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Abstract

We use n-gram techniques to identify
dependencies between student affective
states of certainty and subsequent tutor
dialogue acts, in an annotated corpus of
human-human spoken tutoring dialogues.
We first represent our dialogues as bi-
grams of annotated student and tutor turns.
We next use χ2 analysis to identify depen-
dent bigrams. Our results show dependen-
cies between many student states and sub-
sequent tutor dialogue acts. We then an-
alyze the dependent bigrams and suggest
ways that our current computer tutor can
be enhanced to adapt its dialogue act gen-
eration based on these dependencies.

1 Introduction

There has been increasing interest in affective di-
alogue systems (André et al., 2004), motivated by
the belief that in human-human dialogues, conver-
sational participants seem to be (at least to some
degree) detecting and responding to the emotional
states of other participants. Affective dialogue re-
search is being pursued in many application areas,
including intelligent tutoring systems (Aist et al.,
2002; Craig and Graesser, 2003; Bhatt et al., 2004;
Johnson et al., 2004; Moore et al., 2004). However,
while it seems intuitively plausible that human tutors
do in fact vary their responses based on the detection
of student affect1, to date this belief has largely been

1We use the terms “affect” and “emotion” loosely to cover
emotions and attitudes believed to be relevant for tutoring.

theoretically rather than empirically motivated. We
propose using bigram-based techniques as a data-
driven method for identifying relationships between
student affect and tutor responses in a corpus of
human-human spoken tutoring dialogues.

To investigate affect and tutorial dialogue sys-
tems, we have built ITSPOKE (Intelligent Tutoring
SPOKEn dialogue system) (Litman and Silliman,
2004), which is speech-enabled version of the text-
based Why2-Atlas conceptual physics tutoring sys-
tem (VanLehn et al., 2002).2 Our long term goal
is to have this system detect and adapt to student
affect, and to investigate whether such an affective
version of our system improves learning and other
measures of performance. To date we have col-
lected corpora of both human and computer tutoring
dialogues, and have demonstrated the feasibility of
annotating and recognizing student emotions from
lexical, acoustic-prosodic, and dialogue features au-
tomatically extractable from these corpora (Litman
and Forbes-Riley, 2004a; Litman and Forbes-Riley,
2004b; Forbes-Riley and Litman, 2004).

Here, we assume viable emotion recognition and
move on to the next step: providing an empirical ba-
sis for enhancing our computer tutor to adaptively
respond to student affect. We first show how to ap-
ply n-gram techniques used in other areas of compu-
tational linguistics to mine human-human dialogue
corpora for dependent bigrams of student states and
tutor responses. We then use our bigram analysis
to show: 1) statistically-significant dependencies ex-
ist between students’ emotional states and our hu-

2We also use ITSPOKE to examine the utility of building
spoken dialogue tutors (e.g. (Litman et al., 2004)).



man tutor’s dialogue act responses, 2) the depen-
dent bigrams suggest empirically-motivated adap-
tive strategies for implementation in our computer
tutor. This method should generalize to any domain
with dialogue corpora labeled for user state and sys-
tem response.

2 Spoken Tutoring Data and Annotation

2.1 The Spoken Tutoring Dialogue Corpus

Our data consists of 128 transcribed spoken dia-
logue tutoring sessions, between 14 different uni-
versity students and one human tutor; each student
participated in up to 10 sessions. The corpus was
collected as part of an evaluation comparing typed
and spoken human and computer dialogue tutoring
(where the human tutor performed the same task as
ITSPOKE) (Litman et al., 2004). The tutor and stu-
dent spoke through head-mounted microphones, and
were in the same room but separated by a partition.

Each session begins after a student types an es-
say answering a qualitative physics problem. The
tutor analyzes the essay, then engages the student in
dialogue to correct misconceptions and elicit more
complete explanations. The student then revises the
essay, thereby ending the session or causing another
round of dialogue/essay revision. On average, these
sessions last 18.1 minutes and contain 46.5 student
and 43.0 tutor turns. Annotated (see Sections 2.2
- 2.3) excerpts3 from our corpus are shown in Fig-
ures 1- 6 (punctuation added for clarity).

2.2 Annotating Student Certainty

Prior to the present study, each student turn in our
corpus had been manually annotated for “certain-
ness” (Liscombe et al., 2005)4 , as part of a larger

3All annotations were performed from both audio and tran-
scription within a speech processing tool.

