of this work is to improve current translation mod-
els by taking into account additional knowledge sources such
as semantically motivated segmentation or statistical catego-
rization. Specifically, two different approaches are discussed.
On the one hand, phrase-based approach, and on the other
hand, categorization. For both approaches, both statistical
and linguistic alternatives are explored. As for translation
framework, finite-state transducers are considered. These are
versatile models that can be easily integrated on-the-fly with
acoustic models for speech translation purposes. In what
the experimental framework concerns, all the models pre-
sented were evaluated and compared taking confidence in-
tervals into account.

1. Introduction
Stochastic finite-state transducers (SFST) [1] consist of a
sub-set of probabilistic translation models [2]. They are ver-
satile models that count on efficient algorithms for inference
from training samples [3], composition with other finite-state
models [4, 5] that allows for a hierarchical structure of sev-
eral knowledge sources, minimization and decoding [6].

The main goal of this paper is to carry out a compara-
tive study on the benefits of additional knowledge sources
within finite-state framework constrained to GIATI method-
ology [7]. We aim at comparing the classical GIATI ap-
proach, where the source sentence to be translated is ana-
lyzed word-by-word, with category-based and phrase-based
approaches, where either the analysis of the source sentence
or the generation of target sentence is driven by other kind
of tokens. We intend to find out wether it is worth or not to
create more complex models such as class-based or phrase-
based models within this finite-state framework. In previous
works we studied such models taking just linguistic approach
into account. The contribution of this paper is to tackle those
models under purely statistical framework and to compare
with previous models, which joined linguistic knowledge
sources within the statistical framework. The experimental
layout entails both text and speech translation.

On the other hand, this work is an attempt to quanti-

tatively determine the contribution of linguistic knowledge
sources in contrast to statistical ones for the same task and
under exactly the same conditions. Nevertheless, when the
discrepancy in score of two systems is marginal we may
wonder whether it is possible to assert that one system out-
performs the other. The arising question is what a marginal
difference stands for or what might be considered as a sig-
nificant difference. In this context, the scores are presented
along with their confidence interval. In addition, whenever
we say that a system outperforms another, the results are ac-
companied by the probability of improvement.

The organization of this paper is as follows: first of all, an
overview of both the baseline (in this paper also referred to
as word-based), category-based and phrase-based finite-state
transducers is presented in sections 2, 3 and 4 respectively. In
order to quantitatively assess the performance of each model,
section 5 is devoted to a thorough discussion of the experi-
ments. Finally, section 6 summarizes the conclusions of the
present work as well as the proposed lines for future investi-
gation in this field.

2. Source words driven finite-state transducers

An SFST is a finite-state machine which accepts strings be-
longing to a source vocabulary and gives as a result strings
belonging to a target vocabulary along with the joint proba-
bility of both source and target strings (for a formal defini-
tion turn to [1]). The characteristics defining the SFST are
its topology and the probability distributions over the tran-
sitions and the states. These distinctive features can be au-
tomatically learnt from bilingual samples by efficient algo-
rithms such as GIATI (Grammar Inference and Alignments
for Transducers Inference) [7], which constitutes the spe-
cific object of study in this work. Regarding the topology,
a smoothed k-Testable in the Strict-Sense (k-TSS) gram-
mar [8, 9] (with k=3) was used for all the experiments (even
for the language model in isolate speech recognition exper-
iments). In short, k-TSS models are considered to be the
syntactic approach of the well known n-gram models.

Our goal is to carry out speech translation with the men-
tioned SFSTs. Let us summarize how statistical speech trans-



lation works. The goal of statistical speech translation is to
find the most likely translation (̂t) given the the acoustic rep-
resentation x of a speech signal in the source language:

t̂ = arg max
t
P (t|x) (1)

The transcription of the speech into text is an unknown vari-
able, s, which might be introduced as a hidden variable.

t̂ = arg max
t

∑
s

P (t, s|x) (2)

Applying the Bayes’ decision rule:

t̂ = arg max
t

∑
s

P (t, s)P (x|t, s) (3)

Let us assume that the acoustic representation of a speech
signal only depends on its transcription in the source lan-
guage, that is, the pronunciation of an utterance does not de-
pend on the translation in other language. Hence, eq. (3) can
be rewritten as:

t̂ = arg max
t

∑
s

P (t, s)P (x|s) (4)

There are two terms involved in eq. (4). On the one hand,
P (x|s) links the acoustics with its orthographic representa-
tion. It is, somehow, a lexical model similar to those used in
speech recognition. Specifically, given that the source string
is formed by a concatenation of several words s = sI1, having
their acoustic representation x = xI1, we assume the pronun-
ciation of the word sj to be independent of other words.

