
PARSING N ON-IM MEDIATE DOMINANCE RELATIONS*
Tilman Becker DFKI GmbH D-66123 Saarbruecken becker©dfki . uni-sb . de Owen Rambow CoGenTex, Inc. Ithaca, NY 1 4850 owen©cogentex . com

Abstract

We present a new technique for parsing grammar formalisms that express non-immediate dominance relations by 'dominance-links' . Dominance links have been introduced in various formalisms such as extensions to CFG and TAG in order to capture long-distance dependencies in free-word order languages (Becker et al. , 1 99 1 ; Rambow, 1 994) . We show how the addition of 'link counters' to standard parsing algorithms such as CKY- and Earleybased methods for TAG results in a polynomial time complexity algorithm for parsing lexicalized VTAG, a multi-component version of TAGs defined in (Rambow, 1 994) . A variant of this method has previously been applied to context-free grammar based formalisms such as UVG-DL.
1 Linguistic Data Scrambling is the permutation of arguments of a verb in languages such as Finnish , German , Korean , Japanese , Hindi , and Russian . If there are embedded clauses, certain matrix verbs allow scrambling of elements out of the embedded clauses ("long-distance" scrambling) . In German, scrambling is quite free . 1 There is no bound on the number of clause boundaries over which an element can scramble . Furthermore, more than one constituent can scramble in the same sentence ("iterability of scrambling") , and an elenient scrambled (long-distance or not) from one clause does not preclude an element from another clause from being scrambled . (1) . . . daB [dem Kunden] i [den Kiihlschrank]j bisher noch niemand ti . . . that [the client] oAT [the refrigerator] Acc so far as yet no-oneNoM [[tj zu reparieren] zu versuchen] versprochen hat to repair to try promised has . . . that so far , no-one yet has promised the client to repair the refrigerator We conclude that scrambling in German (and other languages) is "doubly unbounded" in the sense that there is no bound on the distance over which each element can scramble (unboundedness of scrambling) , and there is no bound on the number of elements that can scramble in one sentence (iterability of scrambling) . This generalization should not be taken to mean that all sentences in which "doubly unbounded" scrambling has occurred will be judged equally acceptable. Clearly, scrambling is constrained by pragmatic and processing factors , and perhaps also by semantic factors. For example, processing load appears to increase with an increasing number of scrambled elements. However, we do not have any reason to define a particular "cut-off point" beyond which all orders are ungrammatical . (This argument is similar to the argument in favor of allowing unlimited recursion in the competence grammar .) Finally, we observe that scrambling does not preclude long-distance topicalization (a separate linguistic phenomenon also found in English , in which a single element moves into sentenceinitial position) :

* We would like t o thank Aravind Joshi, Ron Kaplan, Martin Kay, John Maxwell, Giorgio Satta, K . Vijay
Shanker, and David Weir for helpful comments and discussions. This work was partially performed while the
authors were at the University of Pennsylvania under grants ARO DAAL 03-89-C-0031 ; DARPA N00014�90-J-
1 863; NSF IRI 90- 16.592; and Ben Franklin 9 1 S ;3078C-l .

1 In German, scrambling can never proceed out of tensed clauses. I t is widely assumed that embedded
infinitival clauses undergo "clause union" . If clause union takes place, then in fact there is no long-distance
scrambling in German because no clause boundary is crossed. However, throughout this paper we will use the
term "long-distance scrambling" in a more descriptive way. We will take the term to mean that an argument of
a verb appears to the left of an argument of a less deeply embedded verb .

26

(2) [Dieses Buch]i
[this book] Acc
versucht .
tried

hat [den Kindern]j
has [the children] oAT

bisher ,noch niemand
so far yet [no-one] NoM

So far, no-one has tried to give this book to the children.

[PRO ti ti zu geben]
to give

We conclude that doubly unbounded non-local dependencies occur in natural language , that
they co-occur with other unbounded dependency constructions (such as topicalization) and that
there is a need to account for such constructions, both formally and computationally.