4To date, only one annotator has labeled “certainness”.
However, 10 dialogues were previously annotated by two other
labelers using a more labor-intensive scheme, tagging certain-
ness as well as confusion, boredom, frustration, etc. (Litman
and Forbes-Riley, 2004a). Agreement across all three annota-
tors for (un-)certain turns has an average 0.5 Kappa. We view
this as a lower bound since the annotation tasks being compared
are non-identical. This agreement is however similar to emotion
annotation in other domains, e.g. 0.47 Kappa in (Ang et al.,
2002), 0.45 and 0.48 Kappas in (Narayanan, 2002), and Kap-
pas ranging between 0.32 and 0.42 in (Shafran et al., 2003).

PHYSICS PROBLEM: Suppose a man is running in a straight
line at constant speed. He throws a pumpkin straight up. Where
will it land? Explain.
. . . dialogue excerpt at 16.6 minutes into session. . .
STUDENT68: So the- when you throw it up the acceleration
will stay the same? (UNCERTAIN)
TUTOR69: Acceleration uh will always be the same because
there is- that is being caused by force of gravity which is not
changing. [RST, EXP]
STUDENT70: mm-k (NEUTRAL)
TUTOR71: Acceleration is- it is in- what is the direction uh of
this acceleration- acceleration due to gravity? [SAQ]
STUDENT72: It’s- the direction- it’s downward. (CERTAIN)
TUTOR73: Yes, it’s vertically down. [POS, RST]
STUDENT74: mm-k. (NEUTRAL)
. . . 53 seconds pass while student types. . .
STUDENT75: So in relation to the velocity, when it’s being
thrown up the velocity increases- well no, it decreases and when
it goes down it increases. (MIXED)

Figure 1: Annotated Corpus Excerpt #1

project5 annotating student states that are of inter-
est in recent tutorial dialogue research (Bhatt et al.,
2004; Moore et al., 2004). Our “Certainness” anno-
tation uses one of four labels, defined in the manual
as follows:

• uncertain: Use this label only when you feel
the student is clearly uncertain about what they
are saying. See Figures 1 (STUDENT68) and 2
(STUDENT17, STUDENT19).

• certain: Use this label only when you feel the
student is clearly certain about what they are
saying. See Figures 1 (STUDENT72) and 6
(STUDENT99, STUDENT101).

• mixed: Use this label if you feel that the
speaker conveyed some mixture of uncertain
and certain utterances within the same turn. See
Figure 1 (STUDENT75).

• neutral: Use this label when you feel the
speaker conveyed no sense of certainness.
In other words, the speaker seemed neither
clearly uncertain nor clearly certain (nor clearly
mixed). This is the default case. See Figure 1
(STUDENT70, STUDENT74).

5(Liscombe et al., 2005) show that using only acoustic-
prosodic features as predictors, these student certainness anno-
tations can be predicted with 76.42% accuracy.



PHYSICS PROBLEM: Suppose a man is in a free-falling el-
evator and is holding his keys motionless right in front of his
face. He then lets go. What will be the position of the keys
relative to the man’s face as time passes? Explain.
. . . dialogue excerpt at 4.0 minutes into session. . .
TUTOR16: Um, ok, so now we are thinking in terms of the
factors that govern this displacement. Um, now they are- the
elevator is in freefall. So does what does that tell you about the
motion of the keys and the person? [RD, LAQ]
STUDENT17: Um, that they’re only under one force and that’s
gravity. (UNCERTAIN)
TUTOR18:Ok, that is the force. But what does it tell you- that’s
right and that is about the force, but what does that tell you about
their motion? [POS, LAQ]
STUDENT19: Ok, uh, the motion is- oh, is they’re moving in
the same direction con- they’re constant. (UNCERTAIN)

TUTOR20: Uh, ok. They are also in freefall. [BOT]

Figure 2: Annotated Corpus Excerpt #2

2.3 Annotating Tutor Dialogue Acts

Also prior to the present study, each tutor turn in our
corpus had been manually annotated for tutoring-
specific dialogue acts6 as part of a project comparing
dialogue behavior in human versus computer tutor-
ing (Forbes-Riley et al., 2005). Our tagset of “Tu-
tor Dialogue Acts”, shown in Figures 3 - 5 below,
was developed based on pilot studies using similar
tagsets applied in other tutorial dialogue projects7

(Graesser and Person, 1994; Graesser et al., 1995;
Johnson et al., 2004).

