
PARSING A LATTICE WITH MULTIPLE

GRAMMARS

Fuliang Wengh · Helen Meng2

Po Chui Luk2

1 Speech Technology and Research Laboratory
SRI international

333 Ravenswood Ave, Menlo Park, CA 94025
fuliang@speech.sri .corn

2Human-Computer Communications Laboratory
Department of Systems Engineering and Engineering Management

the Chinese University of Hong Kong
Shatin, NT, Hong Kong, China

{hmmeng,pcluk }@se.cuhk.edu.hk

Abstract Efficiency, memory, ambiguity, robustness and scalability are the central issues in natural language parsing. Because of the complexity of natural language, different parsers may be suited only to certain subgrammars. In addition, grammar maintenance and updating may have adverse effects on tuned parsers. Motivated by these concerns, [25] proposed a grammar partitioning and top-down parser composition mechanism for loosely restricted Context-Free Grammars (CFGs) . In this paper, we report on significant progress, i.e., { 1) developing guidelines for the grammar partition through a set of heuristics, {2) devising a new mix-strategy composition algorithms for any rule-based grammar partition in a lattice framework, and 3) initial but encouraging parsing results for Chinese and English queries from an Air Travel Information System {ATIS) corpus.
1 Introduction

Efficiency, memory, ambiguity, robustness, and scalability are the central issues in natural language parsing (5 , 21, 7, 19 , 12, 24, 14] . Among others, Earley 's algorithm is often used for its superior performance due to a good combination of top-down prediction and bottom-up bookkeeping. Schabes' algorithm precompiles all the prediction steps and some completion steps in Earley 's algorithm, and has resulted in improved average performance (19] while maintaining the cubic time complexity and square space complexity of Earley 's algorithm. Tomita [21] generalized Knuth's LR(k) parsers to allow nondeterminism, and reported faster performance than Earley 's parser. However , in the worst case, as different researchers [23, 7] have pointed out, (G)LR parsers have exponential time and space complexity. By utilizing a lookup table for reduce steps in a GLR parser, Kipps [9] was able to limit the time complexity to O(n3) , but this approach led t o a less practical system. Nederhof and Satta [14] further improved the GLR parser through splitting a reduce step into more primitive operations that could remove
*The author is currently with Intel China Research Center, No.l GuangHua Road, Beijing 100020, China.

His new e-mail address is fuliang.weng@intel.com.

266

redundancy in parsing. To deal with real-world natural language parsing, others [18, 12, 24] proposed ways to handle extra-grammatical cases for G LR parsers. As reported in this paper, we have continued our work in grammar partition and parser composition [25] that explores advantages of different parsing algorithms. We have also investigated guidelines for grammar partitioning, the relationship between partitioning and state space selection, and practical ways for composing different parsing algorithms, in the context of robust parsing of Chinese and English queries from an ATIS corpus. In Section 2, we briefly review some concepts of grammar partitioning, and discuss a few guidelines for the task and their relationship with state space selection for the parsers mentioned above. Section 3 presents an improved parser composition algorithm. Section 4 describes some initial but encouraging results on parsing Chinese and English queries. The final section ptesents our conclusion and describes our future research directions.
2 Grammar Partitioning

To facilitate our discussion, we first briefly review the motivation and concept for grammar partition [25). Then, we give some intuitive guidelines for the partitioning and their relationship with state space selection for the parsers analyzed by [13] .
2.1 Motivation and Concept

