
A Fuzzy APPROACH TO ERRONEOUS INPUTS IN
CONTEXT-FREE LANGUAGE RECOGNITION

Peter R.J. Asveld Department of Computer Science, Twente University of Technology P.O. Box 217, 7500 AE Enschede, The Netherlands e-mail: infprj a @cs . utwente . nl

Abstract - Using fuzzy context-free grammars one can easily describe a finite number
of ways to derive incorrect strings together with their degree of correctness. However,
in general there is an infinite number of ways to perform a certain task wrongly. In
this paper we introduce a generalization of fuzzy context-free grammars, the so-called
fuzzy context-free K -grammars, to model the situation of malting a finite choice out of
an infinity of possible grammatical errors during each context-free derivation step.
Under minor assumptions on the parameter K this model happens to be a very general
framework to describe correctly as well as erroneously derived sentences by a single
generating mechanism.

Our first result characterizes the generating capacity of these fuzzy context-free
K -grammars. As consequences we obtain: (i) bounds on modeling grammatical errors
within the framework of fuzzy context-free grammars, and (ii) the fact that the family of
languages generated by fuzzy context-free K -grammars shares closure properties very
similar to those of the family of ordinary context-free languages.

The second part of the paper is devoted to a few algorithms to recognize fuzzy
context-free languages: viz. a variant of a functional version of Cocke-Younger
Kasami's algorithm and some recursive descent algorithms. These algorithms tum out
to be robust in some very elementary sense and they can easily be extended to
corresponding parsing algorithms.

1. Introduction When we say that a parser is robust it is not quite clear what we mean, since the notion of robustness reflects in fact an informal collection of aspects related to the improper use or the exceptional behavior of the parser. One aspect that is mentioned frequently in this context, concerns the adequate behavior of the parser to small errors in its input. To . this aspect and, particularly, the formal distinction between small and big errors, their arising in the derivational process due to a context-free grammar as well as their treatment in the corresponding recognition process, the.present paper is devoted. The first problem that we encounter, is the distinction between small errors ("tiny mistakes") and big errors ("capital blunders") in the input of a parser or recognizer for a context-free language. In traditional formal language theory there is no possibility for such a subtle distinction. Indeed, given a language L 0 over an alphabet l: and a string x over I:, then x is either in or out the language L 0 • This dichotomy of the set :r* of strings over l: is also apparent when we look at the membership or characteristic function µ : I:* ➔ {0, 1} of the set L 0 which is defined by µ(x ;L 0) = 1 if and only if x eL0 and µ(x ; L 0) = 0 if and only if x �L 0• But now the notion of fuzzy set may solve this problem, since a fuzzy language over l:* is defined in terms of a membership function µ : 1:* ➔ [0, 1]. Note that the two-element set {0, 1} has been replaced by the continuous interval [O, 1] and µ(x ;L0) expresses the degree of membership of the element x with respect to the language L 0 • Thus x may fully belong to L 0 (when µ(x ;L0) = 1), completely be out of L 0 (when µ(x ;L 0) = 0), or anything in between. In case we choose two appropriate constants 6 . and Ii with O < 6, Ii < ½ we are able to distinguish "tiny mistakes" (those strings x over l: satisfying 1 - 6 $ µ(x ;L 0) < 1) from "capital blunders" (strings with O < µ(x ; L 0) $ /1).

14

The next matter we discuss is: how do errors show up, and which errors (small or
big) do we consider. Henceforth, we assume that our language L 0 is generated by a
context-free grammar G = (V, l:, P , S) consisting of an alphabet V, a terminal alphabet
l: (l: � V), an initial symbol S (S e V), and a finite set P of rules (P � N x V* where N = V - l:). However, it turns out to be more convenient to view P as a function from V
to finite subsets of V* (i.e. , finite languages over V) rather than as a subset of N x V*.
To be more specific, let A be an arbitrary nonterminal with rules A ➔ w1 I w2 I · · · I wk ,
then we define the function P for argument A as P(A) = {A , wi , w2 , • • • , wk } , while for
each terminal a in l: we have P (a) = { a } . Note that for each symbol a. in V, the value
of P (a.) is a finite language over the alphabet V that contains a.. The containment of a.
in this value allows us to interpret P as a nested finite substitution; a concept intro
duced in (10] and to be recalled in §2.

Let us return to errors and their description. Wrongly applying a rule A ➔ w, will
mean in this paper that an occurrence of A is replaced by an incorrect string w' instead
of the correct string w. This can be modeled by changing the set P (A) into a fuzzy sub
set of V*, and adding a finite number of strings w' to P(A) with µ(w';P (A)) < 1 for each w'. This process results in the notion of fuzzy context-free grammar G = (V, l:,P , S)
where for each A in N , the set P(A) is now a finite fuzzy subset of V* rather than an
ordinary, or so-called crisp subset. Fuzzy context-free grammars have been introduced
in a slightly different, but equivalent way in (14] . So using fuzzy context-free grammars,
now we are able to model the situation in which the use of a single correct rule can be
replaced by the application of any out of a finite number of incorrect rules.

However, in general there is an infinite number of ways to perform a certain task
in an erroneous way and performing a grammatical derivation step is no exception to
this rule. But simply replacing the finite fuzzy sets P (a.) (for each a. in V) by infinite
ones will not work, since in that case the language L (G) generated by the resulting
grammar G might not even be recursively enumerable [9]. Thus we have to restrain the
languages P(A) in some, preferably natural way. The method we use here, originates
from (16]; viz. we assume that a family K of fuzzy languages is given in advance, from
which we are allowed to take whatever languages we think to be appropriate. Then
replacing the finite languages P(A) over V by �embers from the family K, yields the
concept of fuzzy context-free K-grammar. The family K plays the role of parameter in
our discussion, and when we take K equal to the constant value FIN f , the family of
finite fuzzy languages, we reobtain the ordinary fuzzy context-free grammars.