P (x|s) '
I∏
i

P (xi|si) (5)

On the other hand, P (t, s) represents the probability of
(t, s) to be a translation pair. The joint probability transla-
tion model might be modeled with an SFST (τ ), P (t, s) '
Pτ (t, s). Such a model might be used for either speech trans-
lation (as shown before) or by itself for text translation.

Example 1: Let us show how GIATI carries out the infer-
ence of an SFST given a couple of bilingual training samples:

s1s2s3 ↔ t1t2t3 s1s2s4 ↔ t1t2t4

• Obtain the alignments. Let us note that in this work
the involved statistical alignments were obtained with
GIZA++ free toolkit [10]. Assume that for the given
bilingual training set, the alignments drawn in Figure 1
were obtained (despite the fact that GIZA++ would not
have given these pathologic alignments as a result).

• Get a monotonic bilingual segmentation. On the basis
of those alignments, zero or more target words are as-
signed to each source word, in such a way that a mono-
tonic bilingual segmentation is obtained. Monotonic-
ity keeps the word order of both the source and the

s1 s2 s3

t1 t2 t3

s1 s2 s4

t1 t2 t4

Figure 1: Alignments.

target strings.
(s1, t1)(s2, λ)(s3, t2t3) (s1, t1)(s2, λ)(s4, t2t4)

Note that the restriction on this baseline model is that
the segmentation is driven by the source words. That
is, each segmentation will produce as many segments
as the length of the source string. Empty words (de-
noted by λ) or word sequences are allowed as target
segments. From now onwards we will also refer to this
baseline approach as word-based model, even though
it is not strictly word based (given that the target tokens
may consist of phrases).

• Infer a finite-state model. The segmentation converts
each training pair into a single string of an extended
vocabulary composed by pairs of a source word along
with a target phrase. Then from those extended strings,
a regular grammar can be inferred, and thus a finite-
state automaton. Note, however, that the symbols on
that finite-state machine are bilingual and can be con-
sidered as input/output tokens, leading to the required
transducer drawn in Figure 2.

s1|t1
1

q2q1
s2|λ

1
q3q0

s3|t2t3
0.5

s4|t2t4
0.5

Figure 2: SFST

3. Category-based finite-state transducers
In the framework of statistical language processing large
amounts of training data are required to get a robust esti-
mation of the parameters defining the models. Data sparse-
ness is, therefore, a problem that must be faced. One of the
ways to deal with this problem is to cluster the vocabulary of
the application into equivalence classes. In this way, class-
based models can be used in language modeling, which is, in
essence, the problem that we are tackling by means of finite-
state transducers. A class-based language model is more
compact and generalizes better on unseen events. Neverthe-
less, it only captures the relations between the categories of
words while it assumes that the inter-word transition proba-
bility depends only on the word classes. As a result, it is less
accurate in predicting the next word.

The category-based SFST in this work tackles the trans-
lation problem in two steps with two SFSTs: the first one



has as input the source language and the categorized target
as output; the second SFST takes the categorized string and
converts it into a string of words in the target language as
illustrated in Figure 3.

Pτ1(s, c) Pτ2(c, t)
ĉ t̂s

Figure 3: Category-based approach.

In order to avoid the loss of information associated
with the use of classical class-based models, some authors
have proposed alternative approaches in speech recognition
such as interpolation between word and class-based gram-
mars [11, 12]. In our case, for speech translation the SFST
itself entails a relation between classes and words. There
are related works including categorization for speech trans-
lation within finite-state framework [13, 14] which signifi-
cantly differ from our approach (for further details on this
approach turn to [15]).