Earley [4] and Ukkonen [23] proved that the following artificial grammar Gn is exponential for LR(k) parsers, and even for any right parsers, respectively : S -+ Ai (1 � i � n) Ai -+ a i Ai (1 � i f:. j � n) Ai -+ ai Bi I bi (1 � i � n) Bi -+ ajBi l bi (l � i � n) These results present a potentially severe problem for LR(k) parsers and their applications to natural language processing. However, as illustrated in [25], if we partition the grammar into n sub grammars, parse each sub grammar separately, and combine subparsers for the sub grammars, we can obtain a satisfactory compromise in terms of speed and memory. From a practical point of view, in addition to the possibility of causing an exponential number of compiled states, sublanguages in a large parser may be described by pre-existing subgrammars using specialized parsing algorithms. Implementation and maintenance constraints may prevent integration of the sublanguage modules into a monolithic system. A framework for partitioning grammars and composing parsers of different types would be useful for the scalability of a parsing system. In the rest of this paper, we use the definitions in [25] for grammar partition. Intuitively, we partition the production set into subsets, and create subgrammars for the subsets, accordingly. The interaction among different subgrammars is through nonterminal sets, i.e., INPUT and OUTPUT, and a virtual terminal technique. The INPUT to a subgrammar is a set of nonterminals that were previously parsed by other subgrammars. The OUTPUT of a subgrammar is those nonterminals that were parsed based on this subgrammar and used by other subgrammars as their INPUT symbols. For every nonterminal A in the INPUT set of a subgrammar, there

267

is an augmented rule A -+ vtA for that grammar, where vtA is called a virtual terminal acting
as if it were a terminal [10, 24, 25] . A directed calling graph for the sub grammar set of G is
defined as (V, E) , where V is the subgrammar set and E = { (A, B)} , with the overlap of the
OUTPUT of B and the INPUT of A being nonempty. It can be proved that the partitioned
grammar will lead to the same recognizable language. It is straightforward to see that this
grammar partition definition is more general than the one defined with respect to nonterminal
symbol set [10] .

2.2 Guidelines for Grammar Partitioning

Despite the fact that grammar partitioning is desirable, it is not clear how it should be done in
any general case. We describe properties that may help in understanding this subject.

First, let us look at the two extreme cases: the coarsest and finest partitions. The coarsest
partition is the grammar itself, and all the production rules are included in the set. The finest
grammar partitioning is the set of all singletons with one exact grammar rule in each set. The
INPUT/OUTPUT set members are the nonterminal symbols on the right-hand side/left-hand
side (RHS /LHS) of the rules in these singletons. So, an inverse problem of grammar partitioning
is the clustering of smaller subgrammars into bigger subgrammars based on calling relations
among different subgrammars.

Intuitively, we may want to create clusters that have frequent interaction within cluster
members, but fewer interactions between members of different clusters . This will reduce the
possibility of combining common prefix computations for highly ambiguous grammars. How
ever, it may increase the chance of computing a common prefix repetitively. Our criterion is to
form as big a cluster as possible within an affordable size limit.

First we create a weighted graph describing the connections among different clusters. Its
node set consists of all the clusters in the grammar. When no training data is available, its
edge set and weights are obtained through the following procedure. For each pair of clusters,
intersect one cluster's INPUT and the other cluster's OUTPUT, take the total size of the two
symmetric intersections as the weight on the connecting edge, and create an edge between the
two clusters only when the weight is above a certain threshold.

When training data is available, probability weights on the edges can be computed based on
the actual calls between the corresponding clusters, in a way, related to the grammar chunking
approach [16] .

For better cluster quality, we present a set of simple heuristics for the refinement of grammar
clusters. There are two types of refinements, merge to form bigger clusters, and split to form
smaller clusters. The merge operations are:

1. Compute the transitive closures of the calling relations for clusters, and replace the original
clusters with their closures.

2 . If a cluster has an empty INPUT set, duplicate the cluster for each of its parent clusters,
and merge the copies with its parents .

The split operations can be through removing the edges with low weights or the ones that
lead to minimum changes with respect to its original graph using K ullback-Leibler distance.