2 V-TAG
Tree Adjoining Grammar (TAG , see (Joshi , 1987) for an introduction) i s a tree rewriting system.
A TAG consists of a set of elementary trees which are combined by the adjoining operation ,
which may insert one tree into the center of another . TAGs are more powerful than context
free grammars but they are only mildly context-sensitive since they generate only semi-linear
languages and are polynomially parsable . Their extended domain of locality allows the factoring
of recursion and the statement of linguistic dependencies within the elementary structures of
the grammar.
However, in (Becker et al . , 1 99 1) , we argue that scrambling is beyond the formal power of TAG

by assuming that elementary trees express a complete predicate-argument structure . (Becker
et al . , 199 1) proposes two variants of the TAG formalism which can derive scrambling while
still preserving most of the desirable properties of TAGs (in particular , an extended domain
of locality and the factoring of recursion) . One of them, FO-TAG , is based on relaxing LP
constraints, and we do not discuss it here . The other approach is based on relaxing immediate
dominance . This has the effect of creating several "chunks" of the tree which are related by (not
necessarily immediate) dominance edges or dominance links. Dominance links are essential for
encoding structural relations (c...:command) between related linguistic elements, such as a head
and its arguments.2 The resulting formalism is called Multi-Component TAG with Dominance
Links (MC-TAG-DL) .
In defining MC-TAG-DL, several options are available for the definition of the derivation

relation. In V-TAG (Rambow, 1994) , there are no ·restrictions on adjunction sites . Trees from
one tree set can be adjoined anywhere in the derived tree , and they need not be adjoined
simultaneously or in a fixed order. Furthermore, trees in the tree sets are equipped with
dominance links . A dominance link can relate the foot node of a tree to any node in any tree
of the same set . The dominance links provide a constraint on possible derivations: after a
derivation is completed , each dominance link must hold in the derived tree .
We give a V-TAG derivation for sentence (2) . Scrambling will be modeled by multi-component

adjunction, while Topicalization is derived by standard adjunction. The grammar is a set of tree
sets . Each tree set contains a head (e.g. , a verb) and its projections, and slots for its arguments.
Two examples are shown in Figure 1 . We use IP (= S) and CP (= S') as projections of the
verb . In the set for the geben 'to give ' embedded clause, one nominal argument is in a separate
auxiliary tree, reflecting the fact that it may be scrambled , and the other nominal argument is
included in the verbal projection tree, reflecting the fact that it is (long-distance) topicalized .
The dotted line represents the dominance link . In the set for the versuchen 'to try ' matrix
clause , the only nominal argument is in a separate auxiliary tree . Its clausal subcategorization
requirement is indicated by the fact that the verb is in an auxiliary tree (rooted in C') , forcing
adjunction into an embedded clause .
The derivation now proceeds by first adjoining the matrix clause into the embedded clause

at the C' node, yielding the structure on the left in Figure 2. This adjunction implements the
long-distance topicalization of the embedded direct argument. We are left with two auxiliary
trees that still need to be adjoined, representing the scrambled arguments. We first adjoin the 2 Without being formally defined, dominance links have been used previously in linguistic work, for example (Kroch, 1989) .

27

{ VP

NP-n�P '
Aux

I
hat j

IP

�
I '

�

} {
VP

�
NP-dat t VP

CP

�
NP-ace t C'

�
IP

' �
NP-nom

I
VP !NFL PRO VP INFL

--� I I I
V

I
c· E j V

I
versucht E

Figure 1 : Initial tree set for versuchen matrix clause and geben embedded clause

matrix subj ect into its own clause , and then adjoin the embedded indirect object j ust above
the matrix subject . The result is shown in Figure 2 on the right .
Observe that the tree sets given in Figure 1 have the property that they each represent a

verb . In l inguistic applications of TAG and related formalisms such as V-TAG , it is useful to
associate each elementary structure (tree set in the case of V-TAG) with at least one lexical
item (i . e . , terminal symbol) . Such a grammar is called "lexicalized" . This has an important
consequence , namely that derivations in a lexicalized grammar are always bounded in length
by a l inear function of the length of the derived sentence . In the following discussion of a parser
for V-TAG , we will make crucial use of this property.

