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Abstract 

The goal of dialogue management in a spoken 
dialogue system is to take actions based on 
observations and inferred beliefs.  To ensure 
that the actions optimize the performance or 
robustness of the system, researchers have 
turned to reinforcement learning methods to 
learn policies for action selection.  To derive 
an optimal policy from data, the dynamics of 
the system is often represented as a Markov 
Decision Process (MDP), which assumes that 
the state of the dialogue depends only on the 
previous state and action.  In this paper, we 
investigate whether constraining the state 
space by the Markov assumption, especially 
when the structure of the state space may be 
unknown, truly affords the highest reward.  In 
a simulation experiment conducted in the con-
text of a dialogue system for interacting with a 
speech-enabled web browser, models under 
the Markov assumption did not perform as 
well as an alternative model which attempts to 
classify the total reward with accumulating 
features.  We discuss the implications of the 
study as well as limitations. 

1 Introduction 

The goal of dialogue management in a spoken dialogue 
system is to take actions based on observations and in-
ferred beliefs.  Dialogue management plays a crucial 
role in the overall performance of the system since 
speech recognition is often quite poor, due to noisy or 
unexpected input.  With robust dialogue management, 
the system can still take actions that maintain the task at 
hand.  Unfortunately, coming up with a suitable set of 
dialogue management strategies is no easy task.  Tradi-
tional methods typically involve authoring and tuning 
complicated hand-crafted rules that require considerable 

deployment time and cost.  Statistical methods, on the 
other hand, hold the promise of robust performance 
from models that can be trained on data and optimized, 
so long as the data is representative of what the dialogue 
system can expect to encounter during deployment 
(Young, 2000). 

Among the more popular statistical methods, re-
searchers have turned to reinforcement learning meth-
ods since it is possible to derive a policy for action 
selection that is guaranteed to be optimal with respect to 
the data given that the dynamics of the system is repre-
sented as a Markov Decision Process (MDP), which 
assumes that the state of the dialogue depends only on 
the previous state and action.  The Markov assumption 
is made as a modeling choice for the data.  Hence, an 
important topic of inquiry is whether this choice is ap-
propriate and beneficial. 

In this paper, we explore the Markov assumption on 
both theoretical and empirical grounds.  In particular, 
we investigate whether constraining the state space by 
the Markov assumption truly affords the highest reward, 
especially when the structure of the state space may be 
unknown, which is typically the case.  This paper is 
organized as follows.  In Section 2, we provide relevant 
background on reinforcement learning with specific 
focus on the modeling assumptions relevant to spoken 
dialogue.  In Section 3, we challenge the modeling as-
sumptions by proposing alternative models to the MDP 
that vary the temporal relations among features.  All 
competing models generate dialogue management 
strategies for interacting with a speech-enabled web 
browser, and we explain in detail how we built these 
models from data.  In Section 4, we evaluate the per-
formance of all the models in a simulation experiment.  
Finally, in Section 5, we discuss the implications and 
limitations of the experimental study. 

2 Background 

Reinforcement learning addresses the problem of how 
an agent should act in dynamic environments so as to 
maximize a scalar reward signal (Sutton & Barto, 1998).  



This problem is manifest in spoken dialogue systems 
since the system must take sequential actions based on 
its observations, such as user utterances, and its beliefs.  
A central debate in the literature concerns the use of 
models.  Model-free approaches do not explicitly repre-
sent the dynamics of the environment, but instead di-
rectly approximate a value function that measures the 
desirability of each environment state.  These ap-
proaches offer near-optimal solutions that depend on 
systematic exploration of all actions in all states (Wat-
kins & Dayan, 1992).  On the other, model-based ap-
proaches explicitly represent a model of the dynamics of 
the environment to compute an estimate of the expected 
value of each action.  With a model, the agent can re-
duce the number of steps to learn a policy by simulating 
the effects of its actions at various states (Sutton & 
Barto, 1998).  Perhaps for this reason, and for the fact 
that it is possible to derive a policy that is guaranteed to 
be optimal with respect to the data, spoken dialogue 
researchers have by and large pursued model-based re-
inforcement learning methods (see e.g., Levin et al., 
1998; Singh et al., 2002). 