268

If dotted rules are considered, the state space of the viable prefix recognizer NFA (1 , 3] (VPNFA) is one extreme partition with each dotted rule as a state (or, a partitioned subgrammar). In the VP-NFA, for each pair of states A -+ o:.X/3 and A -+ o:X.{3, there is a transition with X as its label, and for each pair of states A -+ o:.B/3 and B -+ .1, there is a £-transition. If we collapse the end states of t transitions in the VP-NFA with their corresponding start states (if multiple t transitions go to a state node, we duplicate it and its out-going transitions for each state to be merged) , we obtain the state space of Schabes' algorithm. The resulting state transition automaton is still nondeterministic with each state containing only one kernel dotted rule. On the other hand, if we determinize the VP-NFA, we obtain another extreme partition, i.e., the state transition automaton for GLR parsers. Two measurements can be used for the state merge decisions. One is the maximum degree of nondeterminism for each state. In other words, one can merge two out-going transitions with the same label and from the same state to reduce the nondeterminism until the nondeterministic degree reaches a preset limit. The other measure is the maximum length of common prefix paths. Notice that the common prefix may contain nonterminals, therefore it is not simply the lookahead. If training data is available for the state space, similarly, we can search for the two parameters empirically, and decide the clusters. Our two measurements provide some details to the observation in [13] that allowing different degrees of nondeterminism in the state transition graphs would lead to different time and space complexity: Schabes' algorithm allows a maximum degree of nondeterminism in the state transition, while Tomita's algorithm allows a minimum degree of nondeterminism.
3 Parsing with Multiple Grammars

Weng and Stokke (25] presented a top-down style algorithm that combines several parsers with partitioned subgrammars, with a restriction that the calling graph must not have left recursion, a somewhat stronger constraint than Tomita's original parser [15]. Here, we will present a flexible parsing composition algorithm that does not have such restriction on the grammar. The intuition behind this new algorithm is that each subparser with a subgrammar will try to parse from the current input position and place its output nonterminal (virtual terminal) onto the same lattice, if successful. A subparser is invoked by a caller subparser only when certain predictive pruning conditions are satisfied to avoid excessive parser invoking. The representation used for interfacing different parsers is a special chart or lattice. The nodes of the lattice are spatial positions, and its transitions represent terminals/virtual terminals that cover positions indicated by their corresponding start and end nodes. Usually, a terminal covers one position, while a virtual terminal can cover multiple positions. During parsing, both terminals and virtual terminals are represented in the same lattice, but, partial constituents and nonterminals that are not the output of any subgrammar cannot be placed there. This implies that only the granularity represented by subgrammars is present in the lattice, and therefore, is termed as a lattice with multiple granularity (LMG). In addition, this representation gives us a good control over the lattice density for parsing. These features differentiate LMG from the traditional chart used in other parsing algorithms [8, 2, 17, 27] . Dealing with word lattice input for a single GLR parser was solved by Tomita (22] . Two steps in Tomita's algorithm are different from the standard GLR parsing algorithm: the lattice is topologically sorted for synchronization; for shift action, an additional procedure tests whether
269

the current word wordi is adjacent to any word on the top of the graph-structured stack.
This same idea can be used for the Earley parser, left-corner parser , and shift-reduce parser.
That is, instead of moving from i to i + 1 ,: the new algorithm will look for the next adjacent
symbol to the current node in the lattice. However, direct application of this idea would force
topological sorting to be performed each time a virtual terminal is added to the lattice. In
the new composition algorithm, we use a stack to store the initially sorted lattice input, and
dynamically add newly found virtual terminals to the stack in such a way that the topological
order is always preserved for the changing LMG. By doing this, we avoid performing a constant
topological sorting required by the simplistic approach.

In the original definition [25] , we duplicated multiple sub grammars for a partition element
with multiple output nonterminals. However, it is not necessary to make such duplication for
the purpose of parsing because we can easily overcome the difficulty in handling multiple output
symbols. To do so, we let {O} }j=1 be the output of a partition element Gi. If we add rule set
{ Si --+ OJ }j =l to Gi , use Si as its start symbol for partition element Gi , and label the output
node in the lattice with corresponding O} during parsing, the correctness of derivation is still
guaranteed. In the rest of this paper, without loss of generality, we can safely adopt the more
general definition.

