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Abstract In this paper we provide for parsing with respect to grammars expressed in a general TFS-based formalism, a restriction of ALE ( [2] ) .  Our motivation being the design of an abstract (WAM-like) machine for the formalism ( [14) ) , we consider parsing as a computational process and use it as an operational semantics to guide the design of the control structures for the abstract machine. We emphasize the notion of abstract typed feature structures (AFSs} that encode the essential information of TFSs and define unification over AFSs rather than over TFSs. We then introduce an explicit construct of multi-rooted feature structures (MRSs) that naturally extend TFSs and use them to represent phrasal signs as well as grammar rules. We also employ abstractions of MRSs and give the mathematical foundations needed for manipulating them. We then present a simple bottom-up chart parser as a model for computation: grammars written in the TFS-based formalism are executed by the parser. Finally, we show that the parser is correct. 
1 Introduction 

Typed feature structures (TFSs) serve for the specification of linguistic  information in current 
l inguistic formalisms such as HPSG ( [10] )  or Categorial Grammar ( [8] ) .  They can represent 
lexical items, phrases and rules. Usually, no mechanism for manipulating TFSs ( e .g . ,  parsing 
algorithm) is inherent to the formalism. Current approaches to processing HPSG grammars 
either translate them to Prolog ( e .g . ,  [2, 5 ,  6] ) or use a general constraint system ( [16] ) .  

In this paper we provide fo r  parsing with grammars expressed i n  a general TFS-based 
formalism, a restriction of ALE ( [2] ) .  Our motivation is the design of an abstract (WAM-like) 
machine for the formalism ( [ 14] ) ;  we consider parsing as a computational process and use it. as 
an operational semantics to guide the design of the control structures for the abstract machine. 
In this paper the machine is not discussed further. 

Section 2 outlines the theory of TFSs of ( 1 , 3) . We emphasize abstract typed feature 
structures ( AFSs) that encode the essential information of TFSs and extend unificat ion to -
AFSs . Section 3 introduces an explicit construct of multi-rooted feature structures ·(MRSs) 
that naturally extend TFSs, used to represent phrasal signs as well as grammar rules . Abstrac
tion is extended to MRSs and the mathematical foundations needed for manipulating them is 
given . In section 4 a simple bottom-up chart parser for the TFS-based formalism is presented 
and shown correct . The appendix contains examples of MRSs and grammars as well as a sim
ulation of parsing. Due to space limitations we replace many proofs by informal descriptions 
and examples; the formal details are given in ( 15] .  The main contributions of this · paper are: 
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• Formalizat ion and explication of the notion of multi-rooted feature structures that are used implicitly in the computational linguistics literature ;  • Concise definitions of a TFS-based linguistic formalism, based on abstract MRSs; • Specification and correctness proofs for parsing in this framework . 
2 Theory of Feature Structures 