The framework underlying model-based reinforce-
ment learning is that of the MDP, which can be charac-
terized by a tuple (S, A, P, R) with: 

 
• A state space S with states Ss ∈ .  The state space 

may consist of features related to spoken utter-
ances, user and system actions, and so forth.  We 
discuss this further in the next section. 

• An action space A with actions Aa ∈ .  The action 
space comprises all system actions in dialogue 
management, such as confirming various slots, or 
engaging in a user requested service. 

• Unknown state transition probabilities 
]1,0[: aSASP ×× , where ),|( 1 ttt ASSP +  gives 

the probability of a transition from a state Ss ∈  
and action Aa ∈  at time slice t to another state 

Ss ∈  in the next time slice.  The distribution P 
defines the dynamics of the environment, and con-
stitutes the basis for the Markov assumption. 

• A reward function ℜ× aASR : , where 

),( ttt ASRR =  assigns an immediate reward at 

time slice t for taking action Aa ∈  in state Ss ∈ .  
R plays a critical role in the policy that is learned 
for dialogue management as we discuss further be-
low. 

 
In order for a dialogue system to take actions ac-

cording to the MDP, it is necessary to be able to derive 
a policy AS a:π  mapping states to actions so that it 
maximizes some specified objective function for the 
long term reward.  How much of the future the system 

takes into account in making its decisions at any given 
moment depends upon the specified horizon for the ob-
jective function.  Perhaps the simplest objective func-
tion is the total reward over a finite horizon, which 
specifies that at any given time t, the system should op-
timize its expected reward for the next h steps: 
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Alternatively, the system can take the infinite long 

term reward into account with future rewards geometri-
cally discounted by a discount factor γ so as to motivate 
the dialogue system to complete the interaction as soon 
as possible: 
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where 0 ≤ γ < 1 for computability purposes.  While it is 
theoretically possible for a spoken dialogue to continue 
ad infinitum, most systems are designed to avoid infi-
nite regressions where, for example, the system engages 
in the same repair over and over (e.g., “I’m sorry, can 
you repeat that?”).  In practice, most dialogues are finite 
horizon, given that oftentimes growing user frustration 
ultimately leads to the termination of the interaction. 

In place of (1) and (2) above, the objective function 
can also be based on post-hoc measures such as usabil-
ity scores (Singh et al., 2002; Walker et al., 2001b), and 
construed to reflect whatever qualities a dialogue de-
signer may want the system to possess, such as the abil-
ity to re-tool the system for future use (Walker et al., 
2001a).  In short, the assignment of the reward function 
reflects the desired behavior of the system. 

For the rest of this paper, we confine our discussion 
to the finite horizon MDP where we assume for simplic-
ity that all variables in the state space can be fully ob-
served by the system.  When state variables are included 
that are not fully observable, such as the user’s intention 
in producing an utterance, the dialogue constitutes a 
Partially Observable MDP (see e.g., Paek & Horvitz, 
2000; Roy et al., 2000; Zhang et al., 2001).  The 
POMDP also employs the Markov assumption. 

Building on (1), an optimal policy can be learned 
through various algorithms that involve finding the op-
timal value function: 
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where the optimal value of a state s is the expected re-
ward for the next h steps, if the system starts in s at time 



t and executes the optimal policy π.  The optimal value 
function (3) is unique and can be defined recursively 
using the Bellman equations: 
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where the value of a state s at time t is the expected im-
mediate reward plus the expected value of the next state 
at time t+1 using the best possible action.  The simulta-
neous equations engendered by (4) can be solved effi-
ciently with dynamic programming.  Given the optimal 
value function, the optimal policy is simply: 
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2.1 Influence Diagram 

The finite horizon MDP can be viewed as a special case 
of an influence diagram, a more general framework for 
graphical modeling that facilitates decision-theoretic 
optimization.  An influence diagram is a directed 
acyclic graph composed of three types of nodes: chance 
nodes, decision nodes and value nodes.  The influence 
diagram also contains a single utility node that is a de-
terministic function of all the value nodes.  Connecting 
the nodes are two types of arcs: probabilistic arcs and 
informational arcs.  Arcs pointing into chance or value 
nodes specify a probabilistic dependency between a 
child and its parents.  Arcs pointing into a decision node 
are “informational” in that the parents of the decision 
node are assumed to be known or observed before a 
decision is made.  Although the traditional definition of 
an influence diagram (Howard & Matheson, 1981) per-
mits only one value or utility node, our use of multiple 
value nodes is simply a way of factoring the utility func-
tion and has been used by other researchers (Tatman & 
Shachter, 1990; Lauritzen & Nilsson, 2001).  