Remember that fuzzy sets, fuzzy logic and fuzzy grammars have been applied fre
quently in linguistics and natural language processing. From the many references we
only mention the papers in [18] by the inventor of "fuzziness". The present paper is
more a sequel to (14] than to any of the more linguistically oriented papers in (18].

The remaining part of this paper is organized as follows. §2 contains some elemen
tary definitions related to fuzzy languages and in §3 we define fuzzy context-free K -
grammars and the fuzzy languages they generate. Properties of these grammars and
languages are discussed in §4. Then §5 is devoted to recognizing algorithms for fuzzy
context-free languages: we give appropriate modifications of Cock-Younger-Kasami's
algorithm and of some recursive descent algorithms. Finally, §6 contains a comparison
with an alternative way of describing grammatical errors using fuzzy grammars too (15,
13], and a straightforward generalization of our results from previous sections.

In the next sections emphasis is on the main ideas and on concrete examples; for
detailed formal proofs we refer to (6, 7, 8].

15

2. Preliminaries on Fuzzy Languages

We assume the reader to be familiar with the rudiments of formal language and parsing
theory. So for the definitions of context-free grammar, Chomsky Normal Form, and
Greibach Normal Form we refer to standard texts like [1, 11, 12] .

As mentioned in §1 a fuzzy language L over an alphabet I: is a fuzzy subset of I:* ,
i.e. L is defined by a degree of membership function µL : I:* ➔ [O, 1]. Actually the func
tion µL is the primary notion and L a derived concept, since L = { x e I:* I µL (x) > 0 } .
Henceforth, we write µ(x ;L) rather than µL (x). The crisp part of a fuzzy language L
is the set c (L) = { x eI:* I µ(x ;L) = l } . A crisp (or ordinary) language L is a fuzzy
language that satisfies c (L) = L .

Next we need a few operations on fuzzy languages: viz. union, intersection, con
catenation, and applying a fuzzy function on a fuzzy language. For union and intersec
tion of fuzzy languages Li (Li � "i:,_*, i = l, 2) we have

µ(x ;L 1 u L 2) = max { µ(x ;L 1), µ(x ;L 2) } , and
µ(x ;L 1 f1 L 2) = min { µ(x ;L 1), µ(x ;L 2) } , (1)

for all x in (I:1 u I:2)*, respectively. The concatenation [14] of fuzzy languages L 1 and
L 2, denoted by L 1 L 2, is the fuzzy language satisfying: for all x in (:I:1 u I:z)*,

µ(x ;L 1 L 2) = max { min { µ(y ;L 1) , µ(z ; L2) } I x = yz } . (2)
A fuzzy relation R between (ordinary) sets X and Y is a fuzzy subset of X x Y.

For fuzzy relations R � X x Y and S � Y xZ , their composition R o S i s defined by µ((x , z); R o S) = max { min { µ((x ,y); R), µ((y , z); S) } l y e Y }. (3)
A fuzzy function f : X ➔ Y is a fuzzy relation f � X x Y, satisfying for all x in X: if µ((x ,y); f) > O and µ((x , z); f) > O, then y = z and, consequently, we have µ((x ,y); f) =
µ((x , z) ; f). Note that (3) applies to fuzzy functions as well. But the composition of two
functions f : X ➔ Y and g : Y ➔ Z is usually written as g o f :X ➔ Z rather than f og .

In the sequel we need a function of type f : X ➔ P(X) - where P(X) denotes the
power set of the set X - that will be extended to the function f : P(X) ➔ P(X) by f (S) = U{ f (x) I x eS } and for each subset S of X,

µ(y ; f (S)) = max { min { µ(x ; S) , µ((x ,y); f) } I x e X } ; (4)
cf. e.g. Definition 2.2 below where X = v• for some alphabet V, and S is a language over V . Fuzzy functions like f o f , f o f o f , and so on, are now meaningful by (3) and (4).

Next we tum to the notion of family of fuzzy languages.
Definition 2.1. Let � be a countably infinite set of symbols. A family of fuzzy languages is a s_et of pairs (L , :EL) where L is a fuzzy subset of :E{ and :EL is a finite sub
set of :Ew We assume that the alphabet :EL is minimal with respect to L , i .e. , a symbol a is a member of I:L if and only if a occurs in a word x with µ(x ; L) > 0 . A family of
fuzzy languages K is called nontrivial if K contains a language L such that µ(x ; L) > 0
for some x eI:;. A family is called crisp if all its members are crisp languages.

Frequently, we write L instead of (L , I:L) for members of a family of (fuzzy)
languages, especially when I:L is clear from the context. □

Examples of simple, nontrivial families of fuzzy languages, which we will use, are
the family FIN1 of finite fuzzy languages, the family ALPHA1 of finite fuzzy languages
of which the members have unit length (i.e. , these languages are alphabets), and the
family SYMBOL1 of singleton languages of unit length. Formally, -

FIN1 = { { w 1 , w 2, · · • , wn l l wi e�, l $ i $ n , n � O } ,
ALPHA1 = { I: I I: c I:w , I: is finite } , 8:nd
SYMBOL1 = { { a} I ae� }.