Regarding the nature of the categories, they might be ei-
ther linguistically or statistically motivated, and the aim of
this work is to determine if it makes a difference to use one
or the other within a specific task and corpus. On the follow-
ing we give some details on each categorization technique
used in this work.

3.1. Linguistically motivated categories

As for linguistic categories, many criteria could have been
selected, such as POS-tagging, distinguishing nouns, verbs,
adjectives, gender, number, etc. In this case, lemmatization
is explored as classification standard. That is, all the words
sharing the same lemma are gathered within an equivalence-
class. This criterion was selected since the target language
involved in the task we are exploring is Basque, a highly in-
flected language in both nouns and verbs.

As a consequence, all the words differing only in the de-
clension case would be grouped. Therefore, all the words in
the same class share the lemma, which is in fact the main
contribution in what comes to rendering the meaning. For
the task under consideration (latter commented in section 5)
there were 1,135 running words in Basque and they were
classified in 561 classes (as they were found 561 different
lemmas). Let us not that the lemmatization was carried out
by Ametzagaña group1 (a non-profit organization working on
I+D) since there are not still free parsing toolkits for Basque.

3.2. Statistically motivated categories

A set of 561 statistical classes was automatically obtained by
means of mkcls [16], a free toolkit designed to train word
classes on the basis of a maximum likelihood criterion. The

1http://ametza.com

number of classes was set to be 561 for comparison purposes
with the linguistic approach previously described.

In spite of the fact that classes were not generated using
any linguistic or semantic information, in many cases, the
words belonging to the same class have similarities regarding
their morphologic or semantic role as shown in the following
example.

Example 2: some of these statistically motivated cate-
gories of the task under consideration.

class-1: arinduko, bihurtuko, finkatuko, handituko,
helduko, nabarituko, pasatuko.

class-2: orduetara, orduetaraino, orduetarako, ordutan.

class-3: 11, 12, 13, 15, 16, 17, 18, 19, 24, 26, 27.

class-4: 1500, 1600, 1700.

class-5: goradakada, igoera.

All the words gathered in class-1 are verbs (“arindu”,
“bihurtu”, ...) and all of them have a suffix (”-ko”) repre-
senting the future tense. The class-2 assembles different de-
clension cases of the same stem (“ordu”). Class-3 brings to-
gether numbers related to temperature, while the numbers in
class-4 are related to the snow level. Nevertheless, not all the
numbers within the same function are in the same category,
that is, there are other categories containing numbers as well.
Another odd issue is that some words that were originally in-
correct due to misprints were gathered in a logical way. For
instance, the word “goradakada” belonging to class-5 has a
typographical error, it should be “gorakada”, which is indeed
a synonym of the word “igoera” (the other word within the
class-5).

4. Phrase-based finite-state transducers
The phrase-based SFST model under GIATI approach [17]
differs from existing phrase-based approaches previously de-
fined for finite-state framework [18, 19] since the former con-
sists of a single model that copes with both meaning trans-
ference and word reordering, while the later models entail
the composition of several constituent transducers, working
in separate decoding steps.

In brief, the phrase-based model proposed here is inferred
from a segmented corpus considering each segment as trans-
lation unit, instead of the word. This is the main difference
between phrase-based and word based approach in this work.
There is no-restriction on the size of the segments. For in-
stance, Figure 4 shows the phrase-based approach for the Ex-
ample 1 in section 2.

The inference algorithm remains unchanged from word-
based to phrase-based approach, leading to a rough trans-
ducer where each transition is labeled with a phrase in the
source language and a phrase in the target language (that
might be empty) and a probability of that transition to occur



s1|t1
1

q1
q2q0

s2s4|t2t4
0.5

s2s3|t2t3
0.5

Figure 4: Phrase-based SFST.

(depicted in figure 5(a)). Each state q ∈ Q of such a trans-
ducer represents a memory which stores the previous events,
that is, the history in terms of phrases of both source and tar-
get languages. Hence, a state q is reached only after both
having analyzed a specific n-gram of phrases in the source
language and having produced a specific n-gram of phrases
in the target language as output. The topology of the trans-
ducer copes, to some extent, with the syntax of the source
and the target languages.