3 Parsing V-TAG

Both parsing algorithms presented in this paper deal only with adj unct.ion , the core operation in
TAG and in V-TAG . We ignore the substitution operation as well as constraints on adj unct.ion
which can easily be added and do not contribute to the complexity of the parsing algorithms.

In this section , we use an extension of the CYK-type parser for TAG defined by Vijay-Shan ker
(1987, p . 1 10) to give a polynomial time parser for a large subset of the V-TAG languages . We
first describe Vijay-Shanker 's parser for simple TAG , and then describe the extensions necessary
for V-TAG .
The main idea of Vijay-Shanker 's parser is the introduction of a 4-dimensional matrix T, i n

which an entry of a node TJ from an elementary tree T at T[i , j , k , l] represents the fact that
either

(i) there is some derived tree r' such that TJ is its root node and TJ dominates the substring
ai+ l · · · aj T}1 ak · · · a, where TJ1 is the (label of the) foot node of T or

(i i) there is some derived tree r' such that TJ is its root node and T/ dominates the substring
ai+ 1 · · - a1 and j = k .
The parser fills the matrix T bottom-up , starting from entries fo r the leaves . (We assume that

the grammar is in extended two form , i .e . , in every tree every node has at most two ch ildren .)
I n the presentation here , we split every node into a top and a bottom version , similar to the
definition of "top" and "bottom" features in a feature-based TAG (Vij ay-Shanker, 1 987) . If TJ
is a node in some tree of some set of a V-TAG , then TJ T denotes the top version of that node,
and TJB the bottom version . There are six cases which fall into two basic categories :
(i) Cases 1 to 4 and correspond to context-free expansions within one elementary tree . In Cases
1 to 3, two top versions of sibling nodes TJ1 and TJ2 are combined and the bottom version of their
parent T/ is added to T if we know that T/1 and T/2 cover a contiguous string (poss ibly interrupted
only by the foot node) . In Case 1 the footnote is dominated by 171 , in Case 2 i t is dominated
by ry2 and in Case 3 it i s not dominated by ei ther . Case 4 deals with nodes without siblings .
Figure 3 shows Case 1 .

28

zu geben

}

VP
� NP-nom VP
I niemand

VP
� NP-dat VP
I den Kindem

CP

� NP-ace C'
I � dieses Aux IP Buch I � I '

. · · · - . . � ! VP
. - - - - - ·� C' V

I I IP versucht
� NP-nom I '
1 ..

.. - -.. � PRO : VP INFL
) I I

INFL
I E j

V zu geben
I
E i

CP

� NP-ace C'
I � dieses Aux IP Buch I � hat j I '

� VP INFL
----------- I NP-dat
I

VP E .
�

J

den Kindem NP-nom VP
I � niemand C' V

I I IP versucht
� NP-noril
I PRO VP INFL

I I
V zu geben
I
E i Figure 2 : After adjoining matrix clause into subordinate clause (left) and final derived tree (right) (ii) Cases 5a, 5b, and 6 deal with adjunction . Cases 5a and 5b correspond to adjunction (either at a node which dominates the foot node (5a) or not (5b)) . The top version of the node is added to the matrix to reflect the string covered after adjunction at that node has taken place , as illustrated in Figure 3 for Case 5a. Case 6 corresponds to no adjunctiori : the top version of a node is added if the bottom version is already present in the same cell of the matrix .