As shown in Figures 3 - 5, we distinguish three
main types of Tutor Acts. The “Tutor Feedback
Acts” in Figure 3 indicate the “correctness” of the
student’s prior turn.

The “Tutor Question Acts” in Figure 4 label the
type of question that the tutor asks, in terms of their
content and the expectation that the content presup-
poses with respect to the type of student answer re-
quired.

The “Tutor State Acts” in Figure 5 summarize or
clarify the current state of the student’s argument,

6While one annotator labeled the entire corpus, a second an-
notator labeled 776 of these turns, yielding a 0.67 Kappa.

7Tutoring dialogues have a number of tutoring-specific di-
alogue acts (e.g., hinting). Most researchers have thus used
tutoring-specific rather than more domain-independent schemes
such as DAMSL (Core and Allen, 1997), although (Rickel et al.,
2001) present a first step towards integrating tutoring-specific
acts into a more general collaborative discourse framework.
Our Feedback and Question Acts have primarily backward- and
forward-looking functions respectively, in DAMSL.

• Positive Feedback (POS): overt positive re-
sponse to prior student turn. See Fig-
ures 1 (TUTOR73), 2 (TUTOR18) and 6
(TUTOR98).

• Negative Feedback (NEG): overt negative re-
sponse to prior student turn. See Figure 6
(TUTOR100).

Figure 3: Tutor Feedback Acts

• Short Answer Question (SAQ): concerns ba-
sic quantitative relationships. See Figures 1
(TUTOR71) and 6 (TUTOR98, TUTOR100).

• Long Answer Question (LAQ): requires defi-
nition/interpretation of concepts. See Figure 2
(TUTOR16, TUTOR18).

• Deep Answer Question (DAQ): requires rea-
soning about causes and/or effects. See Figure
6 (TUTOR102).

Figure 4: Tutor Question Acts

based on the prior student turn(s).
Our corpus dialogue excerpts in Figure 1, Figure

2, and Figure 6 illustrate that most tutor turns are
labeled with multiple Tutor Acts.

3 Data Analysis

We hypothesize that there are dependencies between
student emotional states (as represented by the “Cer-
tainness” labels) and subsequent tutor responses (as
represented by “Tutor Dialogue Act” labels), and
that analyzing these dependencies can suggest ways
of incorporating techniques for adapting to student
emotions into our computer tutor. We test these
hypotheses by extracting a bigram representation
of student and tutor turns from our annotated dia-
logues, computing the dependencies of the bigram
permutations using Chi Square analyses, and draw-
ing conclusions from the significant results.

3.1 Dialogue Bigrams

We view the sequence: “Student Turn, Tutor Turn”
as our bigram unit, whose individual elements con-



• Restatement (RST): repetitions and reword-
ings of prior student statement. See Figures 1
(TUTOR69, TUTOR73) and 6 (TUTOR100,
TUTOR102).

• Recap (RCP): restating student’s overall argu-
ment or earlier-established points. See Figure 6
(TUTOR98).

• Request/Directive (RD): directions summariz-
ing expectations about student’s overall argu-
ment. See Figure 2 (TUTOR16).

• Bottom Out (BOT): complete answer supplied
after student answer is incorrect, incomplete or
unclear. See Figure 2 (TUTOR20).

• Hint (HINT): partial answer supplied after stu-
dent answer is incorrect, incomplete or unclear.
See Figure 6 (TUTOR100).

• Expansion (EXP): novel details about student
answer supplied without first being queried to
student. See Figure 1 (TUTOR69).

Figure 5: Tutor State Acts

stitute “words” in the bigram. In Figure 6 there
are two such units: STUDENT99 - TUTOR100 and
STUDENT101 - TUTOR102. Because our goal in
this paper is to analyze tutor responses, we extract
all and only these units from our dialogues for anal-
ysis. In other words, we do not extract bigrams of
the form: “Tutor Turn, Student Turn”, although we
will do so in a separate future study when we ana-
lyze student responses to tutor actions. This decision
is akin to disregarding word-level bigrams that cross
sentence boundaries. Here, the sequence: “Student
Turn, Tutor Turn” is our “dialogue sentence”, and
we are interested in all possible permutations of our
student and tutor turn annotations in our data that
combine to produce these dialogue sentences.

