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Abstract. Both Neural Networks and Finite-State Models have recently proved to be 
encouraging approaches to Example-Based Machine Translation. This paper compares 
the translation performances achieved with the two techniques as well as the correspond- 
ing resources required. To this end, both Elman Simple Recurrent Nets and Subsequential 
Transducers were trained to tackle a simple pseudo-natural machine translation task. 

1    Introduction 

Example-Based (EB) Machine Translation (MT) systems have recently led to successful limited- 
domain applications [Brown et al., 1993, Vogel et al., 1996]. Subsequential Transducers (SSTs) 
[Berstel, 1979], which are also within the EB framework and are a class of Finite-State Models 
(FSMs), have become an interesting approach to both Language Understanding [Castellanos 
et al., 1993] (considered as a particular case of translation), and MT [Castellanos et al., 1994, 
Oncina et al., 1994, Vilar et al., 1995]. The appeal of transducer learning is in part due to the 
fact that very accurate translation models can be obtained when enough training examples are 
presented [Oncina et al., 1993]. However, the amount of data required is sometimes quite large. 

Moreover, Neural Networks (NNs), so-called Connectionist Models, can also be considered 
as an encouraging approach to EB MT. On that score, NNs have also shown empirical success 
dealing with Language Understanding tasks [Stolcke, 1990, Castaño et al., 1995]. However, only 
a few connectionist MT systems have been developed in the literature. PARSEC [Jain, 1991], 
which was used in the JANUS project [Waibel et al., 1991], follows this approach. Another effec- 
tive and more simple EB connectionist translator for text-to-text applications has been recently 
introduced in [Castaño & Casacuberta, 1997]. The preliminary results presented in that paper 
indicated that translations from the source to the target language can be automatically and 
successfully approached. In addition, these findings suggested that small corpora are required 
to train the neural models. FSMs had also been previously applied to the same task considered 
in these pilot experiments [Castellanos et al., 1994, Oncina et al., 1994]. However, SSTs were 
not trained and tested on the same data as those employed for NNs. Consequently, both con- 
nectionist and transduction models could not be precisely compared. Appropriate experiments 
which compare both MT methodologies are carried out and are discussed in this paper. 

The paper is organized as follows: First, the MT task in which NNs and SSTs are compared 
is described. Section 3 presents the neural architecture employed, as well as the procedure used 
to train the net. Section 4 briefly describes some concepts related to SSTs and the different 
experiments which were carried out with these models. In Section 5, the experimental results 
achieved with the two techniques are reported. The conclusions of the comparative experiments 
are discussed in Section 6. 
* Work partially funded by the Spanish C.I.C.Y.T. (project TIC95-084-CO2) 
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2 The Experimental Machine Translation Task 

With the objective of comparing Connectionist and Finite-State approaches to MT, both models 
were tested on a pseudo-natural task called Miniature Language Acquisition (MLA). This task 
was originally introduced by Feldman and his collaborators and involved descriptions of simple 
two-dimensional visual scenes [Feldman et al., 1990]. Later, it was adequately reformulated as 
an MT task in [Castellanos et al., 1994], so that descriptions of scenes in a given source language 
had to be associated with corresponding sentences in another target language. In that paper, 
English, Spanish and German were considered. However, only the first two languages are taken 
into account in this paper. An example of paired sentence of this task, named Descriptive 
MLA-MT, is shown in Figure 1. 

Since this Descriptive task involved fairly-simple syntax, a more complex Extended MLA- 
MT task, (which increased the degree of input-output “asynchrony”) [Castellanos et al., 1994] 
was also considered in our experiments. This last task included the possibility of adding or 
removing objects to or from a scene. Figure 1 shows an example of these sentences. 

Following the directions of the original task formulation [Feldman et al., 1990] and its cor- 
responding extension [Castellanos et al., 1994], a large corpus of paired sentences was generated 
in a semi-automatic way for each pair of languages and for each of the two above tasks. 

Spanish: un cuadrado mediano y claro y un círculo claro tocan a un círculo y un cuadrado mediano 
English:  a medium light square and a light circle touch a circle and a medium square 
Spanish: se elimina el círculo grande que está encima del cuadrado mediano y oscuro y del triangulo 
English:   the large circle which is above the medium dark square and the triangle is removed 

Figure 1. Two examples of Spanish-English paired sentences from the Descriptive (above) and Ex- 
tended (below) MLA-MT task, respectively. Vocabulary sizes are about 30 words and trigram test-set 
perplexities are about 3. 

