
YET ANOTHER 0(n6) RECOGNITION ALGORITHM FOR

MILDLY CONTEXT-SENSITIVE LANGUAGES

Pierre BOULLIER INRIA-Rocquencourt, BP 105, 78 153 Le Chesnay Cedex, France E-mail : Pierre . Boull ier@inria . fr

Abstract Vijay-Shanker and Weir have shown in [1 7] that Tree Adjoining Grammars and Combinatory Categorial Grammars can be transformed into equivalent Linear Indexed Grammars (LIGs) which can be recognized in 0(n6) time using a Cocke-Kasami-Younger style algorithm. This paper exhibits another recognition · algorithm for LIGs, with the same upper-bound complexity, but whose average case behaves much better. This algorithm works in two steps: first a general context-free parsing algorithm (using the underlying context-free gra·mmar) builds a shared parse forest, and second, the LIG properties are checked on this forest. This check is based upon the composition of simple relations and does not require any computation of symbol stacks.
Keywords: context-sensitive parsing, ambiguity, parse tree, shared parse forest.

1 Introduction It is well known that natural language processing cannot be described by purely context-free grammars (CFGs). On -the other hand, general context-sensitive formalisms are powerful enough but cannot be parsed · in reasonable time. Therefore, various intermediate frameworks have been investigated, the trade-off being between expressiveness power and computational tractability. One of these formalism classes is the so-called mildly context-sensitive languages which can be described by several equivalent grammar types. Among these types, Tree Adjoining Grammars (TAGs) are attractive because they can express some natural language phenomena (see Abeille and Schabes [1]) and many systems are based upon this framework (see for example [10] and [6]). Formal properties of TAGs have been studied (see Vijay-Shanker and Joshi [16] , and Vijay-Shanker [1 5]) and a recognizer for TAGs (see [17]), based upon a Cocke-Kasami-Younger method ([4] and [18]), works in O(n6) worst time. Unfortunately, with this algorithm, this complexity is always reached. More. practical methods, which are usually based upon the Earley parsing algorithm [3] , have also been investigated (see for example Schabes [13] and Poller [1 1]). Though the 0(n6) worst-case time is not improved, for some inputs, the actual complexity may be much better. However, the design of a better worst-case recognizer remains an open problem. In [1 7] , Vijay-Shanker and Weir have shown that mildly context-sensitive grammars have the same formal power and that TAGs and Combinatory Categorial Grammars (CCGs) can be transformed into equivalent Linear Indexed Grammars (LIGs). An Indexed Grammar [2] is a CFG in which each object is a non-terminal associated with a stack of symbols. The productions of this grammar class define on the one hand a derived relation in the usual sense and, on the other hand, the way symbols are pushed or popped on top of the stacks which are associated with each non-terminal. A restricted form of Indexed Grammar called LIG allows only for the stack associated with the left-hand side (LHS) non-terminal of a given production to be associated with at most one non-terminal in the right-hand side (RHS). This paper presents a new recognition algorithm for LIGs. It works in two main steps: 1 . a CF-parsing algorithm, working on the underlying CF-grammar, builds a shared parse forest; 2. the LIG conditions (see Section 3) are checked on that forest. Since that second step does not depend on the way the shared parse forest is built, any general CF-parsing algorithm can be used in the first step.· As previously mentioned, CKY or Earley parsing

34

algorithms are candidates but others too. In particular, generalized LR parsing methods (see Lang [7], Tomita [14), and Rekers [12)) are good challengers. In fact, the CF-parsing algorithm of our prototype system upon which this paper ideas have been tested, implements a non-deterministic LR (or LC at will) parsing algorithm using a graph-structured stack. Under certain conditions, for a given input string of length n, the CF-parsing takes a time 0(n3) in the worst case and moreover the output shared parse forest of size 0(n3) (in the worst case) is such that each elementary tree can be seen as an occurrence (after some non-terminal renaming) of a production in the underlying CFG. Following Lang [8] , in Section 2, we stress this analogy by defining a shared parse forest as a CFG. Obviously, the checking of the LIG properties can be performed on a forest by computing the stacks of symbols along paths, and in associating with each (shared) node a set of such stacks. As in [17), in devising an elaborate sub-stack sharing mechanism, this check could be performed in 0(n6) time. In Section 4, we take a different approach: this check is performed without the computation of any stack of symbols (and hence without having to design any sub-stack sharing structure). Given a single tree of the (unfolded) shared parse forest, we identify spines as being paths along which individual sta�k of symbols are evaluated. The origin of such a spine corresponds to the birth of a stack which evolves according the LIG stack schemas and which finally vanishes at the end of the spine. The checking of LIG conditions relies on the simple observation that, for a given spine, the stack actions must be bracketed. Each time a push or pop occurs at a node, there is a twin node where the opposite action, acting on the same symbol at the same stack level, should take place. In a shared parse forest, different spines may share nodes. In particular, a given couple of twin nodes may be shared among several spines, with the corresponding check being done only once. In Section 5 we show that this check sharing, expressed as relations between twin nodes, results in a worst case 0(n6)-time LIG recognition. Our algorithm is illustrated by an example in Section 6. Since TAGs or CCGs can be transformed into equivalent LIGs [17), this complexity extends over mildly context-sensitive languages.
2 Parse Tree and Shared Parse Forest

The goal of this section is to set up the vocabulary and to define our vision of shared parse forests. Let G = (VN , VT , P, S) be a CFG where:
• VN is a non-empty finite set of non-terminal symbols. • VT is a finite set of terminal symbols; VN and VT are disjoint; V = VN U VT is the vocabulary. • S is an element of V N called the start symbol. • P � VN x V* is a finite set of productions. Each production is denoted by A � u or by rp , 1 ::; p ::; I P I ; such a production is called an A-production.