� n

A A
=>

�
i j k m m p l i j k l m j k p Figure 3 : Cases 1 and 5a. j k

We now turn to the extensions necessary to handle V-TAG . We first introduce some additional terminology. If two nodes 171 and 172 are linked by a dominance link such that 1]1 dominates 172 , then we will say that 171 has a required bottom and that 1]2 has a required top. If the tree of which 171 (112) i s a node has been adjoined during a derivation , but the tree of which 1]2 (111) is a node has not , the requirement (top or bottom) will be called unfulfilled. The multiset of unfulfilled required tops of a node 17 will be denoted by T(ry) , and the multiset of all required bottoms will be denoted by _i(17) . We extend this notation to derived trees in the obvious way. Observe that a (partial) derived initial tree (i .e . , a tree without a foot node on its frontier)
29

cannot have any unfulfilled required bottoms if it is to be part of a successful derivation .
Clearly, in a lexicalized V-TAG , in every derivation I T(r) I and J ..L(r) I are always linear with

respect to the length of the input string. Note that a V-TAG such that I T(r) I and I .l(r) I are
always bounded by a constant c in every derivation is equivalent to a TAG .
I n order t o keep track o f unfulfil led dominance requirements , we add t o each entry i n the

matrix two link-counters which record the number and type of required tops and bottoms,
respectively, which still need to be fulfilled . A link-counter , is an array whose elements are
indexed on the dominance links of G, and whose values are integers .3 The sum of two counters
is defined component-wise , the norm I , I is defined as the sum of the values of all components.
We will denote by , T the required tops counter , by ,.1 the required bottoms counter , and by
0 the counter all of whose values are 0.
The need for maintaining two link counters - one for required tops and one for required

bottoms - arises from the fact that entries in the four-dimensional parse matrix do not span
a contiguous substring of the input string. Thus a (partial) derivation of a (derived) auxiliary
tree may have required bottoms as wel l as required tops which will only be fulfilled once this
structure is adjoined into another structure .
Vie now spell out what happens to the link counters in the cases 1 and 5a. The other cases

are analogous . In the following, a ...:. b is defined to be a - b if a � b, and O otherwise .
Case 1 : 771 dominates the foot node (see Figure 3) . If there is (77f , ,f , , !) E T[i , j, k , m] and
(77'J , 0 , ,I) E T[m, p, p, l] , i ::; j ::; k s; m � p s; l , then add (77B , Arf , ,i + ,J + T(77)) to T[i, j, k, !] .
Case 5a: 771 dominates the foot node. If there is (11P , ,f , ,!) E T[m, j, k , p] and (77'J , 'Yi , ,I)
E T[i , m , p, l] where 772 is the root node of an auxiliary tree with the same symbol as 771 , then
add (77'[, (Afi ...:_ ,!) + ,f , (,"[...:_ 'Yi) + ,I) to T[i, j, k, l] .

In all six cases , after calculating the new ,.1 and , T , the entry is discarded if I ,.1 + 1 T I � c · n ,
where c is the maximal number of links in a tree set of the grammar. The recognition of a string
a 1 • • · an is successful if for some j, 0 ::; j ::; n, and some 77 , a root node of an initial tree , we
ha:ve (77T , 0 , 0) E T[0 , j, j, n] .
I n cas� 1 (see figure 3) 77'[represents a partial derivation of a (derived) auxiliary tree where 771

dominates the foot node . The required bottoms link-counter ,r represents links that go down
from some nodes in the partially derived tree . These nodes must be on the spine of the tree and
they can only be fulfilled after the tree is adjoined into another tree . Therefore , these links must
'go through ' the foot node. For the node 77 dominating 771 the required bottom counter is simply
copied . (Recall that only foot nodes can be at the top end of a link .) 772 cannot contribute any
required bottoms since the substring underneath 772 is already completely derived and no nodes
will added underneath 772 · The required tops however are simply added from ,i , Afi and T(77)
since they can be fulfilled by nodes which are added later above 77 .
In case ,5a 77p represents a partial derivation of a (derived) auxiliary tree where 771 dominates

the foot node. All of its required bottoms (Aff) must be added to the new required bottoms
link-counter . However , some of the required bottoms of the adjoined auxiliary tree (,d-) migh�
have been fulfilled by required tops at node 771 , so only 'Yi ...:. Af "[many are added to the new
requi red bottoms link-counter . For the same reason , not all required tops of 171 are added to
the new required tops l ink-counter, but only Afi ...:. Atf many. However , all required tops of 772 ,

i .e . ,J are added to the new required tops link-counter .
The core of the algorithm is a loop through indices i, j, k , l E { 0 . . n } , i ::; j ::; k ::; l, applying