After extracting the annotated “Student Turn, Tu-
tor Turn” bigrams, we sought to investigate the de-
pendency between student emotional states and tutor
responses. Although each of our student turns was
labeled with a single “Certainty” tag, frequently our
tutor turns were labeled with multiple “Tutor Act”

PHYSICS PROBLEM: Two closed containers look the same,
but one is packed with lead and the other with a few feath-
ers. How could you determine which had more mass if you and
the containers were floating in a weightless condition in outer
space? Explain.
. . . dialogue excerpt at 16.5 minutes into session. . .
TUTOR98: Yes, we are all learning. Ok, so uh now uh you
apply the same push for the same amount of time for on both
the containers. Then what would you compare to distinguish
between them? [POS, RCP, SAQ]
STUDENT99: I would be comparing their rate of velocity.
(CERTAIN)
TUTOR100: Not rate. You will be comparing their velocity,
you see, rate will imply that something is changing which there
is no change, velocity is constant. So you will surely compare
their velocities- which one will be faster? [NEG, HINT, RST,
SAQ]
STUDENT101: The feathers. (CERTAIN)
TUTOR102: The feathers- why? [RST, DAQ]

Figure 6: Annotated Corpus Excerpt #3

tags, as shown in Figures 1-6. Because there are
11 “Tutor Act” tags, and no limits on tag combina-
tions per turn, it is not surprising that in our 4921 ex-
tracted bigrams, we found 478 unique tag combina-
tions in the tutor turns, 294 of which occurred only
once. Treating each tagged tutor turn as a unique
“word” would thus yield a data sparsity problem for
our analysis of bigram dependencies. Due to this
data sparsity problem, a question we can ask instead,
is: is the tutor’s inclusion of a particular Tutor Act
in a tutor turn dependent on the student’s certainness
in the prior turn?

That is, we decided to approach the dependency
analysis by considering the presence or absence of
each Tutor Act tag separately. In other words, we
performed 11 different analyses, one for each Tutor
Act tag T, each time asking the question: is there
a dependency between student emotional state and
a tutor response containing T? More formally, for
each analysis, we took our set of “Student Turn, Tu-
tor Turn” bigrams, and replaced all annotated tutor
turns containing T with only T, and all not contain-
ing T with not T. The result was 11 different sets of
4921 “Student Turn, Tutor Turn” bigrams. As an ex-
ample, we show below how the tutor turns in Figure
6 are converted within the “POS” analysis:

TUTOR98: [POS, RCP, SAQ] −→ [POS]

TUTOR100: [NEG, HINT, RST, SAQ] −→ [not-
POS]



TUTOR102: [RST, DAQ] −→ [notPOS]
The benefit of these multiple analyses is that

we can ask specific questions directly motivated by
what our computer tutor can do. For example, in
the POS analysis, we ask: should student emotional
state impact whether the computer tutor generates
positive feedback? Currently, there is no emotion
adaptation by our computer tutor - it generates pos-
itive feedback independently of student emotional
state, and independently of any other Tutor Acts that
it generates. The same is true for each of the Tutor
Acts generated by our computer tutor.

3.2 Chi Square (χ2) Analyses
We analyzed bigram dependency using the Chi
Square (χ2) test.8 In this section we illustrate our
analysis method, using the set of “Certainness” -
“POS/notPOS” bigrams. In Section 3.3 we discuss
the results of performing this same analysis on all 11
sets of “Student Certainness - Tutor Act” bigrams.

χ2 tests the statistical significance of the relation-
ship between two variables in a dataset. Our ob-
served “Certainness” - “POS” bigram permutations
are reported as a bivariate table in Table 1. For ex-
ample, we observed 252 neutral - POS bigrams,
and 2517 neutral - notPOS bigrams. Row totals
show the number of bigrams containing the first bi-
gram “word” (e.g., 2769 bigrams contained “neu-
tral” followed by “POS” or “notPOS”). Column to-
tals show the number of bigrams containing the sec-
ond bigram “word” (e.g., 781 bigrams containing
“POS” as the second token).