Figure 1 displays an influence diagram for a finite 
horizon MDP where all states Ss ∈  have been mapped 
to chance nodes, all actions Aa ∈  to decision nodes, 
and all R to value nodes expressing the immediate re-
ward for taking action a in state s at time t.  A utility 
node at the bottom of the Figure sums all the immediate 
rewards as in (3).  Technically, since the MDP is fully 
observable at any given time slice, informational arcs 
point into each decision node from the previous time 
slice, though we have left them out to reduce clutter.  
The influence diagram also contains a set of parameters 
Θ that characterize the conditional distributions of the 
non-decision nodes, defined as: 
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where Pa(X) denotes the set of parents for node X, and 
Θx denotes the subset of parameters in Θ that define the 
local probability distribution of X.  The transition prob-
abilities P for the MDP are clearly subsumed by (6) and 
reside in the node St+1, as shown in the Figure. 

We discuss influence diagrams for two reasons.  
First, influence diagrams allow us to understand what 
kinds of alternative models we could experiment with in 
competition to the MDP, since the transition probabili-
ties P could easily depend on state variables other than 
just those in the previous time, as we demonstrate in the 
next section.  And second, influence diagrams provide a 
framework in which to address what state variables 
should be included in S at all if a dialogue designer is 
unsure about what variables may be important for re-
ceiving an immediate reward. 

2.2 MDP Assumptions 

Before discussing the assumptions underlying the MDP, 
it is important to consider the basic units of dialogue 
modeling; that is, what basic units form a dialogue 
process.  Since all dialogue systems respond to user 
utterances, perhaps the simplest way to model the dy-
namics of the interaction is to divide the temporal proc-
ess by user utterances.  In other words, a dialogue “turn” 
begins at the start of each new user utterance.  While 
alternative ways of measuring time exist, such as ques-
tion-answer pairs or contributions (Clark, 1996), they 
typically require knowledge about the type of utterance 
or action that was produced; for example, that an utter-
ance was an “uptake.”  For simplicity, we take the user 
utterance as most basic unit of dialogue progression.  
Given an utterance then, the most basic features that a 
system can observe before taking an action are those 
that pertain to the utterance itself.  As such, we consider 
that at every turn, a dialogue system can observe at least 
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Figure 1. An influence diagram model of a finite hori-
zon MDP.  Informational arcs have been left out. 



the features that can be known about the current utter-
ance at hand.  We now discuss modeling assumptions 
that can be made on top of this basis. 

The MDP framework relies on several assumptions, 
not all of which may be valid in the context of spoken 
dialogue.  The most obvious assumption is the Markov 
assumption.  One reason for making the Markov as-
sumption is that it allows the Bellman equations in (4) 
to exploit the “Optimality Principle,” which states that 
whatever the initial state may be, all remaining 
decisions must be optimal with regard to the state 
following the first decision (Bellman, 1957).  This al-
lows the optimal policy (5) to be solved efficiently us-
ing dynamic programming.  However practical this 
reason may be, whether or not a model constrained by 
the Markov assumption yields the highest reward as 
compared to models constrained by other assumptions is 
still an empirical question, one which we investigate 
later. 

From a linguistic perspective, it seems counter-
intuitive to believe, as the Optimality Principle implies, 
that an optimal policy based just on the previous turn 
(i.e., the features of the previous utterance) provide as 
good of a policy as that based on the full history of in-
teraction.  After all, most linguists acknowledge that in 
a conversation, participants collaboratively build up 
shared knowledge about what has been said and mutu-
ally understood (Clark, 1996).  This shared knowledge, 
or common ground, is cumulative in nature and under-
lies all future interactions.  In the next section, we con-
sider a cumulative model with no temporal assumptions 
in contrast to the MDP.  