We adopt the convention that A, B , C denote non-terminals, a , b , c denote terminals, w , x denote elements of v; , X denotes elements of V, and /3, u denote elements of V*. On V* we define IP I disjoint binary relations named right derive by B � /31 and denoted by B;;/ G (or simply B�J3 when G is understood) as the set { (uBx , uf3x) I B � /3 E P}. The relation derive denoted by ⇒ is defined by:
⇒ u B-+/3EP

Let 0-1 , . . . , O"i , ui+1 , . . . , 0-1 be strings in V* such that Vi, 1 ::; i < I , 3rp E P, O"i � O"i+l then the
sequence of strings (0-1 , . . . , O"i , ui+ 1 , . . • , 0-1) is called a derivation. Conversely, since � and � are disjoint when p and q are different, between any two consecutive strings O"i and ui+ 1 in a derivation, the relation � whose (ui , ui+1) is an element is uniquely known.

1 In the sequel the qualifier right will disappear since only right derivations, right sentential forms, etc . . . are introduced.

35

A u-derivation is a derivation starting with u. A u-derivation whose last element in the sequence is /3 is called a u //3-derivation. The elements of a u�derivation are called a u-phrase. A u-phrase in v; is a u-sentence. On the other hand an S-phrase is a sentential form and an S-sentence is a sentence. The language defined by G is the set of its sentences:
£(G) = { x I s � x " x E v; }

G In an S / x-derivation, to accurately define the contribution of any symbol X (its X-sentence) to the sentence x, we will define the notion of split of x by X. A triple (x 1 , x2 , x3) i s called 3-split (or more simply split) of x when x = x 1 x2x3. If n is the length of x, such a triple can also be denoted by Xi .. j with O < i � j � n + 1, lx 1 I = i - 1, lx2 I = j - i, and lx3 1 = n - j + 1 . Two splits of x, say (x� , x2 , x3) and (x�' , x�, x3) can be composed into one split iff we have x� x2 = x�'. In such a case the resulting split of x is (x� , x2x1, x3) . Assume that Xi . .j denotes (x� , X2 , X3) and that Xk . . l denotes (x�' , x�, xn, the previous condition simply means that j = k and that the composed split is denoted by xu. We allow x itself to designate the split (c, x , c) = x1.. 1xl+l · We call split of x by X the couple (X, (x1 , x2, x3)) i f there is an S/x-derivation S ⇒ uXx3 ⇒ <TX2X3 ⇒ (X } x2x3 = X) . This couple, when X is understood, could be denoted by (X]i if (X } , x2, X3) =

Xi . . j or even by [X] when the split of x is not necessary. This definition and notations extends from symbols to strings. Now we can define our vision of parse trees. Definition 1 Let G = (VN , Vr , P, S) be a CFG, x a sentence in .C(G), and dx an S/x-derivation. We call parse tree (w.r.t. G and dX) the CFG ad"' = (VN , v; , pd"' , sx) where: • VN = { (B , (x1 , x2, x3)) I B E VN I\ x = x 1x2x3 }.
• v; = {(a , (x 1 , a , x3)) I a E Vr I\ x .= x1 ax3}. • sx = [S] = (S, (c , x, c)). • pd:,: = { [B] -+ (Xi] . . . [Xk] . . . [Xp] I B -+ X1 . . . xk . . . Xp E P} and dx = S ⇒ uBx3 ⇒ X X -x· • x x k p • 1 k P • h O' 1 . . . k . . , p X3 ⇒ O' 1 . . . k- I X2 . . . X2 X3 ⇒ O'X2 • . • X2 . . . X2 X3 ⇒ X W er_e: X X 1 X2X3, x2 = x} . . . xr . . xi, [Xk] = (Xk , (x 1x1 . . . x�- 1 , xt x�+1 . . . Xix3)), and [B]

(B , (x 1 , x2, x3)). Parse trees are trees in which the start symbol sx is the root, non-terminal symbols are the internal nodes while terminal symbols are the leaves. Obviously we have .C(Gd"') = { [x] } . In fact, for any two consecutive strings u Bx3 and u/3x3 in dx , we have [u] [B] [x3] [Bl:;.L8l [u] [,B] [x3] . It is easy to see that
G"'"' this definition of a parse tree is a tree in the usual sense only when the derivation dx does not involve any cycle (i.e. ,llA, A � A). If there is a cycle, our definition denotes, by a single parse tree, the ambiguities denoted by the unbounded number of (usual) trees when this cycle is taken 0, 1 , 2, . . . times. The whole notion of ambiguity will be captured by the following definition of shared parse forest. Definition 2 Let G = (VN , Vr , P, S) be a CFG, and x a sentence in £(G). The shared parse forest for X (w. r.t. G) is the CFG, ex = (VN , v; ' px , sx) where: • VN = { (B , (x1 , x2, x3)) I B E VN I\ x = x 1x2x3 }. • Vf = { (a , (x1 , a, x3)) I B E Vr I\ x = x1 ax3}. • sx = (S, (c, x, c)) . • px = ud:& ED:,: pd:,: where nx is the set of all Six-derivations, and pd:,: is the production set of the parse tree Gdr

= (VN ' v; ' pd:,: ' sx) associated with any derivation dx in nx .
36

Any production r P = [B] � [X 1] . . . [X q] in p:r: is mapped by the unary operator - to its associated
production rp = B � X1 • • • Xq in P.

This vision of a set of parse trees as a CFG has several formal and practical advantages (thanks to
[9]). It exhibits a particular case of a general result: the intersection of CF-languages (defined by G) and
regular languages (the input string x) are CF-languages (the resulting shared parse forest c:r:). c:r: can
also be seen as a specialization of G (productions in c:r: are productions in G, up to some renaming),
which only defines (in all the same possible ways as G) the string x. This CFG allows to define an
unbounded number of derivations (when G is cyclic) in a finite way. A context sharing occurs when
there are several occurrences of the same non-terminal in RHSs, while a sub-tree sharing occurs when
there are several occurrences of the same non-terminal in LHSs. This sharing may even be considered
as optimal if we impose (as done here) that productions (elementary trees) in a parse tree, have the same
structure as their corresponding production in G.