At decoding time, since the input string to be translated
consists of a sequence of words, we have to convert each
source phrase of the transducer into a sequence of words.
This conversion is straightforward in terms of a composition
of the rough transducer with a left-to-right model (depicted
in figure 5(b)). The integrated left-to-right transducer con-
sists of a consecutive sequence of transitions analyzing word
by word the source string, with the empty output and a prob-
ability equal to one in all the transitions except for the last
one, where the output is the complete target phrase and the
transition has a probability equal to that in the phrase-based
model. Notice that the phrase-structure remains unchanged
after the integration of the left-to-right word based model. In
addition, on-the-fly integration is an efficient technique to re-
duce spatial costs. It might be noted that the conversion into
words is not necessary when the input is speech instead of
text, and this allows for an efficient use of memory.

q q′sisi+1...si+I |tjtj+1...tj+J

p

(a) Phrase-based SFST.

si+1|λ
1

si+I |tjtj+1...tj+J

p
q q1

si|λ
1

q2 qI q′

(b) On-the-fly integration of word-based model.

Figure 5: The integration of a left-to-right word based model
in an edge of the phrase-based transducer. (a) An edge in
the graph-diagram of the phrase-based finite-state transducer
consists of the source phrase si+Ii , the target phrase tj+Jj

and it has associated a probability p. (b) The left-to-right
word-based model keeps the general structure given by the
phrase-based model, since neither the probability nor the
input/output change. λ stands for the empty word.

As previously mentioned, the inference starts from a
given segmented training corpus. This segmentation might
be carried out taking the bilingual corpus into account or just
from isolated monolingual parts, there is no restriction on
this respect. Monolingual segmentation was tested in this
work, nevertheless, other methods such as THOT toolkit [20]
might be explored in order to obtain bilingual segmentations.
Needless to say, segmentation plays an important role in this
approach, thus, two possibilities are explored, linguistic and
statistically motivated one in turn.

4.1. Linguistically motivated segmentation

Linguistic phrases were identified by Ametzagaña group fol-
lowing the next steps:

1. First of all, a morpho-semantic parsing allows to as-
sign one or more tags to each word of the corpus.
These tags include information about linguistic cate-
gories such as number, declension case, verb tense and
aspect, etc. Besides, the stem and morphemes are iden-
tified. At this point, an ambiguous word would be as-
signed more than one tag-set.

2. A syntactic parsing allows to remove ambiguities un-
der the following boundary: all words within a sen-
tence have to share compatible categories. Regular ex-
pressions and regulated exceptions are also taken into
account so as to select the appropriate sets of cate-
gories.

3. Once the syntactic and semantic parsing of each ele-
ment is carried out unambiguously, linguistic phrases
can be identified under a elementary criteria: group,
recursively, all the words which share the same syntac-
tic function whenever the frequency of that segment in
the corpus exceeds a threshold. At first, just noun and
verb phrases are distinguished, then, as the analysis
goes ahead, more accurate groups such as composed
stems, verbal periphrasis etc. are identified.

4.2. Statistically motivated segmentation

In order to obtain these segments, a simple procedure based
on N-gram frequencies was used. This process is summa-
rized in the following steps:

1. Given the training corpus, identify and extract all the
2-grams, 3-grams, . . ., n-grams available. In our case,
we chose n = 4.

2. Sort them in order of decreasing values of n (n-grams
before (n-1)-grams,. . . , 3-grams before 2-grams) and
decreasing number of appearances.

3. For each sentence in the training set, get the subset
of word n-grams that, while keeping the original or-
der, satisfies a minimum number of occurrences. We
chose 50 as a threshold. The idea is to replace all the



appearances of a sequence of words corresponding to
an n-gram with a single unit obtained by joining all the
words forming that n-gram. Some of the word n-grams
might not appear after this process or might not satisfy
the required minimum number of occurrences, due to
the fact that they could be included in previous word
n-grams with a higher value of n. The first of those n-
grams not satisfying the required minimum number of
occurrences is then removed. The process of relabel-
ing and searching for not valid n-grams is iteratively
repeated until getting a consistent segmentation.