2 . 1  Types,  Features and Feature Structures We assume familiarity with the theory of TFS as in (3 , chapters 1-6] , and only summarize some of its preliminary notions . When dealing with partial functions the symbol ' f  ( x) 1 '  means that 
f is defined for the value x and the symbol ' j '  means undefinedness . Whenever the result of an application of a partial function is used as an operand,  it . is meant that the function is defined for its arguments. For the following discussion , fix non-empty, finite, disjoint sets TYPES and FEATS of types and feature names, respectively. Let PATHS = FEATS*  denote the collection of paths, where FEATS is totally ordered . Fix also an infinite set NODES of nodes and a typing function 0 : NODES ----+ TYPES . The set NODES is 'rich' in the sense that for every t E TYPES , the set { q  E NODES I 0( q )  = t }  is infinite. We use the bounded complete partial order � over TYPES x TYPES t.o denote the type hierarchy , and the partial function Approp : FEATS x TYPES ----+ TYPES to denote the appropriate specification. A feature structure is a directed , connected , labeled graph consisting of a· finite, nonempty set of nodes Q � NODES , a root q E Q ,  and a partial function 8 : Q x FEATS -+ Q specifying the arcs such that every node q E Q is accessible from q. vVe overload '� '  to denote also subsumption of feature structures . Two feature structures A 1 and A2 are alphabetic variants (A 1 "' A2 ) iff A 1 � A 2 and A 2 � A 1 . Alphabetic variants have exactly the same structure , and corresponding nodes have the same types .  Only the identities of the nodes distinguish them . The essential properti_es of a feature structure, excluding the identities of its nodes ,  can be captured by three components : the set of paths , the type assigned to every path , and the sets of paths that lead to the same node. In contrast to other approaches (e .g . ,  (3) ) ,  we first define abstract feature structures and then show their relation to concrete ones . The representation of graphs as sets of paths is inspired by works on the semantics of concurrent programming languages , and the notion of fusion-closure is due to [4] ; Definition 2 .1  ( Abstract feature structures ) A pre- abstmct featu1·e structure (preAFS) is a triple ( II ,  0 ,  �) , where • TI � PATHS is a non- empty set of paths • 0 : II -+ TYPES is a total function, assigning a type to every path • �� II x II is a relation specifying reentrancy (with [�] the set of its equivalence classes) An abstract feature structure { A FS) is a pre-A FS for which the following requirements hold: • II is prefix-closed: if 1ra E II then 1r E II (where 1r, a E PATHS) • A is fusion- closed: if 1rr..r E II and 1r'a' E II and 1r � 1r' th en 7tr.x' E II , 0(1ra' ) = 0(1r'a')  { as wel l  as 1r' a E II , 0(1r' a)  = 0( 1ra )) ,  and 1ra' � 1r'  a' ( as wel l  as 1r' a � 1ra) • � is an equivalence relation with a finite index •- 0 respects the equivalence: if 1r1 � 1r2 then 0( 1r1 )  = 0( 1r2 )  
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An AFS {Il ,  0 ,  �) is wen-typed if 0( 1r) # T for every 1r E Il and if 1r f E II then Approp(f, 0( 1r) )! and Approp(f, 0(1r)) � 0(1rf) . It is totally well typed if, in addition , for every 7r E II , if Approp(f, 0( 1r ))! then 1r f E Il . Abstract features structures can be related to concrete ones in a natural way : If A = ( Q , if., 8) is  a TFS then Abs(A) = { IIA , 0A , �A ) is  defined by: • IIA = {1r I 8(q, 1r)l } • 0A (7r) = 0(8(ij_ , 1r)) 
• 7rt �A 7r2 iff b(ij ,  1r1 ) = b(ij, 1r2 ) It is easy to see that Abs( A) is an abstract feature structure. For the reverse direction , consider an AFS A =  (II ,  0, �) . First construct a 'pseudo-TFS ' , Conc(A) = (Q ,  if., 8 ) , that differs from a TFS only in that its nodes are not drawn from the set NODES . Let Q = {%r] I [1r] E [�] } .  Let B(Q[,r] )  = 0(1r) for every node - since A is an AFS , 0 respects the equivalence and therefore 0 is representative-independent . Let if. =  q[E] and 8(q[1r] , f) = q[1rf] for every node q[1r] and feature f. Since A is fusion-closed , 8 is representativeindependent . By injecting Q into NODES making use of the richness on NODES , a concrete TFS Conc(A) is obtained , representing the equivalence class of alphabetic variants that can be obtained that way. We abuse the notation Conc(A) in the sequel to refer to this set of alphabetic variants. Theorem 2.2 If A' E Conc(A) then Abs(A') = A .  AFSs can be partially ordered : (IIA , 0A , �A) :::s (IIB , 0B , �B ) iff IIA � IIB , �A ��B and for every 1r E IIA , 0A (n-) � 0B ( -11") . This order corresponds to the subsumption ordering on TFSs, as the following theorems show. Theorem 2.3 A �  B iff Abs(A) :::s Abs(B) .  Theorem 2 .4  For every A E Conc(A') , B E  Conc(B') ,  A �  B iff A'  :::s B' . Corollary 2.5 A "' B iff Abs(A) = Abs(B) . Corollary 2.6 Conc(A' ) ,.._, Conc(B') iff A =  B .  