Cases 1 through 6 until the matrix is unchanged .
Using back pointers (e .g . , for every (77 , Af.l , 1 T) which is added to T, pointers to the contributing

nodes 77 1 (and 772) in their respective positions are added) ,_ the matrix T can be augmented to
3 Link-counters are used for an extension to CFG (called UVG-DL) in (Rambow, 1994) , and for a different

CFG-based system with dominance l inks (called D-Tree Grammar) in (Rambow et al . , 1 99.5b) . The present paper
is s imi lar to (Ram bow et al . , 1 995b) in that it it is concerned with a formal system t.hat includes dominance l inks.
In both papers, these are parsed using mul tisets, and the parsers are polynomial for t.he same reason . However,
the fact that V-TAG is a tree rewriting system which includes adj unction provides much of the conceptual
complexity of the algori thms presented here.

30

represent a parse forest from which all derivations of an accepted string can be constructed . Theorem: A lexicalized V-TAG is parsable in deterministic polynomial time . The correctness of the recognition algorithm for TAG is proven by Vijay-Shanker (1 987) . It can easily be seen by induction on the number of dominance links that the link-counters correctly impose the dominance constraints. The time complexity of the algorithm is that of Vijay-Shanker 's algorithm, 0(n6) , multiplied by a factor representing the maximal number of elements of each cell of matrix T. Since
I ,..1. I , I , T I are in 0(n) , we have that the number of possible pairs of link-counters is bounded by 0(n2 1 L I) (where I L i is the total number of links in G) , and the the time complexity of the algorithm is in 0 (IG ln41 L l +6) . While fo r a linguistic grammar with significant coverage IL i may b e quite large , i n practice the time complexity of the parser will be much lower . This is because in general , the number of different link-counters associated with the same node in any square of the parse matrix will be low . Several factors contribute to this fact . First , recall that we are using multicomponent adjunction only for scrambling (and perhaps certain forms of "long" topicalization out of picture NPs) , and not for raising and standard topicalization . These syntactic phenomena are still derived by simple adjunction , which does not contribute to the link counters . Second , since CKY is a pure bottom-up parser , we need not actually distinguish between required top links which have the same tree at their top end . In fact , in scrambling languages such as German , the set of trees at the top end of dominance links is quite limited : it consists of substitution structures for nominal and clausal arguments, perhaps one for each case or verbal form. Thus I L i in fact is a small number (say, four to six) rather than the large number one obtains if one counts the dominance links in the elementary structures for every single verb in the language. Finally, observe that if we choose a constant c and fix the number of open dominance links at any point in the derivation to be less than or equal to c, then we obtain a parser that simply runs in time 0(n6) . This is because the numbers of possible entries in the square of the parse matrix is again bounded by a grammar constant , part of which is c. In this case , we can view the formalism and the parser as a dynamic implementation of "slash" categories . Since in fact multiple scrambling is quite rare in real text , we can choose such a constant - say, c = 3 - and obtain a 0(n6) parser for all but a tiny percentage of the sentences of the language in question . Determining the proper number may require empirical investigations . The data structures which are built up in our parsing algorithms also yield themselves to an iterative algorithm if we gradually increase the maximum link constant c. The steps of such an iterative algorithm all have time complexity 0(n6) . Careful bookkeeping minimizes overhead with respect to a non-iterative approach . An iterative strategy will find "unscrambled" parses earlier than "scrambled" parses . In particular , we can continue the iteration process only if the "unscrambled" parses do not meet semantic or pragmatic conditions. This approach avoids many false ambiguities that arise when the parser postulates multiple scrambling, when in fact none has occurred .
4 An Earley-Type Parsing Algorithm We now briefly describe an extension of the Earley-based TAG parsing algorithm of (Schabes , 1 990) which results in a practical parsing algorithm for V-TAG . Again , we use link counters to keep track of unfulfilled dominance requirements. We will only give an informal review of the original parsing algorithm . For full details , we refer the reader to (Schabes , 1 990) . However, some detail is necessary to explain our extensions . The basic data structure is a 'dotted tree ' . A dotted tree is an elementary tree, usually an auxiliary tree, with a dot marking a node in this tree , together with two intervals (i .e . four indices) which represent the recognized strings underneath the marked node; one to the left and one to the right of the foot node. For a dot on a node, there are four possible positions: it