5. Experimental results
5.1. Task and corpus

METEUS is a text and speech corpus in Basque and Span-
ish consisting of weather forecast reports picked up from
the Internet [21] and later checked and expanded with: lem-
mas, statistical TAGS [16], and POS extracted with FreeLing
toolkit [22] for Spanish, and for Basque courtesy of Amet-
zagaña group. The main features are shown in Table 1.

Spanish Basque

Tr
ai

ni
ng

Pair of sentences 14,615
Different pairs 8,445
Running words 191,156 187,195
Vocabulary 702 1,135
Singletons 162 302
Average length 13.1 12.8

Te
st

-1

Pair of sentences 1,500
Different pairs 1,173
Average length 12.6 12.4
Perplexity (3-grams) 3.6 4.3

Te
st

-2

Pair of sentences 1,800
Different pairs 500
Average length 17.4 16.5
Perplexity (3-grams) 4.8 6.7

Table 1: Main features of METEUS corpus.

The corpus consists of a training set and two disjoint test
sets. Test-1 keeps the statistics of the training set, and this
means that it is representative of the task considered in the
training set, while Test-2 is a training-independent set related
to the same task (and thus, suitable as a benchmark in order
to establish the lower threshold of the system). The latter
was selected for speech translation evaluations. As Table 1
shows, Test-2 consists of 500 different sentences, being each
one recorded for at least 3 speakers, we got as a result a total
of 1,800 utterances by 36 speakers for each language.

5.2. Evaluation and confidence

The proposed translation models were assessed with the
mentioned test sets under the typical automatic evaluation

measures: BLEU, NIST, WER, PER. The goal of this work
is to compare the performance of word, category and phrase-
based SFSTs under either linguistic or statistical approaches.
In order to be able to make fair comparisons between the dif-
ferent approaches the evaluation was carried out with 1,000
bootstrap test-sets. Table 2 shows the mean value and the
95% confidence interval for each of the aforementioned eval-
uation measures. To find out more about confidence intervals
turn to [23, 24, 25].

Given the original test-set, D, consisting of N sentences,
a bootstrap test-set (bootstrap sample) D∗, is a set created
by randomly selecting with replacement N sentences from
D [26]. In D∗ there is nearly always duplication of individual
sentences from D, in other words, it is likely that D∗ would
include several sentences of D repeatedly while other sen-
tences would be missed.

Experimentally, the mean value of the scores over a big-
enough amount of bootstrap sets is close to the score obtained
over the original set. Nevertheless, not all the bootstrap sets
offer close scores to the mean (see Figure 6). Provided the
sentences of the set are independent, the obtained bootstrap-
scores will follow a Gaussian distribution. Following the no-
tation on Table 2, the 95% of the bootstrap-scores are within
µ± 2σ interval (being σ2 the variance, and µ the mean value
of the samples).

As shown in Table 2, for speech translation, both class-
based and phrase-based models on their statistical approach
offer quite close scores to the baseline. We might ask
whether the reported differences are significant or not to
draw a conclusion about their performance. That is, the aris-
ing question is whether we can assert with high confidence
or not that class-based or phrase-based model is better than
the baseline for speech translation. The Figure 6 shows the
BLEU score of the 1,000 bootstrap test-sets for the baseline,
the class-based and phrase-based systems. The graph shows
that the results for the class-based approach and the baseline
are quite close and we might want to know to what extent are
them distinguishable. On the following we attempt at making
out quantitatively this degree of uncertainty.

