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Abstract

In this paper we investigate the use of
machine learning techniques to classify
a wide range of non-sentential utterance
types in dialogue, a necessary first step in
the interpretation of such fragments. We
train different learners on a set of contex-
tual features that can be extracted from
PoS information. Our results achieve an
87% weighted f-score—a 25% improve-
ment over a simple rule-based algorithm
baseline.
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1 Introduction

Non-Sentential Utterances (NSUs)—fragmentary
utterances that convey a full sentential meaning—
are a common phenomenon in spoken dialogue.
Because of their elliptical form and their highly
context-dependent meaning, NSUs are a challeng-
ing problem for both linguistic theories and imple-
mented dialogue systems. Although perhaps the
most prototypical NSU type are short answers like
(1), recent corpus studies (Fernández and Ginzburg,
2002; Schlangen, 2003) have shown that other less
studied types of fragments—each with its own res-
olution constraints—are also pervasive in real con-
versations.

(1) Kevin: Which sector is the lawyer in?
Unknown: Tertiary. [KSN, 1776–1777]1

1This notation indicates the British National Corpus file,
KSN, and the sentence numbers, 1776–1777.

Arguably the most important issue in the process-
ing of NSUs concerns their resolution, i.e. the re-
covery of a full clausal meaning from a form which
is incomplete. However, given their elliptical form,
NSUs are very often ambiguous. Hence, a necessary
first step towards this final goal is the identification
of the right NSU type, which will determine the ap-
propriate resolution procedure.

In the work described in this paper we address this
latter issue, namely the classification of NSUs, us-
ing a machine learning approach.2 The techniques
we use are similar to those applied by (Fernández et
al., 2004) to disambiguate between the different in-
terpretations of barewh-phrases. Our investigation,
however, takes into account a much broader range of
NSU types, providing a wide coverage NSU classi-
fication system.

We identify a small set of features, easily ex-
tractable from PoS information, that capture the con-
textual properties that are relevant for NSU classifi-
cation. We then use several machine learners trained
on these features to predict the most likely NSU
class, achieving an 87% weighted f-score. We eval-
uate our results against a baseline system that uses
an algorithm with four rules.

The paper is structured as follows. First we in-
troduce the taxonomy of NSU classes we adopt. In
section 3 we explain how the empirical data has been
collected and which restrictions have been adopted
in selecting the data set to be used in our experi-
ments. The features we use to characterise such data,
and the generation process of the data set are pre-
sented in section 4. Next we introduce some very

2A related task, namely that of automatically identify-
ing NSUs and their antecedents, is investigated by Schlangen
(2005).



simple algorithms used to derive a baseline for our
NSU classification task, and after that present the
machine learners used in our experiments. In sec-
tion 7 we report the results obtained, evaluate them
against the baseline systems, and discuss the results
of a second experiment performed on a data set cre-
ated by dropping one of the restrictions adopted be-
fore. Finally, in Section 8, we offer conclusions and
some pointers for future work.

2 NSU Taxonomy

We propose a taxonomy of 14 NSU classes.
With a few modifications, these classes follow the
corpus-based taxonomy proposed in (Fernández and
Ginzburg, 2002). In what follows we exemplify each
of the categories we use in our work and characterise
them informally.

2.1 Question-denoting NSUs

Sluices and Clarification Ellipsis (CE) are the two
classes of NSUs that denote questions.

Sluice We consider as sluices allwh-question
NSUs,3 like the following:

(2) June: Only wanted a couple weeks.
Ada: What? [KB1, 3312]

(3) Cassie: I know someone who’s a good kisser.
Catherine: Who? [KP4, 512]

Clarification Ellipsis (CE) We use this category
to classify reprise fragments used to clarify an utter-
ance that has not been fully comprehended.

(4) A: There’s only two people in the class
B: Two people? [KPP, 352–354]

(5) A: . . . You lift your crane out, so this part would come up.
B: The end? [H5H, 27–28]

2.2 Proposition-denoting NSUs

The remaining NSU classes denote propositions.