We have developed a new composition algorithm for parsers with different subgrammars,
given a word lattice as its input. Without loss of generality, we use GLR parsers. Other parsers,
such as Earley 's parser or the shift-reduce parser , can be used in combination.

Let the word lattice be L = (N, E) , where N is a node set, indicating spatial positions, and
E is a set of directed transitions, indicating the ranges the (virtual) terminals cover . Functions start(dt) , end(dt) , and word(dt) return the start, the end, and the word label of directed
transition dt , respectively. Let u be the stack that stores the topologically sorted transition
sequence from L.

Suppose that psri i s the parser for sub grammar Gi , psr0 i s the parser for the top grammar Go , and the largest subgrammar index is J{ . Each psri takes a (virtual) terminal stack u as
input (call by value) , and returns a list of pairs with form (v, d) , where d is the end node for
virtual terminal v of subgrammar Gi if parsed successfully. If no parse is found, it returns 0 .

Parser Composition Algorithm: This algorithm replaces PARSE() and PARSEWORD()
in Farshi 's version of Tomita's recognition algorithm [15] . In this algorithm, ACTOR(A, Q, w) ,
COMPLETER(R, f) , and SHIFTER(Q, f) are similar to that version, with a few minor changes :
w, the to-be-processed word, replaces ai+ 1 as the next word for processing in ACTOR; Uj , the
state set at node j in L, replaces Ui+1 as a state set next to Ui when w corresponds to the
transition from Ui to Uj . Ui 's and L are shared by all the parsers. However, graph-structured
stack r and shared-packed forest are private to each parser. SP is a list of triples (pid, dt , u) ,
where pid is a parser id, dt is the transition being processed, and u is the sorted transition
stack. SP records all the parsers started at a particular location in L to avoid infinite recursion.

1 . Topologically sort L into dto , . . . , dt1, and push all the transitions onto stack u in the reverse
order1 .

2. r = 0. (initializing graph-structured stack) .
1 Notice that the resulting stack u has / + 1 element with wo on the top of u .

270

3. Create in r a vertex v0 labeled with state id so, U o = { vo } .
4 . SP = 0 (initializing the started parser list).
5. dt = pop(u), SP = {(O , dt, u)} , psro(dt, u).
PARSER psrm(dt, u) , m = 0 , . .. , I<:
1. Loop until dt i s null do

(a) i = start(dt), j = end(dt), w = word(dt). (b) A = Ui ; R, Q = 0. (c) repeat i. if A -f= 0 then do ACTOR(A, Q, w). i i . else if R -f= 0 then do COMPLETER(R, f) . until A == 0 n R == 0 (done with reductions). (d) PREDICTIVE-SUB-PARSING(dt , u) . (e) SHIFTER(Q, f) . (f) dt = pop(u).
Predictive Sub-parser: The parameters for procedure PREDICTIVE-SUB-PARSING are call-by-name. In the procedure, OUT PUTk is the OUTPUT set of sub grammar Gk, and PVT(Ui, w) is a function that takes a set of states and a (virtual) terminal, and returns a set of legitimate virtual terminals to be parsed at that point. PREDICTIVE-SUB-PARSING(dt, u) :

l . flag = true.
2. while flag do

(a) flag = false.
(b) i = start(dt), j = end(dt), w = word(dt) . (c) For k = 1 to J{ do if OUTPUTk n PVT(Ui , w) -f= 0 and (k , dt, u) f/. SP then do i. SP = (k , dt , u) U SP. ii. lvt = psrk(dt, u). iii . For (m, d) E lvt, m E PVT(Ui, w) and m is not in L to cover from i to d then2

A. add m to L : create a transition mdt with label m that connects from node i to node d. B. push mdt onto stack u. C. flag = true.
2For getting all the possible parse trees, somewhat more complicated test needs to be made, that is, to see

whether the top level strnctures (rnles) have already been built.