3 Learning Neural Networks 
3.1 Network Architecture 

In accordance with the nature of the MT tasks, a connectionist model with an explicit represen- 
tation of time was required. A Simple Recurrent Network (SRN) presented in [Elman, 1990] was 
adopted as the basic architecture in the preliminary experiments [Castaño & Casacuberta, 1997]. 
In order to increase the performance of the model, preceding and following contexts of the input 
signal were presented to the SRN. Figure 2 illustrates the resulting neural topology. The specific 
number of hidden units and the topology of the delayed inputs employed to tackle each MLA- 
MT task coincided with those adopted in the preceding work [Castaño & Casacuberta, 1997] 
and are reported in Section 5. 

The input units and the output layer were designed according to a local representation of 
the source and target vocabularies, respectively. This means that input and output words were 
encoded by orthogonal vectors. An additional output neuron was created specifically to mark 
the end of the translated sentence. 

3.2 Training Procedure 

The neural architecture described above was trained using an on-line version of the Backward- 
Error Propagation algorithm  [Rumelhart et al., 1986];  that is,  a gradient-truncated version of a 
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Figure 2. Delayed Elman Simple Recurrent Network. 

full step-descendent procedure1. The words of every input message were presented sequentially 
at the input layer of the SRN, while the model had to provide the successive words of the 
corresponding translated sentence. After inputs and target units were updated, the forward step 
was computed, the error was back-propagated through the net and the weights were modified. 
Later, the hidden unit activations were copied onto the corresponding context units. This time 
cycle was continuously repeated until the target value of the corresponding output neuron 
identified the end of the translated sentence. A sigmoid function (0,1) was assumed as the 
non-linear activation function and, consequently, context activations were initialized to 0.5 at 
the beginning of every input-output pair. Training stopped when some established criterion was 
verified. In this paper, we assume the best values estimated for the learning rate and momentum 
in the preliminary experiments [Castaño & Casacuberta, 1997]. 

With regard to the translated message provided by the net, the SRN continuously generated 
(at each time cycle) output activations. Since only one of the output neurons should be activated 
at a time, we considered that the output word was the word associated to the neuron with a 
maximum activation. 

4    Learning Finite-State Models 

In order to compare Finite-State Models (FSMs) with the previous connectionist translator, 
subsequential transducers were inferred and tested using the same training and test data, re- 
spectively, as those which were considered for the SRNs. Details of this kind of model and the 
corresponding learning process are given in [Amengual et al., 1997] and only the basic ideas 
will be reviewed here below. 

4.1     Subsequential Transducer Learning: Basic Concepts 

A Subsequential Transducer (SST) is a deterministic finite-state network that accepts sentences 
from a given input language and produces associated sentences of an output language. Each 
edge of the network has an input symbol and an output string associated to it. Every time an 
input symbol is accepted, the corresponding string is output and a new state is reached. After 
the whole input is processed, additional output may be produced from the last (final) state 
reached in the analysis of the input [Berstel, 1979]. 
1 All connectionist experiments presented in the paper were trained and tested using the SNNS neural 

simulator [Zell et al., 1995]. 
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An example of SST can be seen in Figure 3. This transducer correctly translates the four 
Spanish phrases un triangulo, un cuadrado, un triangulo grande, and un cuadrado grande into 
the corresponding a triangle, a square, a large triangle, and a large square. 

Given a set of training pairs of sentences from a translation task, a SST is learned (induced) 
using a very efficient algorithm called Onward Subsequential Transducer Inference Algorithm 
(OSTIA) [Oncina et al., 1993]. 

 
Figure 3. An example of Subsequential Transducer. The initial state has an arrow pointing to 
it and final states are marked by double-circling. The empty string is represented by A. 

4.2 Transducer Learning using Input-Output Language Models 

The learning strategies followed by OSTIA attempt to generalize the training pairs as much 
as possible. This often leads to very compact transducers that accurately translate input text. 
However, this compactness often entails undesirable "overgeneralization" of the input and out- 
put languages, which can be overcome by imposing adequate Language Model constraints: the 
learned SSTs should not accept input sentences or produce output sentences which are not 
consistent with given Language Models of the input (Domain) and output (Range) languages. 
Learning with Domain and Range (DR) constraints can be carried out with a version of OSTIA 
called OSTIA-DR [Oncina et al., 1994]. 