16

The corresponding families of crisp languages are denoted by FIN, ALPHA, and SYM
BOL, respectively. Note that the family FINr is closed under the operations union,
intersection and concatenation, the family ALPHAr is closed under union and intersec
tion but not under concatenation, whereas SYMBOL, is not closed under any of these
three operations. A similar statement holds for the corresponding crisp families.

Finally, we will consider a more complicated operation on languages; it slightly
generalizes a concept from [10].
Definition 2.2. Let K be a family of fuzzy languages. A nested fuzzy K-substitution
over an alphabet V is a mapping P : V ➔ K satisfying:
(i) for each a. in V, P (a.) is a fuzzy K-language over V, and
(ii) P is nested, i.e., µ(a.;P (a.)) = 1 for each a. in V.

The mapping P i s extended to words over V by P (A) = { A} with µ(A;P (A)) = 1 -
where A denotes the empty word - and P (a.1(½ · · · On) = P(a.1) P (f½) · · · P (On) wi�h
a.;, E V for all i (1 ::; i ::;; n , n � 0). Finally, P is extended to languages over V by P (L) =
U{ P (x) I x eL } and, according to (4), for each language L over V,

µ(y ;P (L)) = max { min { µ(x ;L), µ((x ,y);P) } I x eL } . (5)
A nested fuzzy K -substitution P over V can be iterated, giving rise to a iterated

nested fuzzy K-substitution over V, i.e., a mapping p• from languages over V to
languages over V , defined by P*(L) = U{ Pn (L) I n � O } with pi + 1(L) = P (Pi (L)) for
each i � 0, and P0(L) = L .

A family K of fuzzy languages is closed under [iterated] nested fuzzy substitution
if for each fuzzy language L over some alphabet V, and for each [iterated] nested fuzzy
K-substitution over V, we have P (L) e K [P*(L) e K, respectively]. □

Note that in Definition 2.2 we used the operations union, concatenation, function
application and function composition; cf. (3), (4) and (5) in particular.
Example 2.3. The families SYMBOL, and ALPHA, are closed under (iterated) nested
fuzzy substitution. On the other hand, although the family FIN f is closed under nested
fuzzy substitution, it is not closed under iterated nested fuzzy substitution. Viz. con
sider P over V = { a , b } with µ(a ; P (a)) = 1, µ(b ;P (b)) = 1, and µ(aba ;P (b)) = 0.4,
whereas for all other arguments µ takes the value 0. Now for each fuzzy language L
over V that contains at least one word in which a symbol b occurs, the fuzzy language
P*(L) is infinite. Let L be { a n ba n I O ::; n ::;; 3 } with µ(a n ba n ;L) = 1 for n = 0, 1 and
µ(a n ba n ;L) = 0.2 for n = 2, 3. Then P*(L) = { a n ba n l n � 0 } where µ(a n ba n ;P *(L))
equals 1 for n = 0, 1 and 0.4 for all n � 2. □

3. Fuzzy Context-Free K-grammars

In this section we first discuss grammatical err.ors by means of a few examples of (fuzzy)
context-free grammars. Then we formally define fuzzy context-free K-grammars and
the languages they generate.
Example 3.1. Consider the (ordinary) context-free grammar G = (V, I:,P , S) with
V = I: u { S } , I: = { [,], (,) } and P consists of the rules S ➔ [S] S I (S) S I A, where A
denotes the empty word. The language L (G) is called the Dyck language over two types
of parentheses and it consists of all well-matched sequences over I:. So [[] ()] and
(0 [] 0) are in L (G), but [0 [] and [(]) are not. L (G) plays an important role in the
theory of context-free languages, since any context-free language L0 can be obtained
from L (G) by the application of an appropriate non-deterministic finite-state transducer
T , i.e. L 0 = T(L (G)), where T depends on L0 • As a nested FIN-substitution P looks
like P (S) = { S , [S] S , (S) S , A } and P (o) = { o} for each o in I:. □

17

Example 3.2. Let G 0 = (V, E, P0, S) be the fuzzy context-free grammar that is equal to G of Example 3. 1 except that P0(S) = P (S) u { [S) S , [SS } , P0(a) = { a} for each c, in
l:, µ([S) S ; P0(S)) = 0.9, µ([SS ; P0(S)) = 0. 1, and µ equals 1.0 in all other cases. The
string [S) S gives rise to e.g. µ([O [)] ;L (G 0)) = 0.9 which is a "tiny mistake" from
which it is easy to recover. However, the string [SS causes much more serious prob
lems: we have µ([[] [] ; L (G 0)) = 0. 1, but what is the corresponding correct string?
There are three possibilities: [] [] [] , [[]] [] and [[] []]. So [[] [] is considered to be a
"capital blunder", when we choose, for instance, 8 and /l equal to 0.2 (cf. § 1). □