2 .  2 Unification As there exists a one to one correspondence between AFSs and ( alphabetic variants of) concrete ones , we define unification over AFSs. This leads to a simpler definition that captures the essence of the operation better than the traditional definition. We use the term 'unification' to refer to both the operation and its result . Definition 2. 7 ( Closure operations) Let Cl be a fusion-closure operation on pre-AFSs: Cl(A) = A' , where A' is the least extension of A to a fusion-closed structure. Let Eq( (II ,  0 ,  � } ) = { TI ,  0 ,  ';::j'} ) where �' is the least extension of ';:::j to an equivalence relation. Let Ty( {Il , 0 ,  ';:::j ) )  = (TI , 0' ,  �) where 0'(1r) = LJ1r,�1r 0(1r) . Definition 2 .8 ( Unification) The unification A U B of two AFSs A B = ( TIB , 0B , �B ) is an AFS C' = Ty(Eq(Cl(C)) ) ,  where: • C = ( Ilc , 0c , �c) • IIc = IIA U IIB 

if 1r E IIA and 1r E IlB if 1r E IIA only 
if 1r E IIB only 
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The unification fails if there exists a path 1r E Ilc,  such that 8c, ( 1r) = T .  

Lemma 2 .9  C l  preserves prefixes: If A is a prefix- closed pre-A FS a n d  A '  = Cl(A) then A '  is prefix- closed. 
Lemma 2 .10  Eq preserves prefixes and fusions: If A is a prefix- and fusion-closed pre-A FS and  A' = Eq( A)  then A' is prefix- and fusion-closed. 
Corollary 2 . 1 1  If A and B are AFSs, then so is A LJ B .  C' i s  the smallest AFS that contains Ilc and -:::::,c . Since IlA and IlB are prefix-closed , so is 
ffc .  However ,  Ilc and -:::::,c might not be fusion-closed . This is why Cl is applied to them . As 
a result of i ts  application,  new paths and equivalence classes might be added . By lemma 2 . 9 ,  
i f  a path i s  added all its prefixes are added , too, so  the  prefix-closure is preserved . Then , Eq 
extends � to an  equivalence relat ion , without harming the  prefix- and fusion-closure properties 
( by lemma 2 . 1 0 ) . Finally, Ty sees to it that 8 respects the equivalences . 

Lemma 2 . 12 Unification is comm:ulative :  A LJ B = B LJ A .  
Lemma 2 . 1 3  Cnification is associative :  ( A LJ B) LJ C = A LJ (B LJ C) .  

The result of a unification can differ from any of  its arguments in three ways : paths that 
,vere not present can be added : the types of nodes can become more specific ;  and reentrancies 
can be added ,  that is, the number of equivalence c lasses of paths can decrease . Consequently, 
the result of a unification is always more specific than any of i ts arguments. 

Theorem 2 . 14 If C' = A LJ B then A � C' . 
TFSs ( and therefore AFSs ) can be seen as a generalization of first-order terms ( FOTs) 

( see ( 1] ) .  Accordingly, AFS unification resembles FOT unification ; however, the notion of substi tution that is central to the definition of FOT unification is missing here , and as far as we 
know � no analog to subst itutions in the domain of feature stru ctures was ever presented . 

3 Multi-rooted Structures 

To be able to represent complex linguistic information , such as phrase structure, the notion of 
feature structures has to be extended . H PSG does so by introducing special features ,  such as 
DTRS ( daughters ) ,  to encode trees in TFSs . This solution requires a declaration of the special 
feat ures , along with their intended meaning; such a declaration is missing in (1 0] .  An alternative 
technique is employed by Shieber ( [1 1 ] ) :  natural numbers are used as special features , to encode 
the order of daughters in a tree . In  a typed system this method necessitates the addition of 
special types as wel l ;  theoretically, the number of features and types necessary to state rules is 
unbounded . 