Without any restriction on G, the size of p:r: is 0(nl+ 1) where l is the length of the longest RHS in P. If G is unambiguous, (or if the parsing of x does not exhibit any ambiguity,) this size is linear in n.

3 Linear Indexed Grammars (LIGs)

An indexed grammar is a CFG in which stack of symbols are associated with non-terminals. The derive
relation, in addition to its usual meaning, handles these stacks of symbols. LIGs are a restricted form of
indexed grammars in which the stack associated with the non-terminal in the LHS of any production is
associated with at most one non-terminal in the RHS. Other non-terminals are associated with stacks of
bounded size.

In fact, in a production, it is not a stack which is associated with a non-terminal, but rather a stack
schema expressing a way to compute a stack. Let Vi denotes a finite set of (stack) symbols, a stack is an
element of V,* . A stack schema is an element of Vi x V,* where Vi = { £, . . } • The stack schema (. . a)
where a· E V,* matches all the stacks whose prefix (bottom) part is left unspecified and whose suffix
(top) part is a. A stack may be considered as a stack schema whose first component (the element of Vi)
is £.

Following [17] , we formally defined a LIG as follows:

Definition 3 A LIG, L is denoted by (V N , VT , Vi, PL , S) where:

• V N is a non-empty finite set of non-terminal symbols.

• VT is a finite set of terminal symbols, V N and VT are disjoint. and V = V N U VT is the vocabulary.

• Vi is a finite set of stack symbols.

• PL, the production set, is afinite subset of(VN x Vi x Vi*) x ((VN x Vi x v,*) U VT)* .

• S E V N is the start symbol.

We adopt the convention that a will denote members of V,* , 1r elements of Vi, and 'Y elements of Vi .
A triple (A, e, o) in VN x Vi x V,* is called a secondary object and is denoted by A(a) while a

triple (A, . . , a) is called a primary object and is denoted by A(.. a) . The disjoint sets of primary and
secondary objects are respectively denoted by Vt and VJ. The set of objects denoted Vo is vt U VJ.
The object A(1ra), whose non-terminal component part is A, is called an A-object. We use r to denote
strings in (Vo U VT)* . A(. . a) denotes an object whose stack suffix (stack top) is a and with an arbitrary
prefix (stack bottom). A() denotes that an empty stack schema is associated with the non-terminal A. A(a) denotes that the stack a is associated with the non-terminal A. Each production in PL is denoted
by A(1m) � r or rp ()2 where 1 � p � IPL I -

The general form of a production i n a LIG is:

2The parentheses reminds us that we are in a LIG!

37

If the LHS object A(1ra) is secondary (i.e. 1r = c:), we observe that all the objects (if any) in the RHS should also be secondary, while if A(1ra) is primary (i.e. 1r = . .), there must be exactly one primary object in the RHS. The above production is called an A-production. If this production is used, for any ri , r2 E (Vo U Vr)* and a' E v,* , we define the binary relation derive by rp () on LIGs by:

when 1r = . . V a' = £ . We observe that the stack a' a associated with the non-terminal A in the LHS and the stack a' a; associated with the non-terminal Ai in the RHS have the same prefix a' .

Definition 4 We define the CF-backbone of a LJG as being its underlying CFG. Formally, if L (VN , Vr , Vi , PL , S) is a LJG, its CF-backbone is the CFG, eL = (VN , Vr , Pa , S), or simply e when L is understood, where:
Pa = {A -+ w1A1 . . . wi- 1 Ai- 1 WiAiWi+1 Ai+1 . . . wpAp wp+l I A(1ra) --+ w1A1 (a 1) . . . Wi- t Ai- 1 (ai- 1)wiAi (1rai)Wi+ 1Ai+ 1 (ai+ 1) . . . wpAp (ap)wp+ l E PL }.

If there is a one to one mapping between PL and Pa th� LIG is said to be fair. It is not very difficult to find an algorithm which transforms any LIG into an equivalent fair LIG. In the sequel we will only consider fair LIGs. Due to the one to one mapping between (fair) LIGs and their CF-backbones we assume that iff rp () is a production in PL , then rp ·, with the same index p, denotes the corresponding production in its CF-backbone Pa. Let L = (VN , Vr , Vi , PL , S) be a LIG, e = (VN , Vr , Pc , S) its CF-backbone, x a string in .C(e), and ex = (VN , v; ' Pa , sx) its shared parse forest for X. Consider the LIG £X = (VN , v; ' Vi, Pf ' sx) s.t. ex is its CF-backbone and each stack schema (1r1.a1.) associated with the non-terminal [A1.] , occurring at position k in production rp () E Pf is the stack schema of the object at position k in rp () E PL , More formally we have:
Pf = {rp () == [Ao] (1roao) --+ [wt] [A1] (1r1a 1) . . . [w1.] [A1.] (1r1.a1.) . . . [wm+d I rp = [Ao] --+ [wt] [A1J . . . [w1.] [A1.] . . . [wm+d E Pa I\ rp () = Ao(1roao) � WfA1 (1r1 a 1) . . . w1.A1. (1r1.a1.) . . . Wm+l E PL}

Lx is called the LIGed forest for x. By construction, any LIGed forest is fair and between a LIG L and its LIGed forest Lx for x, we have x E .C(L) � x E .C(Lx) . (Recall that x can designate the split (c, x , c:)). An object is said initial (resp. final) if it is secondary and occurs in the RHS (resp. LHS) of a production. VJ (resp. VJ') denotes the set of initial (resp. final) objects.
Definition 5 For a given L/Ged forest for x, we call spine, any sequence of 2p (I $ p) objects (01 , 02, . . . , 02i- t , 02i , 02i+ 1 , . . . , 02p) such that:

• 01 (resp. 02p) is an initial (resp. final) object. • Inside objects o; (if any) (i j, 1 < j < 2p) are primary. • Yi , 1 $ i $ p, two consecutive objects 02i- l = X1 (1r1 a1), and Dii = X(1ra) are such that X1 = X, and 02i- t (resp. 02i) occurs in the RHS (resp. LHS) of a Pf production.
This notion of spine is fundamental in LIG theory since it represents a path upon which stacks of symbols are evaluated. For example, followed in the direct way (top-down), the spine (o1 X1 (a1) , 02 = X1 (. . aD , . . . , 02i - t = Xi (. . ai) , 02; = Xi (. . aD , . . . , 02p = Xp (a�)) indicates that:
• a stack s is created and initialized with a 1 on the initial object o 1 ;

38

• if o� is a suffix of s, then o� is popped from s on object 02 ;

• the string of symbols Oi is pushed on s on object 02i- t ;
• if o� is a suffix of s, then o� is popped from s on object 02i ;

• on the final object o2p , if o� is a suffix of s, then o� is popped from s and the stack s is checked
for emptiness.

A spine is said to be valid if each check sketched above succeeds3 •

4 Our LIG Recognition Algorithm

In this paper we restrict our attention to LIGs with the following characteristics:

1 . the RHS of a production contains at most two symbols;
2. the stack schema (1ra) of any object (primary or secondary) is such that O � lo l � 1 .

Recall that our recognition algorithm works on shared parse forests. Therefore, it is assumed that
such a forest has been built by any general CF-parsing algorithm, working on the associated CF-backbone
grammar, with a string x as input.

The reason why we allow at most two symbols in the RHS of the CF-backbone is to build the forest
in time 0(n3) . Moreover, in such a case, the parameters of the shared parse forest are kept within some
suitable upper bounds: in particular the number of productions is 0(n3) , the number of non-terminal
symbols is O(n2) , the number of X-productions for any given 1X = (A, xi . .i) is O(n) and the number
of occurrences of such a non-terminal symbol X in the RHSs is also 0(n) .

The restriction on stack schemas, have been chosen only for pedagogic facilities. This restriction
does not change neither our algorithm principle nor its upper bound complexity. · Moreover, it is easy to
see that this form of LIG constitutes a normal form.

We will restrict our attention to non-cyclic CF-backbones. This restriction will guarantee that in
any parse (sub-)tree, internal nodes are different from the root node. Nevertheless, this restriction is
not mandatory and slight modifications of our algorithms allow to also handle cyclic grammars without
changing their complexities.

Contrary to the previous section where we saw that a stack of symbols can be evaluated along spines,
we choose not to compute stacks explicitly. The idea of our algorithm is based upon the remark that
each time a symbol ; is pushed on a stack at a given place, this very symbol should be popped at some
other place. The converse should also be true. The following will exhibit a mean by which this property
could be checked without explicitly computing neither stacks nor spines.

We could remark that we are not interested in finding all the valid spines between any pair of objects
(01 , 02), but only if there is at least one such valid spine. As a first consequence we will only consider
abridged spines (a-spine for short) (01 , 02 , 04 , . . . , 02i , 02i+2, . . . , 02p) which summarize all the spines
(01 , 02 , 03 , 04 , . . . , 02i , 02i+I , D2i+2, . . . , 02p) where the RHSs (odd) objects (except the initial one) have
been erased. If the length of a spine is 2p, we see that the length of its a-spine is p + 1 .

The first purpose of our algorithm is to compute the relation valid spine denoted by � and which is
the set of all couples (01 , 02) s.t. 01 is an initial object, 02 is a final object, and there is at least one valid
spine between 01 and 02 .

In order to reach this goal, for a given LIGed forest for x, we define on its objects Vo, 2 1½ 1 + 1
binary relations noted (for some ; in ½) � ' ;_, and -❖... . These relations between objects indicate the
evolution of an imaginary stack between the first and the second object.

3Of course it is possible to adopt the dual vision and to evaluate stacks along spines in the opposite (bottom-up) way. A stack
is created and initialized with a� on the final object 02p . Elements are pushed on LHS objects while they are checked and popped
on RHS objects, and finally a 1 is popped on o I and the stack is checked for emptiness.

39

The element (o1 , 02) of � (resp. :;.) means that the stack associated with 02 is built by pushing 1 (resp. popping , if possible) on top of the stack associated with 01 . The element (01 , 02) of 4- means that the stacks associated with o 1 and 02 are identical. Let [Xt] (1r1 01) - . . . [X2] (1r2o2) . . . and [X2] (1r202) - r be two productions in Pt, with [X2] =
[X2] . Moreover, assume that 0 1 , o2, and 02 respectively denotes the objects [X1] (1r10 1) , [Xm1r2o2) , and [X2] (1r2o2) . The Table 1 indicates precisely the way these relations are defined. All other couples of objects are non comparable.

7rJ 1r' 2 1r2 Conditions Relations
any € € 02 = 02 02 tx1 02 any € 02 = 02 02 4- 02
any € 02 = 'Y /\ 02· = € I '"'(02 --< 02 any o2 = 02 OJ -◊- 02

02 = 'Y /\ 02 = € any OJ --< 02
o2 = c /\ 02 = 'Y any 01 >- 02

Table 1: �' >-, and ❖ definitions.

Our algorithm will simply compose the previous relations in order to relate an object where a symbol is pushed to the object(s) where this very symbol is popped in order to finally answer the question: is there at least one valid spine between o 1 and o2 where o 1 is initial and o2 is final? Formally the valid spine relation is defined by txl= { (01 , 02) I 01 E VJ I\ 02 E VJ' I\ 01 � 02} where
the :::::::: relation is the smallest solution of the set of recursive equations ::::::::=4- and ::::::::=��:;. .