Whenever there is no overlapping between the 95% con-
fidence intervals of two systems, then we can draw the con-
clusion with 95% certainty that for a given test, both systems
would significantly differ. But when there is overlapping, in-
stead of counting the amount of test-sets that gave as a result
a score (as we did in Figure 6), we might count the number
of times that one system outperforms the other for a given
bootstrap set, and thereby, measure the probability of im-
provement (poi) [23, 24]. The poi is calculated by means of
paired-bootstrap, which aims at measuring the discrepancy
between two systems for a big amount of bootstrap-sets and
then counting the number of times that such a difference rep-
resents that one system outperforms the other. For instance,
let us assume that for the i-th bootstrap set the BLEU-score
obtained for two systems under evaluation are BLEU (i)

sys1

and BLEU (i)
sys2 respectively. Intuitively, if the discrepancy



Word Category Phrase
ling stat ling stat

µ 2σ µ 2σ µ 2σ µ 2σ µ 2σ

Text
Translation
Test-1

BLEU 57.9 1.7 60.3 1.7 58.9 1.6 66.1 1.8 62.6 1.8
NIST 7.4 0.1 7.6 0.1 7.5 0.1 8.1 0.1 7.8 0.2
WER 32.8 1.5 31.4 1.6 32.3 1.7 27.6 1.7 29.9 1.6
PER 27.7 1.3 26.6 1.3 27.1 1.5 22.3 1.4 24.3 1.3

Text
Translation
Test-2

BLEU 41.1 1.3 41.6 1.2 42.0 1.2 43.6 1.2 41.4 1.2
NIST 6.0 0.1 6.0 0.1 6.1 0.2 6.3 0.1 6.0 0.1
WER 47.5 1.2 48.0 1.2 47.5 1.1 48.0 1.3 51.0 1.4
PER 39.4 1.1 40.4 1.0 39.4 1.1 38.9 1.1 41.1 1.2

Speech
Translation
Test-2

BLEU 38.5 1.2 38.9 1.2 38.8 1.2 40.2 1.2 40.0 1.4
NIST 5.7 0.1 5.8 0.1 5.7 0.1 5.9 0.1 5.9 0.1
WER 51.3 1.3 50.5 1.3 51.4 1.3 50.5 1.3 53.9 1.4
PER 42.5 1.10 41.8 1.0 42.4 1.1 41.1 1.1 44.1 1.3

Recognition WER 8.3 0.4 7.3 0.4 8.2 0.3 9.6 0.5 12.1 0.7

Table 2: Text-to-text and speech-to-speech translation results with different SFST models, namely, word-based, category-based
and phrase-based model. For the latter two models both linguistic (ling) and statistical (stat) approaches are explored. The mean
value for 1,000 bootstrap sets (µ), and the 95% confidence interval [µ− 2σ, µ+ 2σ].

36,5 37,0 37,5 38,0 38,5 39,0 39,5 40,0 40,5 41,0 41,5 42,0
0
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20

30

40

50

60

BLEU

freq

Figure 6: The ordinate axis represents the amount of
bootstrap-sets (out of 1,000) that gave as a result the BLEU
score in the abscissa. Speech translation results with the
baseline system (experimental values drawn with circles),
statistical approach of class-based system (experimental val-
ues drawn with crosses) and statistical approach for phrase-
based system (experimental values drawn with squares). The
curves are just the Gaussian functions that better fit the sam-
ples.

between the two systems is positive, meaning expression (6),
then sys1 system outperforms sys2 on the i-th bootstrap test-
set.

∆BLEU (i)
(sys1,sys2)

= BLEU (i)
sys1 −BLEU

(i)
sys2 (6)

Let us measure the discrepancy in a score of the two systems
over a big amount of bootstrap test-sets (that is, a big B).
If sys1 is considered to be better than sys2 for b bootstrap
sets out of B, the poi of sys1 with regard to sys2 can be
approached by poi ' b

B as eq. (7) suggests in more general

terms.

poi(∆Score(sys1,sys2)) '
1
B

B∑
i=1

Θ(Score(i)sys1−Score
(i)
sys2)

(7)
Where Score(i)sys1 is the score obtained with the system sys1
over the i-th bootstrap set; and whenever the Score is an accu-
racy value (such as BLEU or NIST) where the higher the bet-
ter performance, then Θ(x) is the Heaviside unit step func-
tion, denoted as H(x) in expression (8), otherwise, when the
Score is an error rate (such as WER or PER) where the higher
the worse, then Θ(x) = H(−x) .