A response to this criticism is to argue that if aspects 
of history are important for making future decisions, 
they could be incorporated with global states that sum-
marize what has been learned so far.  However, this 
argument merely avoids the problem by adding addi-
tional assumptions, this time relating to what variables 
should be included in the state space.  Most policy 
guided dialogue systems specify the state space up 
front, delineating all state variables that are assumed to 
be relevant for receiving a reward.  These variables are 
defined and restricted so as to not only facilitate the 
Markov assumption, but also expedite tractable infer-
ence.  Unfortunately, in practice, most of the time dia-
logue designers do not know in advance what variables 
should be included in the state space.  In the next sec-
tion, we discuss what a dialogue designer could do in 
such a situation.  For now, it is enough to say that if 
possible, we should like to build models that rely on as 
few assumptions as necessary. 

Finally, another assumption underlying the MDP is 
that the probabilities of making state transitions or re-
ceiving specific rewards do not change over time; that 
is, they are “stationary.”  For dialogue systems that pro-
vide services across a large population of users, the sta-

tionary assumption may indeed hold since individual 
differences are generalized.  However, for dialogue sys-
tems that provide services to a limited number of users, 
it is not unreasonable to believe that people may change 
their preferences about how they want the system to 
behave around them over time.  If unobservable states 
such as user frustration are included in the model, they 
may change over time as well.  In such cases, it is in-
cumbent upon the system to continually adapt its policy.  
Elsewhere, we discuss how a dialogue system could 
adapt its policy in real-time to a particular user through 
online feedback (Chickering & Paek, 2005). 

3 Alternative Models 

In the previous section, we discussed how the Markov 
assumption can be tied together with the selection of 
state space.  Unfortunately, dialogue designers who 
want to utilize reinforcement learning for dialogue man-
agement typically do not know in advance what vari-
ables are relevant for receiving a reward and how they 
are related to each other: that is, the structure of the state 
space is unknown.  Rather than choosing variables so as 
to facilitate the Markov assumption, we propose that the 
state space be learned from data along with the policy.  
This can be done using techniques for learning the pa-
rameters and structure of a Bayesian network, extended 
to influence diagrams (Heckerman, 1995; Chickering & 
Paek, 2005). 

To derive the structure of the graphical models we 
describe below, including the MDP, we learned influ-
ence diagrams employing decision trees to encode local 
conditional distributions using a tool that performs 
Bayesian structure search (Chickering, 2002).  Decision 
trees can be learned for both discrete and continuous 
variables, where splits in the trees are made through 
greedy search guided by a Bayesian scoring function 
(Chickering et al., 1997).  In learning the influence dia-
grams, we only specified constraints on the state space, 
such as the Markov assumption, for which we wanted to 
conduct experiments.  In particular, we built competing 
models to the MDP that vary the nature of the temporal 
relations between features.  We did not assume that the 
state space was known beforehand, and as such, we in-
cluded all variables that we were able to log for interact-
ing with a command-and-control, speech-enabled web 
browser.  We now describe the data collection and mod-
els we built. 

3.1 Data Collection 

The data from which we built all models was for spoken 
dialogue interaction with a speech-enabled web 
browser.  As we describe in Chickering & Paek (2005), 
the data was generated using a simulation environment, 
where all possible system actions to a user command 
were systematically explored.  The simulation pro-



ceeded as follows.  First, we randomly selected a com-
mand from the command-and-control grammar for the 
browser (e.g., “go back”, “go forward”, “go to link x”).  
Using state-of-the-art TTS generation, we produced an 
utterance for the command, varying all possible TTS 
parameters, such as engine, pitch, rate, and volume.  
Since we were interested in building models that were 
robust to noise, we included empty commands and 
added various types of background noise to see if a 
model could learn to ignore spurious commands.  The 
produced utterance was then recognized by a Microsoft 
Speech API (SAPI) recognition engine, whereupon we 
logged all possible SAPI events.  These events, and 
functions of these events, constituted the feature set, 
which roughly fell into the following three broad cate-
gories: 

 
1. Within-utterance ASR features: Features pertaining 

to a single utterance such as the number of hy-
potheses in an n-best list of variable length, the 
mean of the confidence scores, etc. 

2. Between-utterance ASR features: Features pertain-
ing to matches across utterances, such as whether 
the top rule in the n-best list matched the previous 
top rules, etc. 