As a more coherent , mathematically elegant solution, we clefine multi-rooted structures , 
naturally extending TFSs. These structures provide a means to represent phrasal signs and 
grammar ru les .  They are used implicitly in the computational l inguistics l iterature ,  but to the 
best of our knowledge no expl icit ,  formal theory of these structures and their properties was 
formulated before . 

Definition 3 . 1  ( Multi-rooted structures) A multi-rooted featm·e sfructure {MRS) is a pair (Q ,  G) where G = (Q, 8) is a finite, directed, la beled graph consisting of a set Q � NODES of nodes and a partial function 8 : Q x FEATS -+ Q specifying the arcs1 and where Q is an ordered1 non- empty (repetition-free) list of dist_inguished nodes in Q called 1·oots. G is not necessarily connecte( but the 'l.lnion of all {he nodes rea chable from all the roots in Q is required t o  yield exactly Q .  The length of a MRS is the number of its roots, IO I -
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Mct.:i- variahlrs rr, p rnngr ovf'r M RSs, and t,, Q and Q ov<>r I .hei r const. i t. 1w11t.s. I f  (Q, G) is a 
M RS and iii is a root. i n  Q then iii nat. 1 1 ral ly i 1 1 d 11 ces a frat.ure st.rndure Pr(Q, i) = (Qi , ih , ,\ ) ,  
when� Q i  i s  t.he sf'f. of nodes rcadiahle from q; and f,i = t, jQ , .  

Onf' can view a M RS (Q, G} as an or<l<"re<l srquence (A 1 , . . .  , A n ) of (not necf'ssari ly  d isjoint. )  
feature sf. ruc t. 1 1 r<'s, whNc Ai = I'r(Q ,  i) for  1 :S i  :S n .  Not.r t.hat. such an ordnf'd l ist. of  feature 
stru ct.urrs is not. n sequence i n  t.he mat.hemat. i cal sense : removing an cl<>nie1 1 t. from t.he l ist 
effect.s t.hf' ot. f H'r elf.'ment.s ( due t.o reent.rn.ncy among detn<'nf.s) .  Nevert.hcl<'ss , we nm t.h ink  of 
a M RS m, a Sf''l l lencc where a suhseq11f'ncr is oht.aincd hy tak ing  a suhs<>q1 1ence of t.he  roof.s 
and considrri ng only t.he fraf.urf' sf.met.mes t. l 1<>y i nd 1 1cc .  \VP use t.he two views in f.f'fcha11gcahly. 
F igure 1 d <'pids a M RS and i ts v iew as a s<'q1 1 f'nrr of foat.nr<' st.rnrf.nrcs .  

A M RS is wrl l - t.ypf.'d i f  al l i t.s co11st. i f. 1 1e1 1 t. foat.ure :4rnd.ur<>s are wdl-t.yprd , and is tot.a l ly 
wel l-t.ypcd i f  al l i t.s rnnst. i t. 1 1e1 1 t.s are . S 1 1hs1 1mpt. ion is ext.e1 1 tbl t .o M RSs as fol lows: 

Definition 3.2 ( Suhsmnption of multi-rooted strudm·P.s ) A MRS rr = (Q , G) !Hthwn
m.es a MRS rr' = (Q' , G') { dr.n. otr.d by rr � rr'} if ICJ I  = IQ' I and lhrrr rxi.r;fs a fol.al  fundion 
h : Q -+- Q' surh lh at :  

• f 01 ·  r11 rry roof  iii E Q , h(  'li ) = q: 

• for r 11rn1 q E Q , O(q ) � O' (h(q))  

• for· r.t,,,,ry q E Q and J E FEATS , if f,( q , ! ) I then h(F, (q , !))  = F,' (h(q ) ,  f) 

We ddhtP. ahst. rar t. nm l t. i - root.<'d st.rnd.Ur('s in a.11 analog way t.o ahst.rnrt. foat. 1 1w sf.rnct.n rcs. 