The next step is that we will allow for an infinite number of ways to make gram
matical errors, for which we need grammars with an infinite number of rules.
Example 3.3. Consider the fuzzy context-free grammar G 1 = (V , E,P i , S) that is equal
to G 0 of Example 3.2 except that P 1(S) = P (S) u { [n S t S l n � l } u { [SS } with
µ([n S t S ; P 1(S)) = 0.9 for all n � l. It is straightforward to show that L (G 1) = L (G 0),

i.e. µ(x ;L (G 0)) = µ(x :L (G 1)) for all x in 1:*. □
Crisp grammars with an infinite number of rules have been considered previously;

e.g. grammars in extended BNF and the grammatical devices in [16, 2, 3] . In the next
definition we generalize the fuzzy context-free grammars from [14].
Definition 3.4. Let K be a family of fuzzy languages. A fuzzy context-free K -grammar G = (V , E, P , S) consists of
• an alphabet V (the alphabet of G);
• a subset l: of V (the terminal alphabet of G);
• a special non terminal symbol S (the initial or start symbol of G);
• a nested fuzzy K-substitution P over V, i.e. , a mapping P : V ➔ K satisfying: for

each symbol a. in V, P (a.) is a fuzzy language over the alphabet V from the family K with µ(a.;P (a.)) = 1 .
The fuzzy language generated by G is the fuzzy set L (G) defined by L (G) = P*(S) n 1:*.
The family of fuzzy languages generated by fuzzy context-free K -grammars is denoted
by Ar (K). The corresponding family of crisp languages is denoted by c (Ar (K)), i.e. ,
c (Ar (K)) = { c (L) I L e Ar (K) } . □

Comparing Definition 3.4 with the concept of fuzzy context-free grammar from [14]
yields the following differences:
(1) Following 3.4 it is allowed to rewrite terminal symbols.
(2) In 3.4 L (G) is defined in terms of the operations union, intersection, concatenation

and (iterated) function application rather than in terms of derivations.
(3) In 3.4 there is an infinite number of rules in P.
Now (1) happens to b e a minor point (cf. §4), (2) i s just a reformulation, but (3) i s the
main point. With respect to (2), the language L (G) can also be defined using deriva
tions; cf. [14] . A string x over l: belongs to . L (G) if and only if there exist strings
w0 , w1 , • • · , Wn over V such that S = w0 ⇒ w1 ⇒ w2 · · · ⇒ Wn = x . If Ai ➔ '\jfi (0 � i < n)
are the respective rules used in this derivation, then

µ(x ; L (G)) = max { min { µ('\jf i ; P (Ai)) I 0 � i < n } I S = w0 ⇒ * Wn = x } , (6)
i.e. , the maximum is taken over all possible derivations of x from S. If such a deriva
tion is viewed as a chain link of rule applications, its total "strength" equals the strength
of its weakest link; hence the min-operation. And µ(x ; L (G)) is the strength of the
strongest derivation chain from S to x ; cf. [14].
Example 3.5. According to the grammar G 1 of Example 3.3 we have the derivation S ⇒ [S] S ⇒ [[[S)) S] S ⇒ [[[)) S] S ⇒ [[[))] S ⇒ [[[))]

and µ([[[))] ; L (G 1)) = 0.9 since in the second step we used µ([2S)2S ;P 1(S)) = 0�9 while

18

in all other steps µ has the value 1.0. □ Example 3.6. Ar (FIN r) = CF r , i .e., the family of fuzzy context-free languages from
[14]. Hence, c (Ar (FINr)) = CF, the family of (ordinary or crisp) context-free languages. Note that Ar (SYMBOLr) = c (Ar (SYMBOL)) = { 0 } , since S ⇒ S is the only possible derivation for the corresponding grammars. But Ar (ALPHAr) = ALPHAr , and similarly c (Ar (ALPHAr)) = Ar (ALPHA) = ALPHA as only sentential forms of length 1 occur in each derivation of the corresponding grammars. □

4. Properties of Fuzzy Context-Free K-languages Throughout this section we restrict our attention to those families K satisfying some minor conditions, collected in Assumption 4.1. Henceforth, K is a family of fuzzy languages that satisfies: (1) K contains all crisp SYMBOL-languages (K � SYMBOL); (2) K is closed under union with SYMBOL-languages, i.e. for each L from K and each crisp { a.} from SYMBOL, the fuzzy language L u { a.} also belongs to K; (3) K is closed under isomorphism ("renaming of symbols"), i.e. for each L over I: from K and for each bijective mapping i : I: ➔ I:1 - extended to words and to languages in the usual way - we have that the language i (L) belongs to K. □ Note that the family ALPHAr is the smallest family satisfying these properties. Our first result deals with the generating power of fuzzy context-free K -grammars. Theorem 4.2. Under assumption 4. 1, we have Ar (Ar (K)) = Ar (K).
Proof (sketch): The inclusion Ar (K) � Ar (Ar (K)) is easy to establish. Viz. for each L 0 in Ar (K) with fuzzy context-free K -grammar G = (V , I:, P , S) and L (G) = L 0, there is a fuzzy context-free Ar (K)-grammar G 0 = (V 0 , :E,P 0, S 0) with VO = :Eu { S 0} , P 0(8 0) = { S 0} u L (G), and P0(o) = {o} for all o in I:. Then for each x in I:*, we have µ(x ; L (G0)) = µ(x ; L (G)) = µ(x ;L 0). To show the converse inclusion, let G = (V, I:, P , S) be a fuzzy context-free Ar (K)grammar. So P is a nested fuzzy Ar (K)-substitution over the alphabet V . For each a. in V, let Ga = (Va, V , Pa, S a) be a fuzzy context-free K -grammar - i.e. each Pa is a nested fuzzy K -substitution over Va - such that L (Ga) = P (a.). We assume that all non terminal alphabets Va - V are mutually disjoint. The proof that L (G) e Ar (K) consists of the following three parts: (a) Using 4. 1.(3) we modify each grammar Ga (a.eV) in such a way that P aCJ3) = { J3} holds for each terminal symbol J3 in V . (b) For each nested fuzzy K -substitution Pa over V m we define a corresponding nested fuzzy K -substitution Q a by Q aC J3) = P aC J3) iff J3 E Va - V