We will implement this computation as a limit of the composition of the �' 4-, and :;. relations and we will show that our algorithm has an 0(n6)-time upper bound complexity. The laws governing this composition are shown in Table 2 where o 1 and 03 are any sorts of objects and 02 always designates a primary object4 . These composition rules are applied until no more new element can be added to any of these relations.
01 � 02 and 02 � 03 and 01 E VJ I\ 03 E VJ' ==> OJ tx1 03

..., and ..., and 01 E vJ " 03 E vt 01 --< 02 02 >- 03 ==> OJ tx1 03 OJ --<>- 02 and 02 --<>- 03 and 01 ft VJ V 03 ft V 6 ==> 01 --<>- 03
..., and ..., and 01 ft vJ v 03 ft vt 0] --< 02 02 >- 03 ==> OJ --<>- 03
..., and OJ --< 02 02 -◊- 03 ==> OJ --< 03

and ...,
01 -◊- 02 02 >- 03 ==> 01 >- 03

Table 2: Valid Composition of relations.
O J 02 4 If unrestricted stack schemas have been used, for example, the composition of -< and >- would have led to three possibilities,

a� a�
depending upon the stack suffixes o I and 02, namely ❖ if o 1 = 02, -< if o 1 = 0�02, and >- if o� o 1 = 02.

40

If an initial object o1 and a final object 01, are such that o1 M 01,, this means that there is (at least)
one valid spine between these objects. Conversely if there are initial objects with no corresponding
final object (in M), or final objects with no initial object, this means that there is no valid spine starting
(or ending) at that object and that the productions where these objects occur are invalid w.r.t. the LIG
conditions and therefore should be erased. This erasing of productions in the UGed forest Lz: for x,
creates a new UG say Lz: .

The string x is an element of the initial LIG L iff the language of the CF-backbone for Lz: is non
empty.

In order to facilitate the evaluation of our algorithm complexity we will add a parameter k to the
previous relations �. �. and ;. The value k = 1 is assigned to the initial relations defined in Table 1 ,
and the k-relations are achieved by composing I-relations and (k - 1)-relations. In fact this value k
expresses the existence of sub-strings of length k + 1 in a-spines.

The procedure in Table 3 implements the definition of the level 1 relations given in Table 1 .

(1)
(2)
(3)
(4)
(5)
(6)
(7)

(8)

(9)

(10)
(1 1)
(12)
(1 3)

procedure I -relations ()
vJHS = {o I O --+ r E Pl}
for each o' = [X](1r'o') in vJHS do

for each o --+ . • . [X](1r202) . . . in Pf U { S' () --+ sz: ()} do
if 1r2 = £ then o = [X]{ 1r202) end if
if 1r2 = £ and 1r' = £ then J = I U { o}, F = F U { o'}
else if 02 = o' then �=� U{ { o, o')}

l l
else if 02 = , and o' = £ then �=� u{(o, o') }

l 1

else if 02 = £ and o' = , then ;=; U{(o, o') }
1 1

end if
end do

end do
end procedure

Table 3: The 1-relations �' >-, and ❖•
I I I

Line (2) collects in VJH s the LHS objects. The loop at lines (3-12) examines each such LHS object
o' which is supposed to be an X-object. The embedded loop at lines (4-1 1) selects the productions
with an X-object in RHS. Note that we have added a new production S'() --+ sz () which introduces
a new initial object sz: () called the start object. This augmented UG and its start object allow us to
handle spines whose initial object non-terminal symbol is the UG start symbol. The first component
of a relation is an LHS object o, except when the RHS object [X](1r2a2) is secondary (and therefore
initial), this case is processed at line (5). The choice of the relations is governed by the relative values of
the stack schemas (1r2o2) and (1r' o'). Instead of building up the M relation, we choose to build I (resp.
F) which is the set of valid initial (resp. final) objects. At line (6), when o and o' are secondary (o is
initial and o' is final), they are respectively put into I and F.' Lines (7-9) select the appropriate valid
level 1 relation. The case where o = , , o' = ,', and , -f; ,' (push of, immediately followed by a pop
of ,') is erroneous.

The function in Table 4 describes the way the level k relations are computed from the level 1 and
level k - 1 relations. If a couple (01 , OJ) is a member of a level k relation, this means that there is at
least one string of length k + 1 , starting at o1 and ending at OJ, which is a valid sub-string of an a-spine.

The loop body at lines (2-31) is executed twice5. Complete valid a-spines may only be reached by
composing � and � relations at line (7) or by composing � and ; relations at line (23). All other

h k - h h 1'-h

5only once when k = 2 .

41

valid compositions, as stated in Table 2, participate in the level k relations. A new couple of objects is entered into its level k relation at lines (9, 13, 20, or 25) only if this element is not already a member of the same relation at level h with h � k . Though this condition can only be seen here as an optimization, it is mandatory when cyclic grammars are considered. This function returns true iff one of its level k relation is not empty (i.e. there is sub-strings of length k + 1 which are not yet complete valid a-spines).
(1) (2) (3)
(4)
(5)

(6)
(7) (8)
(9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20)
(21) (22) (23) (24)

· (25) (26) (27)
(28) ' (29) (30) (31) (32) (33)

function k-relations (k) return boolean for each h in { 1, k - 1} do for each (OJ , 02) in ❖ do if 02 in VJ' then for each (02 , 03) in ❖ do k-h if O J in VJ and 03 in VJ then J = J U {OJ } , F = F U { 03 } else ❖=❖ U{(o1 , 03) }
l: l: end if end do for each ; in Vi do for each (02 , 03) in ; do ;=; U{(oJ , 03) } end do

l: - h l: l: end do end if end do for each ; in Vi do for each (OJ , o2) in � do
h if 02 in V 6 then 'Y 'Y for each (02 , 03) in ❖ do --<=--< U{ (OJ , 03) } end do

l: - h l: l: for each (o2 , o3) in ; do
k-h if o 1 in VJ and o3 in VJ then

I = I .U {ot } , F = F U {03 } else ❖=❖ u{(o1 , 03)}
l: l: end if end do end if end do end do end do 'Y 'Y return u'Y -< u u'Y >- u ❖;;p 0

l: l: l: end function
Table 4: The k-relations �' ;._, and -❖. •

k k k

. The main function which describes our recognizing algori_thm is in Table 5. Its parameters are a LIG L and an input string x. At line (3), G denotes its CF-backbone. The shared parse forest ex at line (4) is supposed to have been computed by any general CF-parsing algorithm. If
x (j .C(G), it will not be in .C(L) either (line (5)). At line (6), £X denotes the corresponding LIGed forest. The sets I and F, which are going to hold the initial and final valid objects, are initialized to