3. Dialogue features: Features pertaining to the over-
all dialogue such as the number of repairs so far, 
whether the system has engaged in a confirmation 
yet, etc. 

 
It is important to note that both the between-utterance 
ASR features and dialogue features span multiple time 
slices.  By including these features, we leave open the 
possibility that historical variables may very well be 
relevant for receiving a reward.  In building the models, 
we let the learning algorithm decide whether to include 
these variables in its decision trees. 

Once the produced utterance was recognized and 
events recorded, the simulation took a random action.  
For the first utterance, the simulation could either exe-
cute the most likely command in the n-best list 
(DoTop), confirm among the top three choices while 
giving the option that it may not be any of them (Con-
firm), ignore the utterance as spurious (Ignore), or ask 
for a repetition (Repeat).  For the second utterance, 
Only DoTop, Confirm, and Repeat were possible, and 
for the third utterance, only DoTop and Bail, an action 
which makes an apology and terminates the dialogue, 
were possible.  We did not allow the interaction to ex-
tend beyond the third utterance given the typically low 
tolerance users have in command-and-control settings 
for extended repairs. 

If the simulation selected DoTop, Ignore, or Bail, 
the session finished and the simulation could now be 
rewarded.  For taking the action DoTop, if the result of 
executing the most likely command matched the “true” 

command (i.e., the one sampled from the grammar), the 
simulation received a positive scalar reward (+100); 
otherwise, it received a negative reward (-100).  For 
taking the action Ignore, if the true command was 
empty, it received +100, else -100.  For Bail, it received 
-100.  If either the repair action Confirm or Repeat was 
selected, a penalty (-75) was received, and the simula-
tion proceeded to produce a confirmation choice that 
matched the true command or a repetition of the previ-
ous utterance respectively. 

In summary, by sampling a command from the 
grammar and then responding to it with random actions 
until the dialogue finished and rewards were assigned, 
the simulation environment amassed data that could be 
used to learn which features and actions were most rele-
vant for receiving a reward.  

3.2 Types of Models 

In order to validate empirically whether constraining the 
state space by the Markov assumption, especially when 
the structure of the state space may be unknown, truly 
affords the highest reward, we built three types of alter-
native influence diagrams that vary in the extent of their 
temporal dependencies using the simulation data. 

Figure 2 displays the alternative models.  Besides 
learning an MDP, which has a first order Markov de-
pendency, we also learned a second order Markov 
model where the third time slice state variables could 
also depend on those in the first time slice, as shown in 
the top of the Figure.  In preparing the data for the sec-
ond order model, we added between-utterance ASR 
features such as where the top command in the third 
slice occurred in the n-best lists of the second and first 
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Figure 2. Alternative models to the MDP that vary along 
the Markov scale.  The utility node in the top two mod-
els have been left out, as well as informational arcs in 
the second order model. 



time slices.  We also built a zero order model without 
any dependencies between time slices, as shown in the 
middle of the Figure.   

Finally, we built a cumulative total reward model for 
each time slice where state features accumulate with 
each successive time slice, as shown in the bottom of 
the Figure 2.  For this model, the local system actions 
optimize the total utility function, as opposed to the 
immediate reward function.  This kind of model had 
been applied previously in the call-routing domain to 
transfer calls so as to minimize caller time and opera-
tional expense (Paek & Horvitz, 2004).  In effect, the 
cumulative total reward model falls under the rubric of a 
“model-free” approach in that it does not explicitly rep-
resent the dynamics of the environment, but rather di-
rectly predicts the long term reward.  Fundamentally, 
the cumulative model attempts to classify the total re-
ward, which given the small state space for our domain, 
was discrete, though in more complicated domains a 
regression could be learned. 

Building each model entailed piecewise construction 

of portions of the model by the time slice variables in-
volved.  For those models involving just the first time 
slice variables, we had over 20,000 simulation sessions 
as training data.  For those models involving the first 
and second time slices, we had over 10,000 sessions.  
And finally, for those models involving all three time 
slices, we had over 5,000 sessions. 