31

is either to the left (prediction phase) or the right (completion phase) and independent of this it is either above or below the node . The parser proceeds in. a mixed fashion with top-down prediction steps and a bottom-up completion steps. Beginning with an initial tree and the dot in the left-above position on the root node , the dot is propagated in a depth-first left-to-right fashion through the entire tree until it returns to the root node (to the right-above position) . Dotted trees a.re collected in states sets Si which contain all dotted trees that represent a partial derivation that covers the input string up to position i . In order to extend the algorithm to V-TAG, we again use ' link counters ' to store the information about unfulfilled dominance constraints . Every dotted tree is extended by a l ink counter that for ea.eh link in the grammar counts the number of required bottoms in the partial derivation which is represented by the dotted tree. Since every state in the parsing algorithm is reached through a sequence of top-down and bottom-up steps which begins with the root node of t he initial tree , there is never a need to keep track of required tops . As long as the dot is on the left , it moves downward , collecting required bottoms . If it hits required tops on a node, it ei ther subtracts from the l ist of required bottoms or , if there are none , it immediately signals failure , since al l nodes above a given node in a partial derivation have been visited already. \Vhen the dot is on the right , the bottom-up steps always refer to already visited structures (see especially the tests in the 'move dot up ' and 'right-prediction ' steps) .
Yra

M·:,��
__/ /// P2

(µJ_
� 2

(" r,)

7; 1�
� Figure 4 : Percolation of the link counter .

Figure 4 shows the movements of the dot and the corresponding link counters on one node 17 for all relevant steps of the parsing algorithm. The node 1J is shown twice, with the dots in the above positions on the top of the figure , an auxil iary tree that might adjoin is shown in the middle, and on the bottom again the node 1J is shown with the clots in the below positions . In the first step with the dot in the left-above position of node 17 of a dotted tree /31 , the corresponding link counter is ,1 -la . It contains all required bottoms in this partial derivation . Note that for this partial derivation , the dot has been moved through all positions above and to the left of 17 . The left-prediction step creates an entry for every auxiliary tree /3' that can be adjoined, with the dot in the left-above position on the root nofle . The link counter '"'/1 - /a is copied and if the root node of /3'_ fulfills some required bottoms , the l ink counter is decremented accordingly. When moving the dot ha'3 proceeded t hrough /31 to the left-below position of the foot node, a left-completion step for /31 can take place . The l ink-counter '"'l;b is copied as '"'(lb · An alternative left-completion step assumes that no adjunction has taken place on node TJ and '"'(la is copied as '"'(lb . If node T/ of /31 is itself a foot node and introduces a required bottom , then the link-counter '"'(lb is incremented accordingly. The next move of the dot is the 'move dot down ' to the left-above posi tion of the leftmost daughter of node T/· If this daughter node fulfills some required bottom , the l ink-counter is dec remented accordingly. Now the dot moves until i t reaches the right-below position of 17 . If the node r1 itself is a foot node and has a required bottom , the relevant component of the link-counter '"'(lb is decremented . If this is i m possi ble (because the value is zero) , then the derivation fai ls . Then , the new l inkcounter '"'(r b must be compared with the old l ink-counter '"'lib . I f any com ponent of the l ink cou nter i'r b is greater than '"'(lb , something has gone wrong and the dot is not moved . This can on ly happen if new requ i red bottoms a.re added , but not fulfilled below T/ · S ince for t.his part ial deri vat ion , the dot has moved through the entire derived tree below r1, these req u i red bottoms can never be ful fi l led . The old l ink-counter '"'(lb must be retr ieved from the appropriate set Si , The next step is t he (r i ght-)prediction of an adjunction at node TJ . If there is a dotted (auxili a ry) t ree ,r/ covering an i mmediate preceding substring with the dot in the l eft-below oosition
32