In our experiments we modelized both input and output language using simple FSMs; 
namely "4-Grams" [Jelinek, 1996]. They were obtained from the same input-output training 
sentences as those which were employed later to infer the SST with the 4-Gram DR 
constraints. 

4.3 Transducer Learning using Error Models 

SSTs inferred by OSTIA tend to produce large failures for test input sentences whose structure 
has not been exactly captured in the learned models. This behaviour can be improved with an 
error-correcting extension which includes an stochastic error model [Amengual et al., 1997]. 

In summary, the following three experiments related to FSMs were tested in the paper: 
OSTIA learning without DR constraints and OSTIA-DR learning with and without the error 
model. 

5     Comparative Experimental Results 

Three tasks were considered in this work: Both the Spanish-to-English and English-to-Spanish 
translations for the Descriptive MLA-MT task, and the Spanish-to-English Extended task only. 

5.1     Training and Recognition Data 

For each of the three tasks considered, an increasing and accumulative sample was employed 
to train both the neural and the finite-state models. Successive blocks of 500, 1,000, 2,000, ... 
input-output pairs were tried until the test translation rates were close to perfect performances. 
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Test set accuracies were obtained by evaluating the learned models on 6,000 sentences (for each 
task) which were different to those employed for training. Both training and test sets were 
randomly drawn from the original, large corpus mentioned in Section 2. 

5.2 Criterion Assessing Correct Translations 

A source test sentence supplied to a connectionist or finite-state model was considered to be 
correctly translated if the output provided by the model exactly coincided with the expected 
translation for this source sentence. In order to determine word accuracy, the obtained and 
expected translations corresponding to every source sentence in the test sample were compared 
using a conventional Edit-Distance (Dynamic Programming) procedure. In this way, the mini- 
mum number of insertions, deletions and substitution errors were obtained. The word accuracies 
reported here correspond to the ratio of the total number of no-errors with respect to the total 
number of edit (total error + correct) operations. 

5.3 Results for the English-to-Spanish Descriptive MLA-MT Task 

Previous results for the English-to-Spanish Descriptive MLA-MT task [Castaño & Casacuberta, 
1997] revealed that the best Elman SRN for approaching this task had 22 input units, 24 
outputs, 3+3 delayed input words and 60 hidden units (and, consequently, 344 neurons and 
17,160 trainable connections in all). This network was trained on the accumulative learning 
sample, requiring from 1,000 to 3,000 epochs to converge. Figure 4 shows the evolution of the 
(averaged) test performances achieved at both word and whole-sentence levels as a function of 
the size of the training set. 

 
Figure 4. Sentence translation rates (a) and word accuracies (b) achieved using Connection- 
ist Models and different Finite-State Models trained on an incremental training set for the 
English-to-Spanish Descriptive MLA-MT task. 

The same accumulative training data considered for these neural models was employed to 
infer successive SSTs using the different versions of OSTIA (including and not including DR 
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constraints and the error model as described in Section 4). The resulting transducers were 
not large: typically from 450 to 1,250 states and from 1,100 to 3,200 edges, when the SST 
was integrated with the input and output language models. The induced FSMs were then 
evaluated on the same test corpus employed in the connectionist approach and the corresponding 
(averaged) performances are shown in Figure 4. These results clearly indicate that NNs require 
less training data to converge than FSMs. 

5.4 Results for the Spanish-to-English Descriptive MLA-MT Task 

In the Spanish-to-English Descriptive MLA-MT task, only 500 and 1,500 learning samples were 
taken into account, since neural models require large computation time to be trained. The 
connectionist architecture adopted was an Elman SRN with 23 input units, 23 outputs, 2+7 
delayed input words and 80 hidden units (and, consequently, with 413 neurons and 26,800 train- 
able weights). Previous experiments for this task [Castaño & Casacuberta, 1997] suggested this 
network as the best (delayed) Elman configuration for approaching the task. Both connection- 
ist and finite-state models were trained on the two preceding corpora and tested on the same 
test corpus. The (averaged) translation accuracies achieved (see Table 1) again show that NNs 
outperformed FSMs. It should be noted that a SST inferred with DR constraints only provides 
complete sentences; and, consequently, the translation word accuracy could be decreased (as it 
can be observed in Table 1) when such constraints are included in the transducer. The induced 
SSTs for the Spanish-to-English Descriptive MLA-MT task had less than 1,000 states and 2,000 
edges1. 