Table 1 summarizes the complexity of the models as 
a function of the number of splits in the decision trees 
that make up the local probability distributions, and the 
number of state space variables.  For the first and sec-
ond order Markov models we also built “limited” ver-
sions, where the state space variables were limited to 
those that directly predicted the immediate reward as 
parents.  This had the effect of reducing the complexity 
of each respective model by a factor of 6 for the number 
of splits, and 4 for the number of state variables.  The 
simplest model by far was the cumulative total reward 
model which had roughly 50 times less splits than any 
of the unlimited Markov models, and 10 times less vari-
ables than the MDP model. 

Figure 3 shows the limited MDP learned from the 
simulation data.  For the first time slice, no dependen-
cies between state variables are necessary since all fea-
tures of the first utterance are fully observed.  Note that 
each time slice has a number of features related to the n-
best list confidence scores.  This is not surprising given 
that most hand-crafted dialogue management strategies 
utilize some kind of confidence threshold for taking 
actions (e.g., “Do the top recognized command if its 
confidence is greater than 95%).  The mean confidence 
score in the n-best list appears in every time slice sug-
gesting that it pays off to build features that aggregate 
the confidence scores.  In fact, many of the features in 
the first and second time slices of the limited MDP are 
aggregate features of the n-best list, such as the sum of 
all confidence scores (“Score Sum”), the range of score 
values (“Score Range”), and whether all the rules in the 
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Figure 3. A finite horizon MDP learned from data, where the state space was constrained to include only those vari-
ables that directly predicted the immediate reward for each time slice, in addition to the Markov assumption.  The 
overall value node has been left out, as well as the informational arcs. 

Model # Splits 
# State Space 

Variables 

0th Order 903 80 
1st Order 1096 90 
1st Order 
(limited) 183 20 
2nd Order 1133 90 
2nd Order 
(limited) 190 20 
Cumulative 
(combined) 19 9 

 
Table 1. Complexity of the models learned as a function 
of the number of splits in the decision trees and the 
number of state space variables. 



list were the same though the actual phrases or wording 
were different (“Rules All Same”). 

The MDP in Figure 3 also shows that all time slices 
include a state variable related to the grammar rule that 
was observed, such as the first or top rule in the n-best 
list.  This indicates that the model is domain-dependent; 
that is, the grammar rules specific to this application 
make a difference in whether or not the system receives 
a reward.  For example, if we look at the decision tree 
for the value or reward node of the second time slice, 
we would see that if the top rule in the n-best list is 
“hide numbers” (i.e., numbered hyperlinks) after the 
system has asked for a repeat in the first time slice, and 
the system decides in this current time slice to execute 
this top rule, the probability that it would receive an 
immediate negative reward for failure would be 90%.  
All the models we learned from the data were domain-
dependent in this way. 

Some of the variables that were not included in the 
limited MDP, but were included in the unlimited ver-
sion were most of the between-utterance ASR features.  
The notable exception is the variable “1st Rule Same As 
Previous,” which checks to see if the top rule between 
the current time slice and previous time slice are the 
same.  In general, most of the state variables included in 
the limited models were by and large within-utterance 
ASR features. 

3.3 Policy estimation 

To derive an optimal policy from data involves a two 
step process: first, learning an optimal model with re-
spect to the data, and then, learning an optimal policy 
with respect to the model.  As discussed previously, we 
learned the models from the simulation data using 
Bayesian structure learning.  In order to derive the op-
timal policy, the straightforward approach is to exploit 
the Markov assumption, at least for the MDP, and apply 
dynamic programming in the usual way.  However, 
computing the policy for a state space that includes 
more than a handful of variables can be quite challeng-
ing, even for the limited model in Figure 3.  This has 
prompted researchers to investigate techniques for fac-
toring the state space using graphical models as we have 
in our models (Meuleau et al., 1998).  An alternative 
approach for computing the policy, which we utilized, is 
to use forward sampling to approximate the dynamic 
programming solution for the MDP (Kearns et al., 
1999).  Since all the models we learned are generative 
models, we can approximate the expectation in (4) by 
sampling N random states from the next time slice so 
that the optimal value function becomes: 
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This allows us to compute the action with the greatest 
expected reward at any given time slice in the same way 
for every Markov model, making it easier to compare 
and evaluate them.  For the cumulative total reward 
model, since the model directly predicts the total re-
ward, we do not need to use sampling for inference as it 
contains its own policy for each time slice in the deci-
sion tree for the utility node. 