3In (Ferńandez and Ginzburg, 2002)’s taxonomy, this cat-
egory is used for non-reprise barewh-phrases, while reprise
sluices are classified as CE. We opt for a more form-based cate-
gory that can convey different readings, without making distinc-
tions between these readings. Recent work by (Fernández et al.,
2004) has shown that sluice interpretations can be efficiently
disambiguated using machine learning techniques.

Short Answer Short Answers are typical re-
sponses to (possibly embedded)wh-questions.

(6) A: Who’s that?
B: My Aunty Peggy. [G58, 33–35]

(7) A: Can you tell me where you got that information from?
B: From our wages and salary department. [K6Y, 94–95]

However, there is no explicitwh-question in the con-
text of a short answer to a CE question (8), nor in
cases where thewh-phrase is ellided (9).

(8) A: Vague and?
B: Vague ideas and people. [JJH,65–66]

(9) A: What’s plus three time plus three?
B: Nine.
A: Right. And minus three times minus three?
B: Minus nine. [J91, 172–176].

Plain Affirmative Answer and Rejection The
typical context of these two classes of NSUs is a po-
lar question.

(10) A: Did you bring the book I told you?
B: Yes./ No.

They can also answerimplicit polar questions, e.g.
CE questions like (11).

(11) A: That one?
B: Yeah. [G4K, 106–107]

Rejections can also be used to respond to assertions:

(12) A: I think I left it too long.
B: No no.[G43, 26–27]

Both plain affirmative answers and rejections are
strongly indicated by lexical material, characterised
by the presence of a “yes” word (“yeah”, “aye”,
“yep”...) or the negative interjection “no”.

Repeated Affirmative Answer Typically, re-
peated affirmative answers are responses to polar
questions. They answer affirmatively by repeating
a fragment of the query.

(13) A: Did you shout very loud?
B: Very loud, yes. [JJW, 571-572]

Helpful Rejection The context of helpful rejec-
tions can be either a polar question or an assertion.
In the first case, they are negative answers that pro-
vide an appropriate alternative (14). As responses to
assertions, they correct some piece of information in
the previous utterance (15).

(14) A: Is that Mrs. John [last or full name]?
B: No, Mrs. Billy. [K6K, 67-68]

(15) A: Well I felt sure it was two hundred pounds a, a week.
B: No fifty pounds ten pence per person. [K6Y, 112–113]



Plain Acknowledgement The class plain ac-
knowledgement refers to utterances (like e.g.
“yeah”, “mhm”, “ok”) that signal that a previ-
ous declarative utterance was understood and/or ac-
cepted.

(16) A: I know that they enjoy debating these issues.
B: Mhm.[KRW, 146–147]

Repeated Acknowledgement This class is used
for acknowledgements that, as repeated affirmative
answers, also repeat a part of the antecedent utter-
ance, which in this case is a declarative.

(17) A: I’m at a little place called Ellenthorpe.
B: Ellenthorpe. [HV0, 383–384]

Propositional and Factual Modifiers These two
NSU classes are used to classify propositional ad-
verbs like (18) and factual adjectives like (19), re-
spectively, in stand-alone uses.

(18) A: I wonder if that would be worth getting?
B: Probably not. [H61, 81–82]

(19) A: So we we have proper logs? Over there?
B: It’s possible.
A: Brilliant! [KSV, 2991–2994]

Bare Modifier Phrase This class refers to NSUs
that behave like adjuncts modifying a contextual ut-
terance. They are typically PPs or AdvPs.

(20) A: . . . they got men and women in the same dormitory!
B: With the same showers! [KST, 992–996]

Conjunction + fragment This NSU class is used
to classify fragments introduced by conjunctions.

(21) A: Alistair erm he’s, he’s made himself coordinator.
B: And section engineer. [H48, 141–142]

Filler Fillers are NSUs that fill a gap left by a pre-
vious unfinished utterance.

(22) A: [. . . ] twenty two percent is er<pause>
B: Maxwell. [G3U, 292–293]

3 The Corpus

To generate the data for our experiments, we col-
lected a corpus of NSUs extracted from the dialogue
transcripts of the British National Corpus (BNC)
(Burnard, 2000).