271

Notice that function PREDICTIVE-SUB-PARSING only adds virtual terminals to the stack
and lattice, and these virtual terminals have the same start node as the transition being pro
cessed. Therefore, the updated stack still maintains the topological order for the updated
lattice. This leads to a straightforward correctness proof of the algorithm.

In PREDICTIVE-SUB-PARSING, function PVT(Ui , w) , serving as a subparser filter, has
not been defined. The occurrence of PVT(Ui , w) in the algorithm is not essential for its cor
rectness. However, without PVT it would start multiple parsers at every node in the lattice,
that is, a big efficiency concern. Our technique for addressing this problem resembles predic
tive calling of sub parsers in the strict top-down composition algorithm [25] , or FIRST in the
conventional parsing table generator .

Let VT(i) = { vt l i is a state , vt is a virtual terminal, 3s, shift s E ACTION(i, vt)} . The
predictive set of virtual terminals for a given state i and a (virtual) terminal w is defined
as PVT(i , w) = {vt j vt E VT(i) , w is a (virtual) terminal, VT(i) , vt ⇒ w . . . } . To overload the
notation a little bit , we define the predictive set of virtual terminals for a set of given states
Q and a (virtual) terminal w as: PVT(Q, w) = LJieQ PVT(i, w) . The algorithm to realize the
definition is straightforward, and therefore omitted.

Intuitively, for any state in Ui , if there is a shift s step under a virtual terminal for that
state in the ACTION table of the caller parser, we add the virtual terminal to PVT(Ui , w).
Those virtual terminals that do not have w as their left corner can be pruned.

For other types of parsers , we can also compute a set of virtual terminals, given a nonterminal
(or a set of non terminals) and a left corner, similar to the way PVT or FIRST is computed.
Thus, we can avoid invoking subparsers excessively.

In addition to predictive pruning, parallelization is an approach to the efficiency problem.
Notice that all legitimate subparsers in PVT for a particular transition in the lattice can be
parallelized without affecting other parts of the algorithm.

To address both parsing accuracy and efficiency simultaneously, we can incorporate prob
abilistic models into lattice. Estimation of ngram word transition models is standard. In our
lattice framework, head words can be passed to virtual terminals for more detailed probabilistic
estimation to better capture certain . long distance dependency without lexicalizing the gram
mar. The latter approach leads to a huge grammar in any practical system [6] . However,
a potential sparse data problem for the introduction of lexicalized virtual terminals can be
partially addressed by the relatively easy-to-control granularity of grammar partitioning.

To address the robustness for real-world applications, the techniques used in the EGLR
parser [24] can be adapted in the lattice framework, because, in the EGLR parser , the three
editing operations (insertion, deletion, and substitution) can be applied to both terminals and
virtual terminals . Modifying input is equivalent to adding transitions in the lattice [1 1 , 26] .
The only additional issue is that the cost function for the optimal path selection may not be
a uniform unit cost , but should be associated with the number of words changed when virtual
terminals are in the editing operations.

4 Experiments

Ideally, we want to test grammar partitioning and parser composition in its full scale. However,
before the full implementation of the algorithms described above, we took a shortcut to evaluate

272

the feasibility in a real-world natural language application. We describe a concrete partition of Chinese and English grammars in an ATIS domain, and a robust cascading parsing and composition. We then report the parsing and understanding results for the ATIS domain.
4.1 Cascading Parsing for the ATIS Grammars