POS notPOS Total
neutral 252 2517 2769
certain 273 831 1104

uncertain 185 631 816
mixed 71 161 232
Total 781 4140 4921

Table 1: Observed Student “Certainness” - Tutor
“Positive Feedback” Bigrams

χ2 compares these observed counts with the
counts that would be expected if there were no rela-
tionship at all between the two variables in a larger

8A good tutorial for using the χ
2 test is found here:

www.georgetown.edu/facultyballc/webtools/web chi tut.html

population (the null hypothesis). For each cell c in
Table 1, the expected count is computed as: (c’s row
total * c’s column total)/(total bigrams). Expected
counts for Table 1 are shown in Table 2.

POS notPOS Total
neutral 439.46 2329.54 2769
certain 175.21 928.79 1104

uncertain 129.51 686.49 816
mixed 36.82 195.18 232
Total 781 4140 4921

Table 2: Expected Student “Certainness” - Tutor
“Positive Feedback” Bigrams

A χ2 value assesses whether the differences
between observed and expected counts are large
enough to conclude that a statistically significant re-
lationship exists between the two variables. The χ2

value for the table is computed by summing the χ2

value for each cell, which is computed as follows:
(observed value - expected value)2/expected value.
The total χ2 value for Table 1 is 225.92. χ2 would
be 0 if observed and expected counts were equal.
However some variation is required (the “critical χ2

value”), to account for a given table’s degree of free-
dom and one’s chosen probability of exceeding any
sampling error. For Table 1, which has 3 degrees
of freedom, the critical χ2 value at a 0.001 prob-
ability of error is 16.27.9 Our χ2 value of 225.92
greatly exceeds this critical value. We thus conclude
that there is a statistically significant dependency be-
tween Certainness and Positive Feedback.

We can look more deeply into this overall de-
pendency by calculating the statistical significance
of the dependencies between each specific “Certain-
ness” tag and the Positive Feedback tag. The freely
available Ngram Statistics Package (NSP) (Banerjee
and Pedersen, 2003) computes these χ2 values au-
tomatically when we input each set of our “Student
Certainness - Tutor Act” bigrams. Figure 7 shows
the resulting NSP output for the POS/notPOS anal-
ysis. Each row shows: 1) the bigram, 2) its rank (ac-
cording to highest χ2 value), 3) its χ2 value, 4) the
number of occurrences of this bigram, 5) the number
of times the first token in this bigram occurs first in

9Degrees of freedom is computed as (#rows - 1) * (#columns
- 1). Critical χ

2 values are listed in most statistics textbooks.



any bigram, 6) the number of times the second token
in this bigram occurs last in any bigram.

neutral - POS 1 217.35 252 2769 781
certain - POS 2 83.63 273 1104 781
mixed - POS 3 39.58 71 232 781
uncertain - POS 4 33.88 185 816 781

Figure 7: NSP Output: Certainness - POS Bigrams

Each row in Figure 7 can alternatively be viewed
as a 2 X 2 table of observed counts. For example, the
table for the neutral - POS bigram has a “neutral”
row (identical to that in Table 1) and a “non-neutral”
row (computed by summing all the non-neutral rows
in Table 1). This table has 1 degree of freedom; the
critical χ2 value at p < 0.001 is 10.83. As shown, all
of the bigrams in Figure 7 have χ2 values exceeding
this critical value. We thus conclude that there are
statistically significant dependencies between each
of the Certainness tags and Positive Feedback.10 In
Section 3.3 we will see cases where there is an over-
all significant dependency, but significant dependen-
cies only for a subset of the four Certainness tags.

Finally, we can compare the difference between
observed and expected values for the statistically
significant dependent bigrams identified using NSP.
For example, by comparing Tables 1 and 2, we see
that the human tutor responds with positive feedback
more than expected after emotional turns, and less
than expected after neutral turns. This suggests that
our computer tutoring system could adapt to non-
neutral emotional states by generating more positive
feedback (independently of whether the Certainness
value is certain, uncertain, or mixed).

3.3 Results and Discussion
In essence, for each of the 11 Tutor Acts described
in Section 2.3, the first part of our χ2 analysis deter-
mines whether or not there is an overall dependency
between Student Certainness and that specific Tu-
tor Act. The second part then determines how this
dependency is distributed across individual Student

10Note that the χ
2 value for each of the bigrams in Figure

7 is identical to its “Certainness - notPOS” counterpart. This
can be understood by observing that the 2 X 2 observed (and
expected) table for each “Certainness - POS” bigram is identical
to its “notPOS” counterpart, except that the columns are flipped.
That is, “not notPOS” is equivalent to “POS”.