Q a(�) = { �' S 13} iff � e V Q aC J3) = { J3} iff J3 E V 1 - Va with V1 = U{ Ya l a. e V } . Now we have that L (G) = { Qa l a.eV }* n I:*. (c) Finally, using 4. 1.(1)-(3) we reduce the finite set { Q a I a.e V } of nested fuzzy K -substitutions over V 1 to an equivalent, single nested fuzzy K -substitution PO over an extension VO of V 1 . Then for G 0 = (V0, I:,P0, S8), we have µ(x ;L (G 0)) = µ(x ;L (G)). Thus, L (G0) = L (G), and L (G)eAr (K), i.e. , Ar (Ar (K)) � Ar (K). □ For a complete constructive proof of 4.2 we refer to [6, 7] . Though from a mathematical point of view 4.2 is quite appealing, we turn to the special case K = FIN1 in order to resume our discussion on errors and fuzzy context-free grammars.

19

Corollary 4.3. Ar (Ar (FIN,)) = Ar (CFr) = Ar (FINr) = CF, . □
Corollary 4.3 provides us the limit of deriving grammatical errors within the framework of fuzzy context-free grammars. Viz. we may extend the sets P (a) (for each a in the alphabet V) to infinite sets, as long as the resulting sets P (a) still constitute fuzzy context-free languages over V . Only in this way we are able to model the case of an infinite number of possible grammatical errors. Of course, during each derivation only a finite choice out of this infinity of possible errors will be made. Though the construction in (second part of) the proof of 4.2 is applicable to each fuzzy context-free Ar (K), sometimes an ad hoe construction may result in a simpler grammar.

Example 4.4. Consider the fuzzy context-free Ar (FIN r)-grammar or fuzzy context-free CF rgrammar G 1 of Example 3.3 . We will construct an equivalent fuzzy context-free FINrgrammar G 2 = (V2 , I:, P2 , S). Let V2 = {A } u Vi , P2(S) = P(S) u { [SS , AS } ,
P2(A) = {A , [A) , [S) } , µ(AS ; P2(S)) = µ([A);P2(A)) = µ([S);P2(A)) = 0.9 and everything else is as in Example 3 .3 . Then µ(x ; L (G 2)) = µ(x ;L (G 1)) for all x in 1:* , i.e . , L (G 2) = L (G 1) . □

We conclude this section with some mathematical consequences of 4.2 and 4.3 for which we need the following fuzzy analogue to the notion of full super-AFL [10].
Definition 4.5. A nontrivial family K of fuzzy languages is called a full super-AFFL (i.e. , full super-Abstract Family of Fuzzy Languages) if K is closed under • finite fuzzy substitution (i.e. FIN f -substitution); • intersection with fuzzy regular languages; • iterated nested fuzzy substitution. □

From closure under these three operations, closure under many other operations well known in formal language theory follows: closure under union, concatenation, Kleene *, homomorphism, inverse homomorphism, substitution, nondeterministic finitestate transductions, and so on; cf. [10, 2, 4] ·and also [17].
Theorem 4.6. [7] (1) Let K be a nontrivial family of fuzzy languages closed under finite fuzzy substitution and under intersection with fuzzy regular languages. Then Ar (K) is a full super-AFFL, and, in particular, it is the smallest full super-AFFL that includes the family K. (2) Each full super-AFFL includes the family CF r of fuzzy context-free languages. (3) The family CF f is the smallest full super-AFFL. □

The proof of 4.6 heavily relies on Theorem 4.2 and Corollary 4.3; cf. [7] . Comparing 4.6 with results in [10, 2, 4] yields that the family of fuzzy context-free languages possesses closure properties very similar to those of the (ordinary or crisp) context-free languages.
5. Recognizing Fuzzy Context-Free Languages
In this section we give a few algorithms for recognizing fuzzy context-free languages. When a fuzzy context-free language has been specified by a fuzzy context-free CF f -grammar (Corollary 4.3), we must first transform that grammar into an equivalent fuzzy context-free FIN r -grammar by means of the construction in the proof of Theorem 4.2. Next we must transform the resulting grammar into Chomsky or Greibach Normal Form, using results from [14] , before we can apply the algorithms from this section. The first algorithm is a modification of Cocke-Younger-Kasami's algorithm (or CYK-algorithm for short); cf. Algorithm 5.2 below. In e.g. [1, 1 1, 12] the CYK-algorithm is given in terms of nested for-loops that fill an upper-triangular matrix. Here we start