of the foot node , this dot is moved to the right-below position. The counter irb is copied as 12-rb Again , there are two alternative right-completion steps. Assuming that no adjunction has taken place, the dot is moved up to the right-above position. The new link-counter ira is copied from irb . If there is a dotted (auxiliary) tree /31 covering an immediate surrounding substring in which the dot has moved all the way up to the right-above position of the root node , the adjunction of this tree is assumed and the new link-counter ira is copied from ,2-ra . From there , the dot is moved up, either to the left-above position of the right sister node, or , if there is no right sister, to the right-below position of the mother node. In the first case the link-counter is copied without changes, in the second case the above mentioned test 1s performed , Also , in the scanner steps, the link counter is copied without changes. Note that the only point in which the comparison of new and old link-counters is necessary is the arrival of the dot in a right-below position. In all moves, after calculating the new linkcounter ; , the entry is discarded if I ; I � c · n, where c is the maximal number of links in a tree set of the grammar. The recognition of a string a 1 • • • an is successful if [o , 0, ra , 0, -, - , n] is in Sn with o an initial tree. The core of the algorithm is a loop from i := 0 to n through the sets Si where the modified steps of the Earley-style parser are applied until no more states can be added. The correctness of the recognition algorithm for TAG is proven by Schabes (1990) . It can easily be seen by induction on the number of dominance links that the link-counters correctly impose the dominance constraints. The time complexity of the algorithm is that of Schabes' algorithm, O(n6) , multiplied by a factor representing the maximal number of entries in the states sets Si which differ only in the link counters ;. Since I , I :S en , we have that the number of possible link-counters is bounded by O(n2 x l L I) (where IL i is the total number of links in G) , and the the time complexity of the algorithm is in O(IG ln2 X IL ln6) . Again , using back pointers, the entries in the states sets can be augmented to represent a parse forest from which all derivations of an accepted string can be constructed. The discussion about the relevance of the exponents and an iterative algorithm from section 3 also applies to this Earley-style parsing algorithm.
Bibliography

Becker, Tilman; Joshi, Aravind; and Rambow, Owen (1991) . Long distance scrambling and tree adjoining grammars. In Fifth Conference of the European Chapter of the Association for Computational Linguistics {EA CL '91), pages 21-26. ACL. Joshi, Aravind K. (1987) . An introduction to Tree Adjoining Grammars. In Manaster-Ramer, A., editor, Mathematics of Language, pages 87-1 15. John Benjamins, Amsterdam. Kroch , Anthony (1 989) . Asymmetries in long distance extraction in a Tree Adjoining Grammar. In Baltin, Mark and Kroch, Anthony, editors, Alternative Conceptions of Phrase Structure, pages 66-98. University of Chicago Press. Rambow, Owen (1994) . Formal and Computational Aspects of Natural Language Syntax. PhD thesis, Department of Computer and Information Science, University of Pennsylvania, Philadelphia. Available as Technical Report 94-08 from the Institute for Research in Cognitive Science (IRCS) . Rambow, Owen; Vijay-Shanker, K. ; and Weir, David (1995a) . D-tree grammars. In 33rd Meeting of the Association for Computational Linguistics (A CL '95). ACL. Rambow, Owen; Vijay-Shanker, K.; and Weir, David (1995b) . Parsing D-Tree Grammars. Fourth International Workshop on Parsing Technologies. Schabes, Yves (1 990). Mathematical and Computational Aspects of Lexicalized Grammars. PhD thesis, Department of Computer and Information Science, University of Pennsylvania. Vijay-Shanker, K. (1987) . A study of Tree Adjoining Grammars. PhD thesis, Department of Computer and Information Science, University of Pennsylvania, Philadelphia. PA.
33