Our corpus of NSUs includes and extends the sub-
corpus used in (Fernández and Ginzburg, 2002). It

NSU class Total

Plain Acknowledgement 582
Short Answer 105
Affirmative Answer 100
Repeated Ack. 80
CE 66
Rejection 48
Repeated Aff. Ans. 25
Factual Modifier 23
Sluice 20
Helpful Rejection 18
Filler 16
Bare Mod. Phrase 10
Propositional. Modifier 10
Conjunction + frag 5

Total dataset 1109

Table 1: NSU sub-corpus

was created by manual examination of a randomly
selected section of 200-speaker-turns from 54 BNC
files. The examined sub-corpus contains 14,315 sen-
tences. We found a total of 1285 NSUs. Of these,
1269 were labelled according to the typology pre-
sented in the previous section. We also annotated
each of these NSUs with the sentence number of its
antecedent utterance. The remaining 16 instances
did not fall in any of the categories of the taxonomy.
They were labelled as ‘Other’ and were not used in
the experiments.

The labelling of the entire corpus of NSUs was
done by one expert annotator. To assess the relia-
bility of the taxonomy we performed a pilot study
with two additional, non-expert annotators. These
annotated a total of 50 randomly selected instances
(containing a minimum of 2 instances of each NSU
class as labelled by the expert annotator) with the
classes in the taxonomy. The agreement obtained
by the three annotators is reasonably good, yielding
a kappa score of 0.76. The non-expert annotators
were also asked to identify the antecedent sentence
of each NSU. Using the expert annotation as a gold
standard, they achieve 96% and 92% accuracy in this
task.

The data used in the experiments was selected
from our classified corpus of NSUs (1269 instances
as labelled by the expert annotator) following two
simplifying restrictions. First, we restrict our experi-



feature description values

nsu cont content of the NSU (either prop or question) p,q
wh nsu presence of awhword in the NSU yes,no
aff neg presence of a “yes”/“no” word in the NSU yes,no,e(mpty)
lex presence of different lexical items in the NSUp mod,f mod,mod,conj,e(mpty)

ant mood mood of the antecedent utterance decl,n decl
wh ant presence of awhword in the antecedent yes,no
finished (un)finished antecedent fin,unf

repeat repeated words in NSU and antecedent 0-3
parallel repeated tag sequences in NSU and antecedent0-3

Table 2: Features and values

ments to those NSUs whose antecedent is the imme-
diately preceding utterance. This restriction, which
makes the feature annotation task easier, does not
pose a significant coverage problem, given that the
immediately preceding utterance is the antecedent
for the vast majority of NSUs (88%). The set of all
NSUs classified according to the taxonomy, whose
antecedent is the immediately preceding utterance
contains a total of 1109 datapoints. Table 1 shows
the frequency distribution for NSU classes.

The second restriction concerns the instances
classified as plain acknowledgements. Taking the
risk of ending up with a considerably smaller data
set, we decided to leave aside this class of feedback
NSUs, given that (i) they make up more than 50%
of our sub-corpus leading to a data set with very
skewed distributions, and (ii) a priori, they seem one
of the easiest types to identify (a hypothesis that was
confirmed after a second experiment—see below).
We therefore exclude plain acknowledgements and
concentrate on a more interesting and less skewed
data set containing all remaining NSU classes. This
makes up a total of 527 data points (1109− 582). In
section 7.3 we will compare the results obtained us-
ing this restricted data set with those of a second ex-
periment in which plain acknowledgements are in-
corporated.

4 Experimental Setup

In this section we present the features used in our
experiments and describe the automatic procedure
that we employed to annotate the 527 data points
with these features.

4.1 Features

We identify three types of properties that play an im-
portant role in the NSU classification task. The first
one has to do with semantic, syntactic and lexical
properties of the NSUs themselves. The second one
refers to the properties of its antecedent utterance.
The third concerns relations between the antecedent
and the fragment.

Table 2 shows the set of nine features used in our
experiments.