Certainness states. In this section, we present and
discuss our results of the χ2 analysis across all 11
sets of our “Certainness - Tutor Act” bigrams. Note
that the tables present only our best results, where
the χ2 value exceeded the critical value at p < 0.001
(16.27 and 10.83 for 3 and 1 degrees of freedom, re-
spectively). If a bigram’s χ2 value did not exceed
this critical value, it is not shown.

Table 3 presents our best results across our 2 sets
of “Certainness - Feedback Act” bigrams. Each set’s
results are separated by a double line. The last col-
umn shows the χ2 value for each bigram. The first
row for each set shows the χ2 value for the overall
dependency between Certainness and Feedback (e.g.
225.92 for CERT - POS). The remaining rows per
set are ranked according to the χ2 values for the spe-
cific dependencies between each “Certainness” tag
and the “Feedback” tag (e.g. 217.35 for neutral -
POS).11 Note that, while all bigrams shown are sta-
tistically significant at p < 0.001, as the χ2 values
increase above the critical value, the results become
more significant. Each row also shows the observed
(Obs) and expected (Exp) counts of each bigram.

Bigram Obs Exp χ2

CERT - POS 781 781 225.92
neutral - POS 252 439.46 217.35
certain - POS 273 175.21 83.63
mixed - POS 71 36.82 39.58
uncertain - POS 185 129.51 33.88

CERT - NEG 196 196 135.96
neutral - NEG 34 110.29 125.67
uncertain - NEG 68 32.5 48.41
mixed - NEG 24 9.24 25.77
certain - NEG 70 43.97 20.69

Table 3: Observed, Expected, and χ2 for Dependent
“Certainness” - “Feedback” Bigrams (p<.001)

As shown, there are overall dependencies between
Student Certainness and both Positive and Negative
Tutor Feedback. There are also dependencies be-
tween every specific Certainness tag and both Posi-
tive and Negative tutor Feedback. Moreover, in both
cases we see that the tutor responds with more feed-
back than expected after all emotional student turns

11These POS results are discussed in Section 3.2; in this sec-
tion we summarize the results for all 11 bigram sets.



(non-neutral), and with less feedback than expected
after neutral student turns. This suggests that an
increased use of feedback is a viable adaptation to
non-neutral emotional states. Of course, the type of
feedback adaptation (POS or NEG) must also de-
pend on whether the student answer is correct, as
will be discussed further in Section 5.

Table 4 presents our best results across our 3
sets of “Certainness - Question Act” bigrams, us-
ing the same format as Table 3. As shown, there
is an overall dependency only between Student Cer-
tainness and Tutor Short Answer Questions that is
wholly explained by the dependency of the neu-
tral - SAQ bigram, where the tutor responds to stu-
dent neutral turns with slightly fewer Short Answer
Questions than expected. Both of these χ2 values
barely exceed the critical value however, and they
are much smaller than the χ2 values in Table 3.
Moreover, there are no dependencies at all between
Student Certainness and Tutor Long or Deep An-
swer Questions (LAQ/DAQ).12 These results sug-
gest that “Question Acts” aren’t highly relevant for
adaptation to Certainness; we hypothesis that they
will play a more significant role when we analyze
student emotional responses to tutor actions.

Bigram Obs Exp χ2

CERT - SAQ 1135 1135 18.06
neutral - SAQ 588 638.65 11.94

Table 4: Observed, Expected, and χ2 for Dependent
“Certainness” - “Question Act” Bigrams (p<.001)

Table 5 presents our best results across our 6
sets of “Certainness - State Act” bigrams. There is
an overall dependency between Student Certainness
and Tutor Restatements, explained by the dependen-
cies of the certain - RST and neutral - RST bi-
grams. There is also an overall dependency between
Student Certainness and Tutor Recaps, explained by
the dependent neutral - RCP bigram. However,
the χ2 values for the dependent RST bigrams are
much larger than those for the dependent RCP bi-
grams.13 Moreover, there are no dependencies (even

12All the LAQ bigrams except certain - LAQ are barely sig-
nificant at p< .05. Of the DAQ bigrams, only CERT - DAQ
and uncertain - DAQ barely exceed the critical value at p<.05.