20

from an alternative functional version from [5] which has some interesting features: it omits implementation details like the data structure, reference to the indices· of matrix entries and to the length of the input string; cf. , e.g. , Algorithm 12.4. 1 in [11] and Algorithm 5. 1 below. Algorithm. 5.1. Let G = (V, l:,P , S) be a A-free context-free grammar in Chomsky Normal Form and let w be in :t'. Define functions f : l:+ ➔ P(N+) and g : P(N+) ➔ P(N) by: • For each w in l:+ the function f is defined as· the finite substitution generated by f (a) = { A I a e P(A) } (7) and extended to words over l: by f (w) = f (a 1)f (a 2) · • · f (an) if w = a 1a 2 • · · an (ak el:, l $ k :5 n). (8) • For each A in N we define g (A) = {A } and for each w in N+ with I w I � 2 we have g (w) = U { g (x) ®g (ri) I X, 1'1 eN+, w = xri } (9) where for each X and Y in P(N) the binary operation ® is defined by X ® Y = { A I BC e P(A), with B eX and C eY }. (10) • For each (finite) language M over N, g (M) is defined by
g (M) = U { g (w) I w eM }. (11) Finally, compute g (f (w)) and determine whether S belongs to g (f (w)). Clearly, we have w eL (G) if and only if S e g (f (w)) . □ From this functional version of the CYK-algorithm it is easy to derive an algorithm for recognizing fuzzy context-free languages. Algorithm 5.2. Let G = (V, l:, P , S) be a A-free fuzzy context-free grammar in Chomsky Normal Form and let w be in l:+. Extend (7)-(11) in Algorithm 5. 1 with
µ(A ; f (a)) = µ(a ; P (A)) , (7') µ(A ;X ® Y) = min { µ(BC ;P (A)), µ(B ;X), µ(C ; Y) } , . (9') µ(A ;g (w)) = max { µ(A ;g (x) ®g (ri)) I X, 1'1 eN+, w = xri } , (10') whereas corresponding equalities for (8) and (11) follow from the definitions of concatenation and finite union, respectively; cf. §2. Finally, compute µ(S ;g (f (w))) . Then, we have µ(w ;L (G)) = µ(S ;g (f (w))). □ Example 5.3. Consider the fuzzy context-free grammar G 3 = (V3 , l:,P3, S) with

V3 = l: u { S ,A ,B , C ,D ,E ,F } , P3 consists of the rules
s ➔ SS I AC I BC I DF I EF I AF I BF I BS I [' A ➔ BS , B ➔ [, C ➔ J , D ➔ ES , E ➔ (, F ➔) , where µ(AF ;Pa(S)) = µ(BF ;P3(S)) = 0.9, µ(BS ;P3(S)) = µ([;P3(S)) = 0. 1 and µ has value 1.0 in all other cases. The grammar G 3 is A-free, in Chomsky Normal Form, and equivalent (modulo the empty word A) to GO from Example 3.2. Applying Algorithm 5.2 with, e.g. , input equal to [] (), yields µ([] 0 ;L (G3)) = µ(S ;g (f ([] 0))) = µ(S ;g ({B , S }CEF)) = µ(S ;g ({ B , S }) ®g (CEF) u u g ({ B , S }C) ®g (EF) u g ({B , S }CE) ®g (F)) = · · · = µ(S ; S) = 1.0 where we write, as usual, X for a singleton set {X} . Similarly, for input equal to [[]), we get µ([[]) ;L (G3)) = µ(S ;g (f ([[])))) = µ(S ;g ({B , S } {B , S }CF)) = = µ(S ;g ({ B , S }) ®g ({ B , S }CF) u g ({ B , S } { B , S }) ®g (CF) u u g ({ B , S } { B , S }C) ®g (F)) = · · · = 0.9

21

□

Algorithms 5 . 1 and 5.2 are bottom-up algorithms for recognizing A-free (fuzzy)
context-free languages in Chomsky Normal Form. Functional versions of top-down
("recursive descent") algorithms for crisp context-free languages have been introduced in
[5], from which we recall Definition 5.4 and Algorithm 5.5. In Algorithm 5.6 we give a
modification of 5.5 which results in a recursive descent recognizer for fuzzy context-free
languages in Chomsky Normal Form.
Definition 5.4. For each context-free grammar G = (V, :E,P , S) with N = V - :E, the set T (:E, N) of terms over (:E, N) is the smallest set defined by
(a) A is a term in T(:E,N) and each a (a El:) is a term in T(:E,N).
(b) For each A in N and each term t in T(:E,N), A (t) is a term in T(:E,N).
(c) If t 1 and t 2 are in T(l:, N), then their concatenation t 1 t 2 is a term in T(:E,N) too. □
Note that for any two sets of terms S 1 and S 2 (S i, S 2 s;;; T (:E, N)) the set S 1 S 2, defined
by S 1 S 2 = { t 1 t 2 I t 1 eS i, t 2 ES 2 } , is also a set of terms over (:E, N).
Algorithm 5.5. Let G = (V , :E, P , S) be a A-free context-free grammar in Chomsky Nor
mal Form and let w be a string in t'. Each nonterminal symbol A in N is considered
as a function from :E* u { 1- } to P(T(:E,N)) defined as follows. (The symbol 1- will be used
to denote "undefined".) First, A (1-) = 0 and A (A) = { A } for each A in N . If the argu
ment x of A is a word of length 1 (i.e. x is in :E) then A (x) = { A l x eP(A) } (x e:E) (12)
and in case the length Ix I of the word x is 2 or more, then A (x) = U { B (y) C (z) I BC EP (A), y , z E:E+, x = yz }. (13)

Finally, we compute S (w) and determine whether A belongs to S (w).
It is straightforward to show that w EL (G) if and only if A ES (w). □

Algorithm 5.6. Let G = (V, :E, P , S) be a A-free fuzzy context-free grammar in Chomsky
Normal Form and · 1et w be a string in :E+. For all A in N, µ(A;A (A)) = 1 and
µ(t ;A (1-)) = 0 for each t in P(T(:E,N)). Extend (12)-(13) in Algorithm 5.5 with

µ(A;A (x)) = µ(x ; P (A)) (x E:E), (12')
µ(A;A (x)) = max { min { µ(BC ; P (A)), µ(A; B (y)), µ(A; C (z)) } I (13') BC e P (A), y ,z E :E+, x = yz }.