NSU features A set of four features are re-
lated to properties of the NSUs. These are
nsu cont,wh nsu,aff neg and lex . We ex-
pect the featurensu cont to distinguish between
question-denoting and proposition-denoting NSUs.
The featurewh nsu is primarily introduced to iden-
tify Sluices. The featuresaff neg and lex sig-
nal the presence of particular lexical items. They in-
clude a value(e)mpty which allows us to encode
the absence of the relevant lexical items as well.
We expect these features to be crucial to the iden-
tification of Affirmative Answers and Rejection on
the one hand, and Propositional Modifiers, Factual
Modifiers, Bare Modifier Phrases and Conjunction
+ fragment NSUs on the other.

Note that the featurelex could be split into four
binary features, one for each of its non-empty val-
ues. We have experimented with this option as well,
and the results obtained are virtually the same. We
therefore opt for a more compact set of features.
This also applies to the featureaff neg .



Antecedent features We use the features
ant mood,wh ant , and finished to encode
properties of the antecedent utterance. The presence
of a wh-phrase in the antecedent seems to be the
best cue for classifying Short Answers. We expect
the featurefinished to help the learners identify
Fillers.

Similarity features The last two features,
repeat and parallel , encode similarity rela-
tions between the NSU and its antecedent utterance.
They are the only numerical features in our fea-
ture set. The featurerepeat is introduced as
a clue to identify Repeated Affirmative Answers
and Repeated Acknowledgements. The feature
parallel is intended to capture the particular
parallelism exhibited by Helpful Rejections. It
signals the presence of sequences of PoS tags
common to the NSU and its antecedent.

4.2 Data generation

Our feature annotation procedure is similar to the
one used in (Ferńandez et al., 2004), which exploits
the SGML markup of the BNC. All feature values
are extracted automatically using the PoS informa-
tion encoded in the BNC markup. The BNC was
automatically annotated with a set of 57 PoS codes
(known as the C5 tagset), plus 4 codes for punctua-
tion tags, using the CLAWS system (Garside, 1987).

Some of our features, likensu cont and
ant mood, for instance, arehigh levelfeatures that
do not have straightforward correlates in PoS tags.
Punctuation tags (that would correspond to intona-
tion patterns in a spoken dialogue system) help to
extract the values of these features, but the corre-
spondence is still not unique. For this reason we
evaluate our automatic feature annotation procedure
against a small sample of manually annotated data.

We randomly selected 10% of our dataset (52 in-
stances) and extracted the feature values manually.
In comparison with this gold standard, our automatic
feature annotation procedure achieves 89% accu-
racy.

We use only automatically annotated data for the
learning experiments.

5 Baseline

The simplest baseline we can consider is to always
predict the majority class in the data, in our case
Short Answer. This yields a 6.7% weighted f-score.

A slightly more interesting baseline can be ob-
tained by using a one-rule classifier. It chooses the
feature which produces the minimum error. This
creates a single rule which generates a decision tree
where the root is the chosen feature and the branches
correspond to its different values. The leaves are
then associated with the class that occurs most of-
ten in the data, for which that value holds. We use
the implementation of a one-rule classifier provided
in the Weka toolkit (Witten and Frank, 2000).

In our case, the feature with the minimum error is
aff neg . It produces the following one-rule deci-
sion tree, which yields a 32.5% weighted f-score.

aff neg :
yes -> AffAns
no -> Reject
e -> ShortAns

Figure 1: One-rule tree

Finally, we consider a more substantial baseline
that uses the combination of four features that pro-
duces the best results. The four-rule tree is con-
structed by running the J4.8 classifier (Weka’s im-
plementation of the C4.5 system (Quinlan, 1993))
with all features and extracting only the four first
features from the root of the tree, which interestingly
are all NSU features. This creates a decision tree
with four rules, one for each feature used, and nine
leaves corresponding to nine different NSU classes.

nsu cont :
q -> wh nsu :

yes -> Sluice
no -> CE

p -> lex :
conj -> ConjFrag
p mod -> PropMod
f mod -> FactMod
mod -> BareModPh
e -> aff neg :

yes -> AffAns
no -> Reject
e -> ShortAns

Figure 2: Four-rule tree

This four-rule baseline yields a 62.33% weighted



f-score. Detailed results for the three baselines con-
sidered are shown in Tables 3, 4 and 5, respectively.
All results reported were obtained by performing 10-
fold cross-validation.