English ATIS tasks contain queries regarding air travel information, including flights leaving from or arriving at locations at various dates and times, services of certain flights, and airline routes. The Chinese queries used in the experiments are translated from an English ATIS corpus. Based on the guidelines for grammar partitioning, we manually partitioned the rule set into subgrammars, such as STATE-NAMES, CITY-NAMES, AIRPORT-CODE, with corresponding virtual terminals prefixed with vt . In this particular case, the calling graphs of the subgrammars are acyclic and , therefore, they can be assigned with level indices (ids). Their corresponding subparsers are GLR parsers, compiled separately, and assigned with the same ids. The toplevel sentence sub grammar is not yet completed and deployed, because of the flexible word order problem in Chinese and many variations of sentence structures in English. However, the LMG representation allows a robust parser to compose all the legal sequences of virtual terminals and choose the best path that covers the most words in the input string. The whole parsing process proceeds as follows. The control mechanism takes a query sentence and converts it into an LMG. Then, the subparsers at the lowest level are activated to parse the LMG, and leave their corresponding virtual terminals on the LMG when parsing succeeds. If no more virtual terminals can be added to the LMG, the subparsers at one level higher are activated and start to parse the same LMG3 • This process continues until the highest level is reached, when the robust sentence-level parser finishes its job of determining the best virtual terminal sequence. For the semantic evaluation described in subsection 4.2, a semantic interpreter converts syntactic virtual terminals into semantic frames of key-value pairs. The main difference between the parsing composition algorithm described in Section 3 and the one used here is the adoption of a viterbi-style robust master parser instead of a GLR parser. This gives us a flexible way to deal with extra-grammatical queries even without any sentence-level grammar rules. As a consequence, it also derives a preliminary set of sentencelevel grammar rules for future refinements as we will see in Section 4.2. On the other hand, when both predictive pruning and robust handling are integrated and tuned in a GLR parser, it can replace the current one without affecting the other components, which is the desired feature of the approach described in this paper.
4.2 Experimental Results

Our experiments use the English ATIS-3 corpus and its translated Chinese version, specifically the Class A queries. It contains 1564 queries from the training set, 448 queries from the 1993 test set and 444 queries from the 1994 test set. Each utterance is labeled with a corresponding SQL query for information retrieval.
3 When there is a recursion at the same level of the calling graph, we can repetitively activate the subparsers

at that level until no more virtual terminals can be added to the LMG , which corresponds to the 'while flag
loop' in Predictive sub-parser algorithm.

273

For the Chinese experiment, the non-sentence level grammar rules used for parsing were
developed based on 375 queries from the MIT subset of the training set, and the remaining
1189 queries of the training set were held for tuning. When parse errors occur in any of the
held-out sentences, we modify the grammar rules to incorporate the changes. Evaluations were
conducted on 1993 and 1994 test sets. Table 1 shows the general statistics of the hand-crafted
grammar. As we can see from the table, the majority of the rules (825 out of 1013) are directly
related to the lexicon, and only about 178 rules are related to phrase structures.

Applying the parsing algorithm described in Section 4.1 and the above grammar on the
training set and the two test sets, we obtained the results shown in Table 2, where the error
rates are measured against the Chinese translation of the standard semantic key-value pairs
supplied in the ATIS-3 corpus by Linguistic Data Consortium. Full understanding refers to
utterances with full matches between the semantic categories in our frame and ,those in the
standard answer with no error. Part. understanding refers to partial matches with an error
rate between zero and one. No understanding refers to no matches.

In addition to the incomplete grammar coverage, parsing errors can have sources in trans
lation errors or implicit information. The former are mainly caused by wrong or imprecise
translation from English to Chinese. The latter are due to a discrepancy in the semantic
meaning translation between the standard answers and our semantic interpreter. For example, tonight has semantic meaning of t ime 2: 1800&time � 2359, while our interpreter has only a
symbolic value . We are developing a correction for this discrepancy.

We also summarized the parsing statistics in Table 3. From the table, we observe that the
speed of our parser is very fast for this application. In addition, the number of rules reduced
and states visited in the best paths and in the successful sub-parses are less than those in the
overall parsing process, which means that further pruning is possible.

Because the current master parser does not use explicit sentence-level grammar rules, we do
not have direct parsing table size comparison between partitioned and unpartitioned grammars.
However, as an approximation , we can take as the sentence level rules those best paths from all
the training data that occur more than once. In the Chinese experiment, we obtained 205 such
rules, in addition to the original 1 ,013 lower level rules. For the unpartitioned grammar, the
total number of GLR states is 10,395, while for the partitioned grammars, the total number of
GLR states is only 2 ,825 , out of which 852 states are used by the sentence-level subgrammar.