42

(1)
(2)
(3)
(4)
(5)
(6)
(7)

(8)

(9)
(10)
(1 1)
(12)
(13) (14)
(15)
(16) (17)
(1 8)
(19)
(20) (2 1)
(22)
(23)

function recognize (L, x) return boolean
let L = (VN , VT , Vi , PL , S)
create e = (VN , VT , PG , S) I* its CF-backbone */
create ex = (VN , v; ' Pf; , sx) I* its shared parse forest for X *I
if £(ex) = 0 then return false end if
create £X = (VN , v; , Vi , Pt, , sx) I* its LIGed forest */
l = F = 0
�=:2-=-❖.= 0
I I I

k = 1
call I -relations()
do

k = k + l
�=:2-=-❖.= 0
k k k

while k-relations(k)

if sx () not in I then return false end if
for each rp () = oo --+ . . . oh . . . in Pt, do

if oo in VJ and oo not in F or
oh in VJ and oh not in I then
erase r P in Pf;

end if
end do
return useless-symbol-elimination(Pf;) # 0

end function

Table S: The Recognition Algorithm.

the empty set at line (7), so are the collection of level 1 relations at line (8). The loop at lines (1 1-14)
computes all the level k relations. The ultimate goal is the computation of sets I and F. When the start
object sx () is not an element of I, this means that there is no valid spine starting at the root and therefore
the recognizer failed (line (15)).

Since ex is the CF-backbone of Lx , each time a production rp () in Pf contains a non valid initial or
final object, its corresponding production rp in Pf; is erased (see lines (16--21)). At line (22) we assume
that a classical algorithm eliminates from Pf; all the useless symbols6 • If the resulting production set is
not empty, itcontains a production of the form (S, X 1 . .n+i) --+ . . . which shows that x is a sentence of
that reduced production set and therefore that x is an element of Lx and hence an element of L.

5 Its Complexity

Objects in LIGed forest are of the form (A, Xi. .j) (,ro:) . The maximum number of split Xi . .j is 0(n2)
where Ix ! = n. All other parameters (non-terminals and stack schemas) are constant for a given LIG L.
Therefore, the size of any set which contains objects has an O(n2) upper bound, especially I, F, and v:LHS 0

5.1 Complexity of the I -relations procedure

In Table 3, we have:

line (2) A single pass over Pt, computes VJHS , whose size is 0(n2) , in time 0(n3) ;

6 A symbol X is useless if it does not appear in any S / x-derivation.

43

lines (5-10) Each activation of this body is performed in constant time.
lines (4-11) For a given non-terminal [X] there are at most O(n) occurrences of [X] in the RHSs of

Pl, . Therefore, each activation of that block takes 0(n) time.
lines (3-12) The body of that loop is executed O(n2) time so that block takes O(n3) time.
lines (1-13) At the end the time complexity of the I -relations is 0(n 3).

Since the body part (lines (7-9)) where the I-relations are computed is executed at most O(n3) time, the size of these relations is O(n3) . We notice that in each such relation, for a given object, say o, there are at most 0(n) pairs whose first member or second member is o .

. 5.2 Complexity of the k-relations function
When k > 1, the size of the level k relations, since they contain pair of objects is at most 0(n4) . In Table 4 , we have:
lines (5-11), (13), (20), (21-27) For each intermediate primary object o2, these loops are executed a number of time which depends on the value of h since we refer to either level 1 relations or level k - 1 relations. In the case where k - h > 1, these loops are executed O(n2) time, else, when k - h = 1, these loops are executed 0(n) time. Since their body sets individual relations in constant time, the overall complexity is not changed. lines (12-14) Since line (13) is executed a bounded (i.e l½ I) number of times, the complexity of the body extends to this loop.
lines (3-16), (18-29) For each activation of these loops, their body is executed 0(n3) time when h = 1 or 0(n4) when h > 1. We see that, in all cases, we get an execution time of 0(n5) for each activation.
Unes (17-30) The complexity of its body extends to this loop (i .e. 0(n5)).

lines (2-33) This loop is executed at most twice (when k > 2), therefore this block takes 0(n5) . line (34) This return condition may easily be get as a side effect of the setting of the relations (is there at least one element?), aild therefore does not change the overall complexity.
In the worst case, the time complexity of the k-relations function is 0(n5) .

5.3 Complexity of the Recognition Algorithm
In Table 5, we have:
line (4) Can take O(n3) with the appropriate CF-parsing algorithm since the length of the longest RHS is two. line (6) The LIGed forest is almost simply a copy of the shared parse forest and therefore takes O(n3) . line (10) Takes 0(n3) (see 5.1). lines (11-14) In order to evaluate the complexity of that loop we should know the maximum value of k. Recall that k + 1 is the length of valid sub-strings and therefore its maximum value corresponds to the length of the longest a-spine. Since spines are specialized path in parse trees and the height of parse trees (for non cyclic grammar) is 0(n) , this loop is executed 0(n) times and since each execution of the k-relations function takes 0(n5) (see 5.2), this loop takes at most 0(n6) .

lines (16-21) Takes 0(n3) .
line (23) The classical algorithm for the elimination of useless symbol i s performed in time linear with the size of the grammar, so in our case it will take 0(n3) .