The results (here and in the sequel) are presented
as follows: The tables show the recall, precision and
f-measure for each class. To calculate the overall
performance of the algorithm, we normalise those
scores according to the relative frequency of each
class. This is done by multiplying each score by
the total of instances of the corresponding class and
then dividing by the total number of datapoints in the
data set. The weighted overall recall, precision and
f-measure, shown in the bottom row of the tables, is
then the sum of the corresponding weighted scores.

NSU class recall prec f1

ShortAns 100.00 20.10 33.50

Weighted Score 19.92 4.00 6.67

Table 3: Majority class baseline

NSU class recall prec f1

ShortAns 95.30 30.10 45.80
AffAns 93.00 75.60 83.40
Reject 100.00 69.60 82.10

Weighted Score 45.93 26.73 32.50

Table 4: One-rule baseline

NSU class recall prec f1

CE 96.97 96.97 96.97
Sluice 100.00 95.24 97.56
ShortAns 94.34 47.39 63.09
AffAns 93.00 81.58 86.92
Reject 100.00 75.00 85.71
PropMod 100.00 100.00 100.00
FactMod 100.00 100.00 100.00
BareModPh 80.00 72.73 76.19
ConjFrag 100.00 71.43 83.33

Weighted Score 70.40 55.92 62.33

Table 5: Four-rule baseline

6 Machine Learners

We use three different machine learners, which im-
plement three different learning strategies: SLIP-
PER, a rule induction system presented in (Cohen
and Singer, 1999); TiMBL, a memory-based algo-
rithm created by (Daelemans et al., 2003); and Max-
Ent, a maximum entropy algorithm developed by
Zhang Le (Le, 2003). They are all well established,
freely available systems.

SLIPPER As in the case of Weka’s J4.8, SLIP-
PER is based on the popular C4.5 decision tree al-
gorithm. SLIPPER improves this algorithm by us-
ing iterative pruning and confidence-rated boosting
to create a weighted rule set. We use SLIPPER’s
optionunordered , which finds a rule set that sep-
arates each class from the remaining classes, giving
rules for each class. This yields slightly better re-
sults than the default setting. Unfortunately, it is not
possible to access the output rule set when cross-
validation is performed.

TiMBL As with all memory-based learning algo-
rithms, TiMBL computes the similarity between a
new test instance and the training instances stored
in memory using a distance metric. As a distance
metric we use themodified value difference metric,
which performs better than the default setting (over-
lap metric). In light of recent studies (Daelemans
and Hoste, 2002), it is likely that the performance
of TiMBL could be improved by a more systematic
optimisation of its parameters, as e.g. in the experi-
ments presented in (Gabsil and Lemon, 2004). Here
we only optimise the distance metric parameter and
keep the default settings for the number of nearest
neighbours and feature weighting method.

MaxEnt Finally, we experiment with a maximum
entropy algorithm, which computes the model with
the highest entropy of all models that satisfy the con-
straints provided by the features. The maximum en-
tropy toolkit we use allows for several options. In
our experiments we use 40 iterations of the default
L-BFGS parameter estimation (Malouf, 2002).

7 Results: Evaluation and Discussion

Although the classification algorithms implement
different machine learning techniques, they all yield



very similar results: around an 87% weighted f-
score. The maximum entropy model performs best,
although the difference between its results and those
of the other algorithms is not statistically significant.
Detailed recall, precision and f-measure scores are
shown in Appendix I (Tables 8, 9 and 10).

7.1 Comparison with the baseline

The four-rule baseline algorithm discussed in sec-
tion 5 yields a 62.33% weighted f-score. Our best re-
sult, the 87.75% weighted f-score obtained with the
maximal entropy model, shows a 25.42% improve-
ment over the baseline system. A comparison of the
scores obtained with the different baselines consid-
ered and all learners used is given in Table 6.