Definition 3.3 ( Ahstrad multi-rooted sb-udnres) A p1'<i- a.l,.<Jtm.cf. multi 1·001.ed .<Jfr1t
ctu.1·e (prr.-A MHS) i.c; a q11 rzdrnplr. A =  ( Ind, 1 1 , 0 , �) , wh.rrr : 

• Ind,  th r indice. .q of A ,  is thf'. srqttrn <'r ( 1 , . . .  , n) for .r;omr  n 

• n � Ind x PATHS  i.r; a n nn- rmply sr l  of indrud palh .r;, ML Ch !h a t  for ra ,J, i E Ind lhr.re 
rxi,,; l,c; .c;omf' 7r E PATHS  //, a t  (i ,  1r) E n .  

• 0 : 1 1  --+ TYPES i,r; a fofnl  fypr- as.,;ignm rn f  funr.i ion 

• �C JI X r J  i s  a rr. /a l ion 

A n. afu,.fract m.11.lti- 1·oofrd Rfr1tcht1·P. {A M  llS} i.r; a 71rr-A M HS A for whirl, th.r following 
req1tircmr11.f.r;, 11 a turally nlrn.ding lh ose. of A f'Ss, hold: 

• IT is pnJix- closed: if ( i , 1rn) E TI lh.en. ( i , 1r)  E ll 

• A is f1u1io 11 - r/o.r;rd: if ( i , 1rn) E IT a11 d  ( i' ,  1r'a' ) E II and  ( i ,  1r)  � ( i' , 1r') fh r:n  ( i ,  1ra') E f f  
(a.c; wrll a.c; ( i' , 1r'n· )  E HJ, and (i ,  1rn') � (i' , 1r'n' ) {n,r; wrll a.r; ( i' ,  1r'o- ) � ( i ,  ;r,., )) 

• � i,., an rqu11 1alrnrr rrlal i <m 

• 8 re. . .,pr.r.ts the r.q1ti11nlr.n.r.c: if ( i i , 1r1 ) � (i2 , 1r2 ) thr n  0(i 1 , 1r i ) = 8(i2 , 1r2 ) 

A n  A M  RS ( I nd, rI , 0 ,  �) is wdl-typed if for rvNy ( i ,  1r) E 11 , A(i ,  1r) 'f; T and if ( i ,  1r f) E TI t.lwn 
Apprnp(f, 0( i ,  1r) ) J  an d A 71p1·op(f, 0(i ,  1r) )  � 0(i ,  1rf) . I t. is t.of.nl ly  wdl typed i f, in add i t ion , 
for every (i , ,r)  E 11 , if A pprop(f, 0(i , 1r ) ) l  then ( i , 1rf) E ll . The length of an A M R.S A is 
len(A )  = j ln.dA I •  

The dosnre operations Cl and Eq are n at.ural l y  ext.0rHbl f.o A M R.Ss : J f  A i s  a pre-A M R,S 
then Cl(A)  is the least ext.cnsion of A t.hat. is prefix- and fusion-dosed , and Eq( A )  is t.he 
least ext.ension of A t.o a pre- A M RS in which � is  an equivalence relation . I n  add ition , 
Ty( (Ind,  TI ,  0 ,  � ) ) = (ln.d, TI , 8' , �) where 8'(i ,  1r) = LJ(i ' , 1r ' )�(i , 1r )  8(i' ,  1r' ) .  Th" part. ial order 
j is  ext.ended to A M RSs: ( /ndA , nA , eA , �A )  j ( In.dB , n B , eB , �IJ)  iff /ndA = In.dB , " A � 
IlB , �A ��B and for every (i , ,r) E TI A , 8A(i , 1r) � 8B (i , 1r ) .  