Table 1. Sentence translation rates (SA) and word accuracies (WA) obtained using Connectionist Mod- 
els and different Finite-State Models trained on two incremental corpora from the Spanish-to-English 
Descriptive MLA-MT task. 

Number of                    SSTs                  SSTs                SSTs with DR      Neural 
training samples         without DR      with DR Error Model networks 
_____________________SA       WA SA       WA SA       WA SA       WA 

500                     0.6%   43.2% 18.8%   23.4% 18.9%   84.6% 86.7%   98.4% 
                1,500                          25.2%   59.0% 58.6%   70.2% 58.7%   86.7% 97.9%   99.8% 

5.5 Results for the Spanish-to-English Extended MLA-MT Task 

Finally, the neural approach and the approach based on FSMs were compared for the more com- 
plicated Spanish-to-English Extended MLA-MT task. The connectionist architecture adopted 
had 29 input units, 26 outputs, 6+7 delayed input words and 140 hidden units (and, conse- 
quently, 712 neurons and 80,360 trainable connections in all). This Elman configuration had 
been the best for tackling this task in the previous work [Castaño & Casacuberta, 1997]. Both 
approaches considered larger training sets (with 500 and 3,000 samples) since this Extended 
task was relatively more complex than the previous Descriptive one. The transducers inferred 
had less than 1,600 states, and less than 3,500 edges. The learned neural and finite-state models 
were later evaluated on the test corpus. Table 2 shows the (averaged) translation rates, which 
clearly indicates that NNs outperformed FSMs. 
1 However, SSTs with less than 100 states and a few hundred edges were inferred using 50,000 training 

samples [Vidal, 1997]. 
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Table 2. Sentence translation rates (SA) and word accuracies (WA) obtained using Connectionist Mod- 
els and different Finite-State Models trained on two incremental corpora from the Spanish-to-English 
Extended MLA-MT task. 

Number of                  SSTs                SSTs                SSTs with DR            Neura l  
training samples         without DR     with DR             Error Model                 networks 

                                       SA     WA      SA     WA            SA       WA SA       WA 

500                       0.3%   37.6%   1.0%   11.1%            1.1%   71.8% 53.1%   93.3% 
                3,000                       1.1%   45.4%  48.6%   69.6%          48.7%   85.9% 98.4%   99.9% 

6    Conclusions and Future Work 

NNs and FSMs have been compared on two MLA-MT tasks [Castellanos et al., 1994]. When 
analyzing the comparative results obtained, the following general conclusions can be drawn: 
First, both the connectionist and finite-state models are able to successfully approach the tasks. 
Second, performances of the (neural and finite-state) learned models improve with the amount 
of training data. Third, the translation rates achieved on small training sets are clearly better 
using NNs. Fourth, transducer learning is usually better when DR constraints are included, as 
was expected; the difference becomes more noticeable for small training sets. And finally, it is 
advantageous for the word translations to include an error model to the SST inferred using 
OSTIA-DR. 

Moreover, the more exhaustive experiments carried out on the Spanish-to-English Descrip- 
tive task confirm a hint suggested in recent work [Castaño & Casacuberta, 1997]: the num- 
ber of samples required by FSMs to achieve a sufficiently good performance level are clearly 
higher than those needed by neural models; as an example, the performances reached for a NN 
trained using only 500 samples were similar to those obtained for FSMs trained using 5,000 
paired-sentences. However, the NNs learned were bigger than the FSMs inferred. In addition, 
NNs required large amounts of training-time (days and even weeks), in contrast with the low 
learning-time (minutes) required by FSMs. Destructive methods [Omlin & Giles, 1993] and a 
more compact (distributed) representation of the input and output alphabets should be ex- 
plored to attempt to decrease the size of the NNs and, consequently, the learning time. Word 
categorization for both the input and output languages [Vilar et al., 1995] and injection of "a 
priori" knowledge into the net [Castaño & Casacuberta, 1997] can also be tried. Finally, new 
architectures or training methods which continue lowering this training time should also be 
considered. 
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