System w. f-score

Majority class baseline 6.67
One rule baseline 32.50
Four rule baseline 62.33

SLIPPER 86.35
TiMBL 86.66
MaxEnt 87.75

Table 6: Comparison of weighted f-scores

It is interesting to note that the four-rule baseline
achieves very high f-scores with Sluices and CE—
around 97% (see Table 5). Such results are not
improved upon by the more sophisticated learn-
ers. This indicates that the featuresnsu cont and
wh nsu used in the four-rule tree (figure 2) are suffi-
cient indicators to classify question-denoting NSUs.
The same applies to the classes Propositional Modi-
fier and Factual Modifier. The baseline already gives
f-scores of 100%. This is in fact not surprising,
given that the disambiguation of these categories is
tied to the presence of particular lexical items that
are relatively easy to identify.

Affirmative Answers and Short Answers achieve
high recall scores with the baseline systems (more
than 90%). In the three baselines considered, Short
Answer acts as the default category. Therefore, even
though the recall is high (given that Short Answer
is the class with the highest probability), precision
tends to be quite low. By using features that help
to identify other categories with the machine learn-
ers we are able to improve the precision for Short

Answers by around 36%, and the precision of the
overall classification system by almost 33%—from
55.90% weighted precision obtained with the four-
rule baseline, to the 88.41% achieved with the max-
imum entropy model.

7.2 Error analysis: some comments

The class with the lowest scores is clearly Helpful
Rejection. TiMBL achieves a 39.92% f-measure for
this class. The maximal entropy model, however,
yields only a 10.37% f-measure. Examination of the
confusion matrices shows that∼27% of Help Re-
jections were classified as Rejections,∼15% as Re-
peated Acknowledgements, and∼26% as Short An-
swers. This indicates that the featureparallel ,
introduced to identify this type of NSUs, is not a
good enough cue. Whether similar techniques to the
ones used e.g. in (Poesio et al., 2004; Schlangen,
2005) to compute semantic similarity could be used
here to derive a notion of semantic contrast that
would complement this structural feature is an issue
that requires further investigation.

7.3 Incorporating plain acknowledgements

As explained in section 3, the data set used in the
experiments reported in the previous sections ex-
cluded plain acknowledgements. The fact that plain
acknowledgements are the category with the high-
est probability in the sub-corpus (making up more
than 50% of our total data), and that they do not
seem particularly difficult to identify could affect
the performance of the learners by inflating the re-
sults. Therefore we left them out in order to work
with a more balanced data set and to minimise the
potential for misleading results. In a second exper-
iment we incorporated plain acknowledgements to
measure their effect on the results. In this section
we discuss the results obtained and compare them
with the ones achieved in the initial experiment.

To generate the annotated data set an additional
valueack was added to the featureaff neg . This
value is invoked to encode the presence of ex-
pressions typically used in plain acknowledgements
(“mhm”, “aha”, “right”, etc.). The total data set
(1109 data points) was automatically annotated with
the features modified in this way by means of the
procedure described in section 4.2. The three ma-
chine learners were then run on the annotated data.



As in our first experiment the results obtained
are very similar across learners. All systems yield
around an 89% weighted f-score, a slightly higher
result than the one obtained in the previous exper-
iment. Detailed scores for each class are shown in
Appendix II (Tables 11, 12 and 13). As expected,
the class Plain Acknowledgement obtains a high f-
score (95%). This, combined with its high probabil-
ity, raises the overall performance a couple of points
(from ∼87% to∼89% weighted f-score). The im-
provement with respect to the baselines, however, is
not as large: a simple majority class baseline already
yields 36.28% weighted f-score. Table 7 shows a
comparison of all weighted f-scores obtained in this
second experiment.

System w. f-score

Majority class baseline 36.28
One rule baseline 54.26
Four rule baseline 68.38

SLIPPER 89.51
TiMBL 89.65
MaxEnt 89.88

Table 7: Comparison of w. f-scores - with ack.