4 Evaluation 

Since it is often difficult to know in advance what vari-
ables in the state space are relevant to receiving a re-
ward, we learned both the structure of the state space 
and policy for all the models discussed in the previous 
section.  The only factor that we varied was the set of 
constraints we put on the state space.  In particular, we 
varied the Markov order from zero to three.  We also 
either limited the model to just the state variables that 
predicted the immediate reward or not, and finally, we 
built a cumulative total reward model that contains its 
own policy.  All other factors being equal, the question 
remains as to whether or not constraining the state space 
by the Markov assumption truly affords the highest re-
ward. 

To answer this question, we used the same simula-
tion environment we described earlier to create the 
training data to also generate 1000 experimental trials.  
For any utterance, different models could take different 
actions, and as a consequence, receive different re-
sponses.  To maintain controlled experimental condi-
tions, we generated utterances and features for the entire 
tree of all possible action sequences.  That way we en-
sured that every model received the exact same features 
if they took the same action, which also meant that be-
tween-utterance features utilized the same previous ut-
terance features.  To reduce variability, we also fixed 
the TTS to just one voice and one set of parameters.  
Furthermore, since all models were trained with differ-
ent kinds of background noise, we also included the 
most challenging type of background noise (viz., people 
chattering in a cafeteria) in the experimental trials. 

As a baseline measure, we included how any system 
would do if it followed the simple policy of always exe-
cuting the top command in the n-best list.  This baseline 
is meant to characterize the behavior of a system that 
follows no dialogue management strategies.  It simply 
commits to the top recognized result and never engages 
in repair. 

Figure 5 displays the average reward for all models 
compared to the baseline, and Figure 6 the total reward.  
Although seven lines should be represented, only four 
are visible because the first and second order Markov 
models, as well as their limited versions, performed 
exactly the same with respect to both average and total 
reward; that is, the 1st order, 1st order (limited), 2nd or-



der, and 2nd order (limited) models were identical in 
performance.  Hence, while the complexity of the mod-
els may have differed, they all took the same actions.  
This suggests that it is not worthwhile to constrain the 
state space beyond the first order Markov relation, nor is 
it worthwhile to include any more variables than those 
that directly predict the local immediate reward.   

As far as the best performance is concerned, the first 
and second order models outperformed all other models 
for the first 500 trials, but then succumbed to the cumu-
lative total reward model thereafter.  By the end of the 
experiment, the cumulative total reward model had ac-
crued the highest total reward, as shown in Figure 6.  It 
is important to consider that the cumulative total reward 
model achieved this performance with only 9 state vari-
ables and 19 splits, combined between the three time 
slices. 

Surprisingly, the zero order Markov model per-
formed worse than the baseline.  The reason for this 
dealt with the two repair actions, Repeat and Confirm.  
Without knowing what action was previously selected, 
since dependencies were not permitted between time 
slices, the model assigned the same probability of re-
ceiving an immediate negative or positive reward to 
both Repeat and Confirm, thereby conflating the two.  

To get around this problem, separate models specifically 
for Repeat and Confirm would need to be learned, 
though it is doubtful that this would have changed the 
final result of the experiment. 

4.1 Assessing the Winner 

Despite the relatively small complexity of the cumu-
lative total reward model, it outperformed all other 
models.  It is instructive to look at the state space vari-
ables that were included in the model for each time 
slice, as shown in Figure 7.  For the most part, every 
state space variable in each time slice also appears in the 
limited MDP displayed in Figure 3.  The only exception 
is “Number of Sound End Events,” which is almost al-
ways the same in the data as the feature “Number of 
Sound Start Events” in the MDP.  The primary differ-
ence between the cumulative model and the MDP then 
is that the former predicts the total reward as opposed to 
the immediate reward. 

Ironically, although the cumulative model could 
have included previous state space variables in the sec-
ond and third time slices, it did not.  Instead, the most 
important variables for predicting the total reward at 
each time slice were just those features pertaining to the 
current time slice utterance.  At the surface, this seems 
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Figure 7. The learned cumulative total reward model where state space variables accumulate over time and they all 
predict the total reward for the entire dialogue. 
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Figure 5. Average reward for all learned models over 
1000 trials. 
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Figure 6. Total reward for all learned models after 1000 
trials. 



to support the Markov assumption in that only the cur-
rent state matters.  However, this does not prove what is 
crucial about the assumption; namely, that future states 
need only depend on the current state and not previous 
states. 