Finally, we compute µ(A; S (w)). Then we have µ(w ;L (G)) = µ(A; S (w)). □
Example 5.7. Applying Algorithm 5.6 to the fuzzy context-free grammar G3 of Exam
ple 5.3 results in
µ(0 [] ; L (G 3)) = µ(A; S (0 [])) =

= µ(A; S (() [) S (]) u S (()) S ([]) u S (() S () []) u A (O [) C (]) u A (0) C ([]) u A (() C () []) u B (() [) C (J) u B (()) .C ([]) u B (() C () [J) u
D (() [)F (]) u D (())F ([]) u D (() F() [])) u
E (() [)F (]) u E (()) F([]) u E (() F () [])) = = 1 ·

µ([() ; L (G 3)) = µ(A; S ([())) = · · · = 0. 1
µ((]) ; L (G 3)) = µ(A; S ((]))) = · · · = 0 □

Finally, we give analogues of Algorithms 5.5 and 5.6 based on Greibach 2-form (viz.
Algorithms 5.8 and 5.9) which are slightly more efficient then 5.5 and 5.6, respectively.
Recall that a A-free context-free grammar is in Greibach 2-form if its rules possess one
of the forms: A ➔ aBC , A ➔ aB and A ➔ a (a e:E, A , B , C EN).
Algorithm 5.8. Let G = (V, :E, P , S) be a A-free context-free grammar in Greibach 2-
form and let w be a string in :E+ . The algorithm is as Algorithm 5.5 except that (13) is

22

replaced by A (x) = U { B (y) C (z) I aBC eP (A), y ,z e:E+, x = ayz } u U { B (y) I aB eP (A), y e:E+, x = ay }. Still we have that w eL (G) if and only if A eS (w).
(14)

□ Algorithm 5.9. Let G = (V , :E, P , S) be a A-free fuzzy context-free grammar in Greibach 2-form and let w be a string in :E+. For all A in N, µ(A;A (A)) = 1 and µ(t ;A (l.)) = 0 for each t in P(T(:E,N)). Extend (14) in Algorithm 7.5 with µ(A;A (x)) = µ(A;A '(x) u A "(x)) with (14') µ(A;A '(x)) = max { min { µ(aBC ;P(A)), µ(A;B (y)), µ(A; C (z)) } I (14') aBC e P (A), y ,z e t', x = ayz } , µ(A;A "(_x)) = max { min { µ(aB ;P(A)), µ(A; B (y)) } I aB e P(A), y e t', x = ay }. Finally, compute µ(A; S (w)). Then µ(w ;L (G)) = µ(A; S (w)).
(14')

□ Example 5.10. Let G 4 = (V 4, :E,P 4, S) be the fuzzy context-free grammar with V = :E u {S , C , F}, and P 4 consists of rules which are displayed with their degree of membership in the following table. set elements degree Pi S) - S , [SCS , (SFS , [CS , (FS , [SC , (SF , [C , (F 1.0 [SFS , [FS , [SF, [F 0.9 [SS , [S , [0. 1 Pi C) C ,] 1.0 Pi F) F,) 1.0 Applying Algorithm 5.9 yields µ(A; C (])) = µ(A;F())) = 1.0, µ(A; S ([)) = 0. 1, and S (w) = U { S (x) C (y) S (z) I w = [xyz } u U { C (x) S (y) I w = [xy } u U { S C-x)F(y) S (z) I w = (xyz } u U {F(x) S (y) I w = (xy } u U { S (x) C (y) I w = [xy } u U { S (x)F.(y) I w = (xy } u
U { S (x) F (y) S (z) I w = [xyz } u U { F (x) S (y) I w = [xy } u U { S (x)F(y) I w = [xy } u U { S (x) S (y) I w = [xy } u u C ([\ w) u F((\ w) u F([\ w) u S ([\ w) where x ,y and z are nonempty strings over :E, and u \ v = w if v = uw , and l. otherwise (u , v , w e:E*). Then we have

µ(A; S ([0])) = µ(A; · · · u S (0) C (]) u · · ·) = = µ(A; · · · u S (0) u · · ·) = µ(A; · · · u F ()) u · · ·) = 1. 0 where numerous non-productive terms have been omitted. Similarly, µ(A; S ([[])) = µ(A; · · · u S ([) C (]) u S ([\ [[]) u · · ·) = 0 . 1 □ Of course, the Greibach 2-form is by no means essential; the transformation to this normal form gives rise to numerous additional rules and less transparent algorithms. For instance, a A-free version of G O from Example 3.2 will result in an algorithm that is simpler than 5. 10.
6. Concluding Remarks We showed that using fuzzy context-free K -grammars we are able to model the case in which at each derivation step a choice from an infinity of possible grammatical errors is made. From Theorem 4.2 and Corollary 4.3 it followed that in order to stay within the

23

framework of fuzzy context-free language generation this choice should be limited to a
fuzzy context-free language. However, to apply the recognition algorithms from §5,
these fuzzy context-free CF 1 -grammars should be transformed into equivalent fuzzy
context-free FIN 1 -grammars. These recognition algorithms, which are straightforward
modifications of existing ones, are robust in a very primitive sense; viz. since they com
pute the membership function, they can distinguish between "tiny mistakes" and "capi
tal blunders".