The feature with the minimum error used to derived
the one-rule baseline is againaff neg , this time
with the new valueack as part of its possible values
(see figure 3 below). The one-rule baseline yields
a weighted f-score of 54.26%, while the four-rule
baseline goes up to a weighted f-score of 68.38%.4

aff neg :
yes -> Ack
ack -> Ack
no -> Reject
e -> ShortAns

Figure 3: One-rule tree - with ack.

In general the results obtained when plain acknowl-
edgements are added to the data set are very similar
to the ones achieved before. Note however that even
though the overall performance of the algorithms is
slightly higher than before (due to the reasons men-
tioned above), the scores for some NSU classes are

4The four-rule tree can be obtained by substituting the last
node in the tree in figure 2 (section 5) for the one-rule tree in
figure 3.

actually lower. The most striking case is the class
Affirmative Answer, which in TiMBL goes down
more than 10 points (from 93.61% to 82.42% f-
score—see Tables 9 and 12 in the appendices). The
tree in figure 3 provides a clue to the reason for this.
When the NSU contains a “yes” word (first branch
of the tree) the class with the highest probability is
now Plain Acknowledgement, instead of Affirmative
Answer as before. This is due to the fact that, at
least in English, expressions like e.g. “yeah” (con-
sidered here as “yes” words) are potentially ambigu-
ous between acknowledgements and affirmative an-
swers.5 This ambiguity and the problems it entails
are also noted by (Schlangen, 2005), who addresses
the problem of identifying NSUs automatically. As
he points out, the ambiguity of “yes” words is one
of the difficulties encountered when trying to dis-
tinguish between backchannels (plain acknowledge-
ments in our taxonomy) and non-backchannel frag-
ments. This is a tricky problem for Schlangen as
his fragment identification procedure does not have
access to the context. Although we do use fea-
tures that capture contextual information, determin-
ing whether the antecedent utterance is declarative
or interrogative (which one would expect to be the
best clue to disambiguate between Plain Acknowl-
edgement and Affirmative Answer) is not always
trivial.

8 Conclusions and Future Work

We have presented a machine learning approach
to the problem of Non-Sentential Utterance (NSU)
classification in dialogue. We have described a
procedure for predicting the appropriate NSU class
from a fine-grained typology of NSUs derived from
a corpus study performed on the BNC, using a set
of automatically annotated features. We have em-
ployed a series of simple baseline methods for clas-
sifying NSUs. The most successful of these meth-
ods uses a decision tree with four rules and gives a
weighted f-score of 62.33%. We then applied three
machine learning algorithms to a data set which in-
cludes all NSU classes except Plain Acknowledge-
ment and obtained a weighted f-score of approx-

5Arguably this ambiguity would not arise in French given
that, according to (Beyssade and Marandin, 2005), in French
the expressions used to acknowledge an assertion are different
from those used in affirmative answers to polar questions.



imated 87% for all of them. This improvement,
taken together with the fact that the three algorithms
achieve very similar results suggests that our fea-
tures offer a reasonable basis for machine learning
acquisition of the typology adopted. However, some
features likeparallel , introduced to account for
Help Rejections, are in need of considerable im-
provement.

In a second experiment we incorporated plain ac-
knowledgements in the data set and ran the ma-
chine learners on it. The results are very similar
to the ones achieved in the previous experiment, if
slightly higher due to the high probability of this
class. The experiment does show though a poten-
tial confusion between plain acknowledgements and
affirmative answers that did not show up in the pre-
vious experiment.

In future work we will integrate our NSU classi-
fication techniques into an Information State-based
dialogue system (based on SHARDS (Fernández et
al., to appear) and CLARIE (Purver, 2004)), that as-
signs a full sentential reading to fragment phrases
in dialogue. This will require a refinement of our
feature extraction procedure, which will not be re-
stricted solely to PoS input, but will also benefit
from other information generated by the system,
such as dialogue history and intonation.
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Appendix I: Results w/o plain
acknowledgements (527 datapoints)