44

So, in the worst case, for a non cyclic grammar, the time complexity of our recognition algorithm is
O(n6) . If the CF-backbone of a LIG is unambiguous, the shared parse forest can be built in time 0(n2) by an Earley or generalized LR parsing algorithm (see [51). In such a case, the shared parse forest is a simple (parse) tree whose size is O(n). Therefore, the objects cannot be shared among spines, and the cumulated length of all the spines is 0(n) . With this hypothesis, the size of our k-relations for k � 1 is
O(n) and it can easily be seen that, for a given value k, their construction takes O(n) time, and that the complete check could therefore be performed in O(n2) time7 . Therefore, for unambiguous grammars, a total recognition time of 0(n2) is reached by our algorithm. We can wonder whether intermediate values between 0(n2) · and 0(n6) are reached for some subclasses of LIGs. When the number of non-terminal symbols is 0(n) in a shared parse forest it is not difficult to see that our recognizer has an O(n4) worst time bound, but unfortunately we are not aware of any grammatical characterization of such a sub-class ! It should be pointed out that our algorithm is valid, even without restricting the maximum length I �f the RHSs. The only consequence is that the recognizing time can be increased since the CF-parsing time (and the size of the shared parse forest) can be of the order 0(n1+1) . Moreover, though the cardinalities of the k-relations with k � 2 stay in O(n4), the cardinalities of the I-relations increase to O(n4) and therefore induce a checking of the LIG conditions in time 0(n 7) . Finally, without restriction, a fair LIG can be recognized by our algorithm in time max(O(n1+ 1) , O(n7)) .
6 An Example

In this section, we illustrate our algorithm with a LIG L = ({S, T} , { a, b, c} , {,a , 'Yb , ,c} , PL, S) where
PL contains the following productions:

S(. .) - S(.. ,a)a S(..) - S(.. ,b)b S(. .) - S(. . ,c)c S(. .) - T(. .)
T(. . ,a) - aT(. .) T(. . ,b) - bT(. .) T(. . ,c) - cT(. .) T() - c

It is easy to see that its CF-backbone G, whose production set PG is:
S - Sa S - Sb S - Sc S - T T - aT T - bT T - cT T - c

defines the language .C(G) = {wcw' I w, w' E {a, b, c}* } . We remark that the stacks of symbols in
L constrain the string w' to be equal to w and therefore the language £(L) is { wcw I w E { a , b, c} * } . We can remark that in L the key part is played by the middle c, introduced by the last production
T() - c, and that this grammar is non ambiguous, while in G the symbol c, introduced by the last production T - c, is only a separator between w and w' and that this grammar is ambiguous (any occurrence of c may be this separator). Let x = ccc be an input string, we wish to know whether x is an element of £(L). Since x is an element of £(G), its shared parse forest ex is not empty. Its production set Pf; is:

(S, X1 . .4) - (S, x1 . .3)x3 _ _ 4
(S, xu) - (S, x1 . .2)x2 . . 3
(S, X1 . .2) - (T, X1 . .2)
(T, X2 .. 4) - X2 .. 3(T, X3_ .4) (T, X1 . .3) - X1 . .2(T, X2 . . 3) (T, x 1 . .2) - x1 . .2

(S, X1 . .4) - (T, X1 . .4)
(S, X1 . .3) - (T, X1 . .3) (T, x 1 . .4) - x1 . .2(T, x2 . . 4)
(T, XJ . . 4) - XJ . . 4
(T, X2 . . 3) - X2 . . 3

We can observe that this shared parse forest denotes in fact three different parse trees. Each one corresponding to a different cutting out of x = wcw' (i.e. w = € and w' = cc, or w = c and w' = c, or
w = cc and w' = €). The corresponding LIGed forest whose start symbol is sx = (S, x1 . .4) and production set Pl, is:

7 Remark that an obvious algorithm which evaluates stacks on this single parse tree will take 0(n).

45

(S, X 1 . .4) (. .) -+ (S, X 1 . . 3) (• •"Yc)X3 . . 4
(S, xu)(. .) -+ (S, x 1 . .2)(. . ,c)x2 . . 3
(S, X 1 . .2) (. .) -+ (T, X 1 . . 2) (. .)

(S, X 1 . .4) (. .) -+ (T, X1 . .4) (. .)
(S, xu) (. .) -+ (T, xu) (. .) (T, X 1 . .4) (. . ,c) -+ X 1 . .2(T, X2 . . 4) (. .)
(T, X3. ,4) () -+ X3 . . 4 (T, x2 . .4) (. . "Yc) -+ x2 . . 3 (T, x3 . . 4) (. .) (T, xu)(· ·"Ye) -+ x 1 . .2(T, x2 . . 3) (. .)

(T, X1 . .2)() -+ X 1 . .2 (T, x2. .3) () -+ x2 . . 3
In this LIGed forest there are three a-spines which are shown below with their objects separated by the appropriate level I relation:

(S, x 1 . .4) () -◊- (S, x 1 . .4) (..) 2< (S, x1 . . 3) (. .) 2< (S, x1 . . 2)(..) -◊- (T, x 1 . .2) ()
I I I I

7c 7c (S, X1 . . 4) () -◊- (S, X 1 . .4) (..) �- (S, xu)(. .) >- (T, x 1 . . 3) (.. ,c) -◊- (T, X2. .3) ()
I I I I

Tu Tu
) (S, XJ . . 4) () -◊- (S, X1 . . 4) (. .) >- (T, X 1 . .4) (. . ,c) >- (T, X2. ,4) (. . ,c) -◊- (T, X3 . ,4) (

I I I I Though these a-spines are not computed by our algorithm, it is easier to see what happens directly on them. In particular we can see that the first and last a-spine are not valid since there is � (or �) without
corresponding � (or �) and that only the middle a-spine is valid. In fact the algorithm computes the level I relations (shown within the a-spines), the level 2 relations:

�c 7c
(S, x 1 . . 3) (. .) � (T, x 1 . .2) () (S, x 1 . .4) (. .) -◊- (T, x 1 . .3) (. . ,c) (S, X 1 . .4) () >- (T, X 1 . .4) (. . ,c)

2 2 2 the level 3 relations:
(S, X1 . .4) () -◊- (T, x 1 . . 3) (.. ,c) (S, X 1 . .4) (. .) -◊- (T, x2. .3) () 3 3

while the computing of the level 4 leads to empty relations with sets I = { (S, X 1 . .4) () } and F = { (T, X2 . . 3) () } . Since the start object (S, x1 . .4) () is in I, the execution of lines (16-21) in Table 5 leads to erase the productions (T, x 1 . .2) -+ x 1 . .2, and (T, X3 . . 4) -+ X3 . . 4 in Pf; . The useless-symbol-elimination function called at line (22) returns the following (non empty) production set:
(S, x 1 . .4) -+ (S, x 1 . .3)x3 .. 4 (S, x 1 . .3) -+ (T, x 1 . .3) (T, xu) -+ x 1 . .2(T, x2 . . 3) (T, x2 . . 3) -+ x2 . . 3

which shows that ccc E £(L) . We can remark that, with that example, our recognition algorithm is in fact a parsing algorithm (i .e. all resulting a-spines are valid). This is not always the case. Assume a LIGed forest with the following four a-spines: s1 = (01 , . . . , 03) , s2 = (01 , . . . , 04) , s3 = (02 , . . . , 03) , and s4 = (02 , . . . , 04) . Moreover assume that the only valid a-spines are s 1 and s4 , therefore, the algorithm will consider that o1 and o2 are valid initial objects and that 03 and 04 are valid final objects and that no production elimination should take place. Therefore, the LIGed forest is left unchanged but could not be considered as a representation of the shared parse forest for the initial LIG since there are a-spines s2 and s3 which are not valid.
7 Conclusion

In this paper we have presented a new recognition algorithm which works for the class of mildly contextsensitive languages. Though its worst case complexity does not improve over previous ones (i .e. a 0(n6) time is achieved), the recognizer behaves in practice much faster than its worst case. The advantages of this algorithm can mainly be summarized as follows:
• parsing of the input string with the underlying CFG and checking of the LIG conditions are split into separate phases;

46

• LIG conditions checking relies upon a very simple principle which can be expressed by binary relations; • the recognition test is simply performed by composition of the previous relations; • therefore, no symbol stack computation is needed; • it can be applied to unrestricted fair LIGs (though the 0(n6) limit can then be exceeded). We can wonder whether the first point is really an advantage since it can be retorted that illegal paths should be aborted as soon as possible. Our argument is that it wastes time to compute symbol stacks in 0(n6) along paths which can be discovered as syntactically illegal in 0(n3) . This algorithm i s implemented in a prototype system which i s part of an ongoing effort to get a set of parsers for various NL formalisms.
References

[1] ABEILLE, A., and SCHABES, Y. 1989. Parsing idioms in lexicalized TAGs. Proceedings of the fourth conference of the ACL. [2] AHO, A. V. 1968. Indexed grammars-An extension to context free grammars. J. ACM, Vol. 15, pp. 647-671 . [3] EARLEY, Jay C . 1968. An efficient context-free parsing algorithm. Ph.D. thesis, Carnegie-Mellon University, Pittsburgh, PA. [4] KASAMI, T. 1965. An efficient recognition and syntax algorithm for context-free languages. Technical Report AF-CRL-65-758, Air Force Cambridge Research Laboratory, Bedford, M A. [5] KIPPS, J. R. 1989. Analysis of Tomita's algorithm for general context-free parsing. International Parsing Workshop'89, pp. 193-202. [6] KILGER, A., and FINKLER, W. 1993. TAG-based incremental generation. German Research Center for Artificial Intelligence (DFKI), Technical Report, Saarbriicken (Germany). [7] LANG, B. 1974. Deterministic techniques for efficient non-deterministic parsers. Automata, Languages and Programming, 2nd Colloquium, Lectures Notes in Computer Science, Springer-Verlag, Vol. 14, pp. 255-269. [8] LANG, B. 199 1 . Towards a uniform formal framework for parsing. Current Issues in Parsing Technology, edited by M. Tomita, Kluwer Academic Publishers, pp. 153- 17 1 . [9] LANG, B . 1994. Recognition can be harder than parsing. Computational Intelligence, Vol. 10, No. 4, pp. 486-494. [10] PAROUBEK, P., SCHABES, Y�, and JOSHI, A. K. 1992. XTAG-a graphical workbench for developing tree-adjoining grammars. Third Conference on Applied Natural Language Processing, Trento (Italy). [1 1] POLLER, P. 1994. Incremental parsing with LD/ILP-TAGs. Computational Intelligence; Vol. 10, No. 4, pp. 549-562. [12] REKERS, J. 1992. Parser generation for interactive environments. Ph.D. thesis, University of Amsterdam. [13] SCHABES, Y. 1994. Left to right parsing of lexicalized tree-adjoining grammars. Computational Intelligence, Vol. 10, No. 4, pp. 506-524. [14] TOMITA, M. 1987. An efficient augmented context-free parsing algorithm. Computational Linguistics, Vol. 13 , pp. 3 1 -46. [15] VIJAY-SHANKER, K. 1987. A study of tree adjoining grammars. PhD. thesis, University of Pennsylvania. [16] VIJAY-SHANKER, K., and JOSHI, A. K. 1985. Some computational properties of tree adjoining grammars. 23rd Meeting of the Association for Computational Linguistics, Chicago, pp. 82-93. [17] VIJAY-SHANKER, K., and WEIR D. J. 1994. Parsing some constrained grammar formalisms. ACL Computational Linguistics, Vol. 19, No. 4, pp. 591 -636. [18] YOUNGER, D. H. 1965. Recognition and parsing of context-free languages in time n3 . Information and Control, Vol. 10, No. 2, pp. 189-208.

47