13Of the RCP and RST bigrams not shown, only certain -

at p<.05) between Student Certainness and Tutor
Request Directives (RD). Although these three Tu-
tor State Acts all serve a summary purpose with re-
spect to the student’s argument, RCP and RD are de-
fined as more general acts whose use is based on the
overall discussion so far. Only RST addresses the
immediately prior student turn; thus it’s not surpris-
ing that its use shows a stronger dependency on the
prior student certainness. The tutor’s increased use
of RST after certain turns suggests a possible adap-
tation strategy of increasing or maintaining student
certainty by repeating information that the student
has already shown certainty about.

The remaining 3 bigram sets contain Tutor Acts
that clarify the prior student answer. First, there is
an overall dependency between Student Certainness
and Tutor Bottom Outs, which is explained by the
specific dependencies of the neutral - BOT and un-
certain - BOT bigrams. After uncertain turns, the
tutor “Bottoms Out” (supplies the complete answer)
more than expected, and after neutral turns, less than
expected. This suggests a straightforward adaptive
technique for student uncertainty.

There is also an overall dependency between Stu-
dent Certainness and Tutor Hints, which is explained
by the dependencies of the mixed - HINT and neu-
tral - HINT bigrams. After mixed turns, the tutor
“Hints” (supplies a partial answer) more than ex-
pected, and after neutral turns, less than expected.
This suggests an adaptive technique similar to the
BOT case, except the tutor gives less of the answer
because there is less uncertainty (i.e. there is more
certainty because the student turn is mixed).

Finally, there is an overall dependency between
Student Certainness and Tutor Expansions, which
is explained by the dependencies of the neutral -
EXP and uncertain - EXP bigrams. In this case,
however, the tutor responds with an “Expansion”
(supplying novel details) more than expected after
neutral turns, and less than expected after uncertain
turns. This suggests another adaptive technique to
uncertainty, whereby the tutor avoids overwhelming
the uncertain student with unexpected details.14

RCP is significant at a lower critical value (p<.01).
14Of the BOT, HINT, EXP bigrams not shown, only the “cer-

tain” bigrams are significant at a lower critical value (p<.05).



Bigram Obs Exp χ2

CERT - RST 1102 1102 169.18
certain - RST 402 247.23 160.96
neutral - RST 477 620.08 97.29

CERT - RCP 289 289 20.15
neutral - RCP 199 162.62 19.77

CERT - BOT 308 308 82.52
neutral - BOT 103 173.31 69.58
uncertain - BOT 97 51.07 52.82

CERT - HINT 779 779 37.07
mixed - HINT 64 36.73 25.25
neutral - HINT 383 438.34 18.98

CERT - EXP 998 998 47.08
neutral - EXP 651 561.57 40.86
uncertain - EXP 109 165.49 29.00

Table 5: Observed, Expected, and χ2 for Dependent
“Certainness” - “State Act” Bigrams (p<.001)

4 Related Work

While there have been other approaches to using dia-
logue n-grams (e.g. (Stolcke et al., 2000; Reithinger
et al., 1996)), such n-grams have typically consisted
of only dialogue acts, although (Higashinaka et al.,
2003) propose computing bigrams of dialogue state
and following dialogue act. Moreover, these meth-
ods have been used to compute n-gram probabilities
for implementing statistical components. We pro-
pose a new use of these methods: to mine corpora
for only the significant n-grams, for use in design-
ing strategies for adapting to student affect in a com-
putational system. Previous Ngram Statistics Pack-
age (NSP) applications have focused on extracting
significant word n-grams (Banerjee and Pedersen,
2003), while our “dialogue” bigrams are constructed
from multiple turn-level annotations of student cer-
tainness and tutor dialogue acts. Although (Shah
et al., 2002) have mined a human tutoring corpus
for significant “dialogue” bigrams to aid in the de-
sign of adaptive dialogue strategies, their goal is to
generate appropriate tutor responses to student ini-
tiative. Their bigrams consist of manually labeled
student initiative and tutor response in terms of mu-
tually exclusive categories of communicative goals.

In the area of affective tutorial dialogue, (Bhatt
et al., 2004) have coded (typed) tutoring dialogues

for student hedging and affect. Their focus, how-
ever, has been on identifying differences in human
versus computer tutoring, while our focus has been
on analyzing relationships between student states
and tutor responses. Conversely, (Johnson et al.,
2004) have coded their tutoring dialogue corpora
with tutoring-specific dialogue acts, but have not an-
notated student affect, and to date have performed
only qualitative analyses. Finally, while our research
focuses on dialogue acts, others are studying affect
and different linguistic phenomena such as lexical
choice (Moore et al., 2004).