Our approach in describing grammatical errors has a global character: a right
hand side w of a grammar rule may be replaced erroneously by a completely different
string w'. In [15] an alternative way of describing errors - using fuzzy context-free
grammars too - is given. Here w' is restricted to those strings that are obtainable by
simple edit operations (deletion, insertion, and substitution of symbols) from w, and
these operations are performed on nonterminal symbols only. In a companion paper [13]
this approach is extended to context-sensitive grammars as well, but both papers are
restricted to the discussion of simple examples rather than proving general results.

The definition of fuzzy context-free K -grammar can be slightly generalized: viz.
instead of a single nested fuzzy K -substitutions we may allow a finite number of such
substitutions [7] . Under assumption 4. 1 it is possible to reduce this finite number to an
equivalent single nested fuzzy K -substitution; cf. the last part of the proof of 4.2.

Of much more practical interest is another modification / generalization. From a
certain point of view the model discussed in this paper is rather trivial: to each grammar
rule we associate a real number in between O and 1 , and these numbers are propagated
by means of the min-operation (of course, without any alternation) to a string derived by
the fuzzy context-free grammar. So making the very same error twice is as bad as mak
ing it a single time. Intuitively, one would prefer that the degree of membership in the
first case is strictly lower than the one due to the single error. This can be achieved by
deviating from the original definition of fuzzy grammar from [14]. When we replace the
min-operation in (2)-(5) and, consequently, in (6), (9'), (13') and (14') - but not in (1) -
by the multiplication operation, we are able to model this accumulation process of errors.
Example 6.1. When we replace the min-operation by multiplication at the appropriate
places, Algorithm 5.2 applied to the grammar G 3 of Example 5.3 yields, for instance,
µ([[) []) ;L (G3)) = · · · = 0.81, µ([[) [)) ;L (G3)) = · · · = 0.729, µ([[) [] ;L (G3)) = · · · =
0.08 and µ([[) [;L (G3)) = · · · = 0.008. D

In this way the occurrence of many "tiny mistakes" may result in the end in some
thing that resembles a "capital blunder". Acknowledgements. I am indebted to Rieks op den Akker and Anton Nijholt for their
critical remarks.

References

1. AV. Aho & J.D. Ullman: The Theory of Parsing, Translation and Compiling - Volume I: Parsing (1972), Prentice-Hall, Englewood Cliffs, NJ.
2. P.R.J. Asveld: Iterated Context-Independent Rewriting - An Algebraic Approach to Families of Languages, (1978), Ph.D. Thesis, Dept. of Appl. Math. , Twente University of Technology,

Enschede, The Netherlands.
3. P.R.J. Asveld: Abstract grammars based on transductions, Theoret. Comput. Sci. 81 (1991)

269-288.
4. P.R.J. Asveld: An algebraic approach to incomparable families of formal languages, pp. 455-

475 in G. Rozenberg & A. Salomaa (eds.): Lindermayer Systems - Impacts on Theoretical Computer Science, Computer Graphics, and Developmental Biology (1992), Springer-Verlag,
Berlin, etc.

24

5. P.R.J. Asveld: An alternative formulation of Cocke-Younger-Kasami's algorithm, Bull. Europ. Assoc. for Theoret. Comp. Sci. (1994) No. 53, 213-216.
6. P.R.J. Asveld: Towards robustness in parsing - Fuzzifying context-free language recogni

tion, Memoranda Informatica 95-08, Dept. of Comp. Sci., Twente University of Technology,
Enschede, The Netherlands. To appear in Proc. 2nd Internat. Con{. on Developments in Language Theory (1995).

7 P.R.J. Asveld: Fuzzy context-free languages - Part I: Generalized fuzzy context-free gram
mars, Memoranda Informatica 95-??, Dept. of Comp. Sci., Twente University of Technology,
Enschede, The Netherlands (In preparation). 8. P.R.J. Asveld: Fuzzy context-free languages - Part II: Recognition Algorithms, Memoranda
Informatica 95-??, Dept. of Comp. Sci., Twente University of Technology, Enschede, The
Netherlands (In preparation).

9. G. Gerla: Fuzzy grammars and recursively enumerable fuzzy languages, Inform. Sci. 60
(1992) 137-143.

10. S.A Greibach: Full AFL's and nested iterated substitution, Inform. Contr. 16 (1970) 7-35.
11. M.A Harrison: Introduction to Formal Language Theory (1978), Addison-Wesley, Reading,

Mass.
12. J.E. Hopcroft & J.D. Ullman: Introduction to Automata Theory, Languages, and Computation (1979), Addison-Wesley, Reading, Mass.
13. M. Inui, W. Shoaff, L. Fausett & M. Schneider: The recognition of imperfect strings gen

erated by fuzzy context-sensitive grammars, Fuzzy Sets and Systems 62 (1994) 21-29.
14. E.T. Lee & L.A Zadeh: Note on fuzzy languages, Inform. Sci. 1 (1969) 421-434.
15. M. Schneider, H. Lim & W. Shoaff: The utilization of fuzzy sets in the recognition of imper

fect strings, Fuzzy Sets and Systems 49 (1992) 331-337.
16. J. van Leeuwen: A generalization of Parikh's theorem in formal language theory, pp. 17-26

in: J. Loeckx (ed.): 2nd ICALP, Leet. Notes in Comp. Sci. 14 (1974), Springer-Verlag, Berlin,
etc.

17. W. Wechler: The Concept of Fuzziness in Automata and Language Theory (1978),
Akademie-Verlag, Berlin.

18. R.R. Yager, R.M. Tong, S. Ovchinnikov & H.T. Nguyen (eds.): Fuzzy Sets and Applications Selected Papers by L.A Zadeh (1987), J. Wiley, New York.

25