To speed up the English experiment, we constructed English lower level rules based on
the Chinese rules and repeated the same processes for parsing and for obtaining English sen
tence level rules as we did for Chinese. English parsing results are listed next to its Chinese
counterpart in Tables 1 to 3. There are additional 198 sentence level English rules. For the
unpartitioned grammar, the total number of GLR states is 10,233, while for the partitioned
grammars, the total number of GLR states is only 2 ,128, out of which 671 states are used by
the sentence-level subgrammar. Both Chinese and English experiments show that, at least in
the ATIS domain, grammar partitioning leads to the desirable effect of reducing parser sizes.

5 Conclusions and Future Work

We have presented guidelines for grammar partitioning through a set of heuristics, and proposed
a new mix strategy parser composition algorithm based on a flexible LMG representation,

274

so that we can alleviate size, speed, and robustness problems in real-world natural language applications. We also reported our initial but encouraging parsing results in the ATIS domain. We plan to further integrate the predictive robust parsing algorithm [24] into the current system, and to use probabilistic modeling for better pruning and selecting of correct parses. To alleviate the current grammar writing bottleneck in our parsing experiments , we will also work with semi-automatically induced grammars [20].
Acknowledgments

Part of this work was done while the first author was visiting the Chinese University of Hong Kong. This work is mostly supported by the Direct Grant from the Chinese University of Hong Kong, and, in part, supported by SRI International, under Mediated Space project.
References

[1] A. Aho and J. Ullman. Principles of Compiler Design. Addison-Wesley , Reading, MA, 1977.
[2] J. Amtrup. Parallel Parsing: Different Distribution Schemata for Charts. In IWPTl 995, 1995.
[3] H. Chen, J. Qian, and Y. Sun. Principles of Compilation for Programming Languages (in Mandarin). XinHua Publisher, Beijing, 1984.
[4] J. Earley. An Efficient Context-free Parsing Algorithm. Ph.D. thesis, Carnegie Mellon University , 1968.
[5] J. Earley. An Efficient Context-free Parsing Algorithm. Communications of ACM, 13(2) , 1970.
[6] J. Eisner and G. Satta. Efficient parsing for bilexical context-free grammar and head automaton grammars. In Proceedings AGL 1999, 1999.
[7] M. Johnson. The Computational Complexity of Tomita's Algorithm. In Proceedings of the 1st International Workshop on Parsing Technologies, 1989.
[8] M. Kay. Algorithm Schemata and Data Structures in Syntactic Processing. In B. Grosz, K. Jones, and B. Webber, editors, Readings in Natural Language Processing. Morgan Kaufmann Publishers, Inc. , 1986.
[9] J. Kipps. Analysis of Tomita's Algorithm for General Context-Free Parsing. In Proceedings of the 1st International Workshop on Parsing Technologies, 1989.

[10] A. Korenjak. A Practical Method for Constructing LR(k) Processors. Communications of ACM, 12(11) , 1969.
[11] B. Lang. A Generative View of Ill-Formed Input Processing. In ATR Symposium on Basic Research for Telephone Interpretation (AST!), 1989.