5 Conclusions and Current Directions

This paper proposes an empirically-motivated ap-
proach to developing techniques for adapting to stu-
dent affect in our dialogue tutorial system. Further-
more, our method of extracting and analyzing dia-
logue bigrams to develop adaptation techniques gen-
eralizes to other domains that seek to use user af-
fective states to trigger system adaptation. We first
extract “dialogue bigrams” from a corpus of human-
human spoken tutoring dialogues annotated for stu-
dent Certainness and tutor Dialogue Acts. We then
use χ2 analysis to determine which bigrams are de-
pendent, such that there is a relationship between the
use of a Tutor Act and prior Student Certainness.

Our results indicate specific human tutor emotion-
adaption methods that we can implement in our
computer system. Specifically, we find that there
are many dependencies between student states of
certainty and subsequent tutor dialogue acts, which
suggest ways that our computer tutor can be en-
hanced to adapt dialogue act generation to student
affective states. In particular, our results suggest that
“Bottoming Out” and avoiding “Expansions” are
viable adaptations to student uncertainty, whereas
“Hinting” is a viable adaptation to a mixed stu-
dent state, and adapting by “Restatements” may help
maintain a state of student certainty. Positive and
Negative Feedback occur significantly more than ex-
pected after all the non-neutral student states, and
thus seem to be a generally “human” way of re-
sponding to student emotions.

This approach for developing adaptive strategies
is currently based on one human tutor’s responses
across dialogues with multiple students. Clearly,



different tutors have different teaching styles; more-
over, it is an open question in the tutoring commu-
nity as to whether, and why, one tutor is better than
any other with respect to increasing student learn-
ing. Analyzing a different tutor’s responses may
yield different dependencies between student emo-
tions and tutor responses. Analyzing the responses
of multiple tutors would yield a broader range of re-
sponses from which common responses could be ex-
tracted and analyzed. However, the common adap-
tations of multiple tutors are not necessarily better
for improving student learning than the responses
of a human tutor who responds differently. More-
over, such a “mix and match” approach would not
necessarily yield a consistent generalization about
adaptive strategies for student emotion. We have al-
ready demonstrated that students learned a signifi-
cant amount with our human tutor (Litman et al.,
2004)15 . Thus, although it is an open question as
to why these students learn, analyzing our tutor’s
responses across multiple students enables a con-
sistent generalization about one successful tutor’s
adaptive strategies for student emotion.

However, it is important to note that we do not
know yet if these adaptive techniques will be “ef-
fective”, i.e. that they will improve student learn-
ing or improve other performance measures such
as student persistence (Aist et al., 2002) when im-
plemented in our computer tutor. Our next step
will thus be to use these adaptive techniques as a
guideline for implementing adaptive techniques in
ITSPOKE. We can then compare the performance
of the adaptive system with its non-adaptive coun-
terpart, to see whether or not student performance is
improved. Currently ITSPOKE adaptation is based
only on the correctness of student turns.

We will also investigate how other factors inter-
act with student emotional states to determine sub-
sequent Tutor Acts. For although our results demon-
strate significant dependencies between emotion and
our human tutor responses, only a small amount of
variance is accounted for in our results, indicating
that other factors play a role in determining tutor re-
sponses. One such factor is student “correctness”,
which is not identical to student “certainness” (as

15The student means for the (multiple-choice) pre- and
posttests were 0.42 and 0.72, respectively.

measured by “hedging” (Bhatt et al., 2004)); for ex-
ample, a student may be “certain” but “incorrect”.
Other factors include the dialogue act that the stu-
dent is performing. We have recently completed
the annotation of student turn “correctness”, and we
have already annotated “Student Acts” in tandem
with Tutor Acts. Annotation of student “Frustration”
and “Anger” categories has also recently been com-
pleted. We plan to extend the n-gram analysis by
looking at other n-grams combining these new an-
notations of student turns with tutor responses.

In addition to using dependent bigrams to develop
adaptive dialogue techniques, these results also pro-
vide features for other algorithms. We plan to use
the dependent bigrams as new features for investi-
gating learning correlations (i.e., Do students whose
dialogues display more certain - POS bigrams learn
more?), furthering our previous work in this area
(Forbes-Riley et al., 2005; Litman et al., 2004).
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