NSU class recall prec f1

CE 93.64 97.22 95.40
Sluice 96.67 91.67 94.10
ShortAns 83.93 82.91 83.41
AffAns 93.13 91.63 92.38
Reject 83.60 100.00 91.06
RepAffAns 53.33 61.11 56.96
RepAck 85.71 89.63 87.62
HelpReject 28.12 20.83 23.94
PropMod 100.00 90.00 94.74
FactMod 100.00 100.00 100.00
BareModPh 100.00 80.56 89.23
ConjFrag 100.00 100.00 100.00
Filler 100.00 62.50 76.92

Weighted Score 86.21 86.49 86.35

Table 8: SLIPPER

NSU class recall prec f1

CE 94.37 91.99 93.16
Sluice 94.17 91.67 92.90
ShortAns 88.21 83.00 85.52
AffAns 92.54 94.72 93.62
Reject 95.24 81.99 88.12
RepAffAns 63.89 60.19 61.98
RepAck 86.85 91.09 88.92
HelpReject 35.71 45.24 39.92
PropMod 90.00 100.00 94.74
FactMod 97.22 100.00 98.59
BareModPh 80.56 100.00 89.23
ConjFrag 100.00 100.00 100.00
Filler 48.61 91.67 63.53

Weighted Score 86.71 87.25 86.66

Table 9: TiMBL

NSU class recall prec f1

CE 96.11 96.39 96.25
Sluice 100.00 95.83 97.87
ShortAns 89.35 83.59 86.37
AffAns 92.79 97.00 94.85
Reject 100.00 81.13 89.58
RepAffAns 68.52 65.93 67.20
RepAck 84.52 81.99 83.24
HelpReject 5.56 77.78 10.37
PropMod 100.00 100.00 100.00
FactMod 97.50 100.00 98.73
BareModPh 69.44 100.00 81.97
ConjFrag 100.00 100.00 100.00
Filler 62.50 90.62 73.98

Weighted Score 87.11 88.41 87.75

Table 10: MaxEnt

Appendix II: Results with plain
acknowledgements (1109 datapoints)

NSU class recall prec f1

Ack 95.42 94.65 95.03
CE 95.00 94.40 94.70
Sluice 98.00 93.33 95.61
ShortAns 87.32 86.33 86.82
AffAns 82.40 86.12 84.22
Reject 79.01 100.00 88.28
RepAffAns 60.33 81.67 69.40
RepAck 81.81 87.36 84.49
HelpReject 37.50 21.88 27.63
PropMod 80.00 80.00 80.00
FactMod 100.00 100.00 100.00
BareModPh 57.14 57.14 57.14
ConjFrag 100.00 100.00 100.00
Filler 59.38 40.62 48.24

Weighted Score 89.18 90.16 89.51

Table 11: SLIPPER

NSU class recall prec f1

Ack 95.61 95.16 95.38
CE 92.74 95.00 93.86
Sluice 100.00 98.00 98.99
ShortAns 85.56 84.58 85.07
AffAns 80.11 84.87 82.42
Reject 95.83 78.33 86.20
RepAffAns 70.37 66.67 68.47
RepAck 85.06 82.10 83.55
HelpReject 31.25 38.54 34.51
PropMod 100.00 100.00 100.00
FactMod 100.00 100.00 100.00
BareModPh 78.57 85.71 81.99
ConjFrag 100.00 87.50 93.33
Filler 40.62 53.12 46.04

Weighted Score 90.00 89.45 89.65

Table 12: TiMBL

NSU class recall prec f1

Ack 95.61 95.69 95.65
CE 95.24 95.00 95.12
Sluice 100.00 98.00 98.99
ShortAns 87.00 83.94 85.44
AffAns 86.12 85.23 85.67
Reject 97.50 79.94 87.85
RepAffAns 68.33 66.67 67.49
RepAck 84.23 77.63 80.80
HelpReject 6.25 75.00 11.54
PropMod 100.00 100.00 100.00
FactMod 96.88 100.00 98.41
BareModPh 71.43 100.00 83.33
ConjFrag 100.00 100.00 100.00
Filler 46.88 81.25 59.45

Weighted Score 90.35 90.63 89.88

Table 13: MaxEnt