275

[12] A. Lavie and M. Tomita . An Efficient Noise-Skipping Parsing Algorithm for Context-Free Grammars. In Proceedings of the 3rd International Workshop on Parsing Technologies, 1993.
[13] M.-J . Nederhof. An Optimal Tabular Parsing Algorithm . In Proceedings of AGL 1994, 1994 .
[14] M .-J . Nederhof and G. Satta . Efficient Tabular LR Parsing . In Proceedings of AGL 1996, 1996.
[15] R. Nozohoor- Farshi . GLR Parsing for e-Grammars . In Masaru Tomita, editor, Current Issues in Parsing Technology. Kluwer Academic Publishers, 1991 .
[16] M. Rayner and D . Carter. Fast Parsing Using Pruning and a Grammar Specialization. In Proceedings of 1996 AGL, 1996.
[17] T . Ruland, C . Rupp, J . Spilker, H . Weber, and K. Worm . Making the Most of Multiplicity: A Multi-Parser Multi-Strategy Architecture for the Robust Processing of Spoken Language . In Proceedings of ICSLP 1998, 1998 .
[18] H . Saito and M . Tom ita . GLR Parsing for Noisy Input . In Proceedings of the 2nd International Workshop on Parsing Technologies, 1991.
[19] Y. Schabes. Polynomial Time and Space Shift- Reduce Parsing of Arbitrary Context-Free Grammars. In Proceedings of 1991 AGL, 1991 .
[20] K. Siu and H . Meng. Semi-automatic Acquisition of Domain-specific Semantic Structures. In Proceedings of the 6th European Conference on Speech Communication and Technology, 1999.
[21] M. Tomita. Efficient Parsing for Natural Language. Kluwer Academic Publishers, 1985.
[22] M. Tomita . An Efficient Word Lattice Parsing Algorithm for Continuous Speech Recognition . In Proceedings of ICASSP-86, 1986.
[23] E. Ukkonen. Lower Bounds on the Size of Deterministic Parsers. Journal of Computer and System Sciences, 26: 153-170, 1983.
[24] F . Weng . Handling Syntactic Extra-grammaticality. In Proceedings of the 3rd International Workshop on Parsing Technologies, 1993.
[25] F. Weng and A. Stokke . Partitioning Grammars and Composing Parsers. In Proceedings of the 4th International Workshop on Parsing Technologies, 1995.
(26] F. Weng and Y. Wang . Introduction to Computational Linguistics {in Mandarin). Sino Social Sciences Publisher, Beijing, 1998.
[27] K. Worm. A Model for Robust Processing of Spontaneous Speech by Integrating Viable Fragments . In Proceedings of COLING/A CL 1998, 1998 .

276

Types of rules sizes Remarks Chinese English non-top-level rules 1013 953 all the rules in the grammar lexical rules 825 773 rules deriving lexical entries non terminals 77 8 1 all the nonterminals virtual terminals 50 52 all the virtual terminals terminals 4 19 473 all the words
Table 1 : Grammar rule statistics.

Training set 1993 test set 1994 test set 1564 queries 448 queries 444 queries Chinese English Chinese English Chinese English Ave. sent. length 19.33 1 1.24 16.63 10.26 20.17 1 1.46 (# of chars/words) Ave. error rate (%) 7.94 7.30 1 1.22 9.69 1 3.6 1 12.40 Full understanding (%) 80.56 83.95 77.90 87.05 70.95 76.35 Part. understanding (%) 17.26 14. 13 17.4 1 10.49 23.87 21.40 No understanding (%) 2.17 1.92 4.69 2.46 5.18 2.25
Table 2 : Error rate and accuracy statistics.

Training set 1993 test set 1994 test set 1564 queries 448 queries 444 queries Chinese English Chinese English Chinese English Total time for entire set 21 14 5 4 7 5 (in seconds , Ultra spare 5) Ave. no. of states visited 64.9 36.6 53.3 33.3 68.5 38.8 incl. failed subparsers Ave. no. of rules reduced 13.4 14.6 1 1.3 1 3.2 13.7 15.0 incl. failed subparsers Ave. no. of states visited, 39.0 30.2 31.3 27.0 4 0.1 31.1 only successful subparsers Ave. no. of rules reduced, 12.7 13.9 10.4 12.5 1 2.9 14.3 only successful subparsers Ave. no. of states visited 30.7 24.1 26.0 2 1.6 3 1. 1 24.7 in the best paths Ave. no. of rules reduced 9.5 1 1.0 8.2 9.9 9.5 1 1. 1 in the best paths
Table 3 : Statistics of the grammar used for the experiments.

277