H(x) =
{

0 x ≤ 0
1 x > 0 (8)

Since the major uncertainty over the discrepancies be-
tween the mentioned systems are related to speech transla-
tion of Test-2, we resorted to poi in that case. Table 3 shows
the poi of class-based (CB) and phrase-based (PB) models
with regard to the baseline (WB), as well as the poi for the
linguistic approach with respect to the statistical one under
either CB or PB approaches.

5.3. Discussion

Having a look at Tables 2 and 3, we conclude that there is not
a complete agreement between all the automatic evaluation
scores. For instance, according to the BLEU, the statistical
approach of class based model seems to perform better for
speech translation than the baseline, however, it is the other
way around according to the WER. Let us mention that ac-
cording to the ACL-2007 evaluation campaign on machine
translation, BLEU score has, by far, better correlation with
human judgments than WER.



poi Score
sys1 sys2 BLEU NIST WER PER

CB-stat WB 0.812 0.641 0.385 0.461
CB-ling WB 0.844 0.955 0.982 0.958
CB-ling CB-stat 0.667 0.936 0.995 0.973
PB-stat WB 0.996 0.999 0.000 0.002
PB-ling WB 0.999 1.000 0.934 0.997
PB-ling PB-stat 0.612 0.527 1.000 1.000

Table 3: Probability of improvement of sys1 respect to sys2
on the basis of several Scores (namely, BLEU, NIST, WER
and PER), that is, poi(∆Score(sys1,sys2)). The systems are
denoted as follows: WB stands for word-based model, CB-
stat and CB-ling stand for statistical and linguistic approach
of class-based model respectively, and analogously, PB-stat
and PB-ling stand for statistical and linguistic approach of
phrase-based model respectively. The results correspond
to speech translation experiments of 1,000 bootstrap-sets of
Test-2.

The results in Table 2 show that phrase-based SFSTs (in
either statistical or linguistic approach) outperform word-
based SFSTs. Following the automatic evaluation class-
based approach is just slightly better than the baseline, be-
ing the differences not statistically significant for the major-
ity of the situations studied (text-to-text translation of Test-1
or Test-2 and speech-to-speech translation of Test-2). Nev-
ertheless, a manual inspection over 50 randomly extracted
sentences turned out that class-based approach outperformed
the baseline regarding the meaning transfer but there was al-
most no difference in what fluency concerned. Regarding the
linguistic and statistical approaches, the linguistic one has re-
sulted in slightly better translation results than the statistical
one for both class-based and phrase-based models.

With respect to the speech translation results, note that
each translation model is accompanied with a recognition
score (see Table 2). This is due to the fact that speech trans-
lation was carried out using the so-called integrated archi-
tecture [27], which involves a tight on-the-fly integration be-
tween acoustic and translation model. Both the recognized
string in the source language and its translation are jointly
obtained in a single decoding. As a matter of comparison,
the speech recognition score for this task using a 3-TSS lan-
guage model is WER = 7.9. Therefore, some translation sys-
tems not only improve the translation scores (respect to the
baseline) but also the recognition scores respect to a classical
speech recognition system.

6. Concluding remarks and future work
In this work we have made an overview of one approach of
the classical finite-state transducers, namely GIATI. That ap-
proach has been enhanced in two different ways, by the so-
called category-based and phrase-based approaches respec-
tively. In addition, both approaches have been studied taking

both linguistic and statistical information into account. A
thorough study with confidence measures has been carried
out. As a result, we conclude that both class and phrase-
based models outperform the baseline for this task, and thus
it will be worth investigating the proposed general methods
on more complex tasks. With regard to the statistical and lin-
guistic knowledge sources, in this work linguistic ones got
better results but it might be of interest to study the combina-
tion of both of them.

For future work we aim at exploring other kind of sta-
tistical phrases. On the other hand, category-based approach
with different number of statistical categories might also be
considered. Furthermore, we will attempt at carrying out a
tight combination of both categorization and phrase-based
approaches. In essence, our goal is to make use of catego-
rization over phrases instead of running words as suggested
in [28] for speech recognition, applied, in this case, to speech
translation.
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