It is important to remember that the cumulative total 
reward model is model-free.  It makes no assumptions 
about how features may be dependent on each other 
over time, but instead tries to predict the long term 
value of actions.  In fact, while model-free approaches 
such as Q-learning (Watkins & Dayan, 1992) still learn 
policies using a system of equations similar to (4), a 
policy for the cumulative model is comparatively easy 
to learn.  It is simply learning a decision tree that classi-
fies what is likely to be the total reward for all the fea-
tures it has observed.  Even if the total reward were 
continuous, learning a regression is relatively easy.  
Furthermore, during runtime, it requires no inference, as 
do the other Markov models. 

5 Implications and Limitations 

Dialogue designers considering the use of reinforcement 
learning methods to learn policies for action selection in 
dialogue management could benefit from the implica-
tions of this experimental study.  If learning an MDP is 
the goal, and the designer is uncertain about what vari-
ables to include in the state space, our results suggest 
that an MDP that includes just those variables that are 
parents of the local immediate reward performs just as 
well as a more complicated model with other variables 
that are not parents.  In short, in factoring the state 
space, only those variables relevant to receiving a re-
ward seem to matter. 

On the other hand, if the designer is open to consid-
ering other types of models, the cumulative total reward 
model offers several advantages over the MDP.  First, it 
is much simpler to learn from data and update.  The 
cumulative model does not require estimation of the 
optimal value function nor inference.  The policy is in 
the decision tree for the utility node.  Moreover, if the 
reward function needs to be adjusted, it is much easier 
to update the total reward and re-learn the model than it 
is to re-compute the optimal policy.  Second, the cumu-
lative model may perform just as well if not better than 
the MDP.  In our experiments, it indeed outperformed 
the MDP, though we are not quick to generalize this 
result due to the limitation of the study.  And finally, the 
cumulative model makes fewer assumptions about the 
structure of the state space, which is quite appealing 
from a theoretical standpoint.  It does not assume that 
that an optimal policy based just on the previous turn is 
as good as a policy based on the full history of interac-
tion.  Since the full accumulation of knowledge is ex-
pressed in the model, it accords well with socio-
linguistic sensibilities. 

The above implications should be moderated by the 
limitations of the study.  First and foremost, the domain 
in which we learned the models was quite small with a 
relatively restricted command-and-control grammar, 
and a small action space.  We plan to extend the simula-
tion and learning methods to larger domains, and it will 
be interesting to see if our result still holds.  Second, 
although we assiduously delineated every feature we 
could think of for the state space, we may not have in-
cluded the “right” set of features that could have al-
lowed the MDP or any other model to outperform the 
winner.  Good feature engineering has been shown to 
make a significant difference in other natural-language 
processing domains, so it is prudent to remain humble 
about the features we utilized.  Finally, our results de-
pend on the techniques we used for learning the struc-
ture of the state space.  We are agnostic about how these 
results may have turned out with other model selection 
techniques. 

6 Conclusion 

Spoken dialogue systems that learn optimal policies for 
dialogue management have typically utilized the MDP 
framework.  In so doing, they are committed to the 
Markov assumption as a modeling choice, and very of-
ten, to assumptions about the structure of the state 
space.  In this paper, we explored whether this choice is 
appropriate and empirically beneficial.  In particular, we 
investigated whether constraining the state space by the 
Markov assumption truly affords the highest reward, 
especially when the structure of the state space may be 
unknown, which is typically the case.  We examined 
four models that vary in terms of the extent of their 
temporal dependencies and found that the cumulative 
total reward model, a model-free approach that predicts 
the total reward for each time slice with state space fea-
tures accumulating over time, outperformed the MDP 
and all other models in terms of total and average re-
ward.  This model had the smallest complexity by far, 
made the fewest number of assumptions, and is rela-
tively easy to compute.  For finite horizons, the cumula-
tive total reward model offers an attractive alternative to 
the MDP.  
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