A M R.Ss , t.oo, can he  relat.cd t.o concrete ones i n  a nat ural way : I f  rr = (Q , G)  is a M RS then 
Abs(rr) = ( Ind,, , n,, , 811 , �,, ) is defined hy : 
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• Indq = ( 1 ,  . . .  , IQ I ) 

• rr; = { ( i ,  1r) I 8Ufi , 1r)J } 

• 0{7 ( i ,  1r )  = 0(8 (ifi ,  1r ) )  

• ( i ,  1r1 ) � {7 (j ,  11"2 )  iff 8( ifi , 1ri ) = 8(ijj , 11"2 )  

. I t  is easy to see that Abs (o-)  is an A M RS .  In particular , notice that fo r  every i E Inda there 
exists a path 1r such that ( i ,  1r) E fi17 since for every i, 8(ifi ,  c )l . The reverse operation , Cone ,  
can be defined in a similar manner . 

A M RSs are used to represent ordered colle_ctions of AFSs . However , due to the possibility 
of value sharing among the constituents of A M RSs, they are not sequences in the mathematical 
sense , and the notion -of sub-structure has to be defined in order to relate them to AFSs. 

Definition 3.4 ( Sub-structures ) Let A =  ( IndA , IT A , eA , �A ) ;  let Inds be a finite (contiguous) subsequ ence of IndA ; let n + l  be the index of the first element of Inds . The sub-structure of A induced by Inds is a� A MRS B = ( Inds , ITs , 0B , �B ) s1tch that: 
• ( i  - n, 1r) E Ils ijJ i E Inds and (i ,  1r) E A  

• 0B ( i  - n ,  1r)1 = 0 A ( i ,  1r) if i E lndB 

• ( i 1  - n , 1r1 )  �s h - n , 1r2 )  iff i 1  E Inds , i2 E lndB and ( i 1 , 1r1 )  �A (i2 , 1r2) 

A sub-structure of A is obtained by select. ing a subsequence of the indices of A and considering 
the structure they induce. Trivially, this structure is an A. M RS .  We use Ai - - k  to refer to the 
sub-structure of A induced by (j, . . .  , k ) . If lndB = { i} ,  .4i . .  i can be identified with an A FS ,  
denoted A i . 

The notion of concatenation has to be defined for A M RSs, too: 

Definition 3.5 ( Concatenation) The concatenation of A =  ( JndA , IT A , 0A , �A) and B = 
( lndB , ITB , 0 B , �B ) of lengths nA , ns , respectively ( denoted by A · B ), is an A MRS C = 

(Indc , Ilc , 0c , �c)  such that 
• lndc = ( 1 ,  . . .  , nA + nB ) 

• Ilc  = IT A  U { ( i + nA , 1r )  I ( i ,  1r )  E Il s }  

e ( . ) - { 
0A ( i , 1r ) • C 'l ,  7r -
0 ( .  ). - s  i - nA , 11" 

if i :S nA if i > nA 

We now extend the definition of unification to AM RSs: we want to allow the unification 
of two AF Ss , one of which is a part of an A M RS .  Therefore, one operand is a pair consisting 
of an A M RS and an index, specifying sorrie element of it, and the second operand is an A FS .  
Recall that due t o  reentrancies, other elements of the A M RS can b e  affected by this operation . 
Therefore , the result of the unification is a new A M RS .  

Definition 3.6 (Unification in context ) Let A =  (JndA , IT A , eA , �A ) b e  a n  A MRS, B = 

( Ils , 0B , �s ) an A FS. (A , j) U B is defined if j E lndA , in which case it is the A MRS C' = Ty( Eq(Cl( (Indc , Il c ,  0c , �c) ) ) ) ,  where 
• Indc = IndA if i -:/=  j if i = j and ( i ,  1r) E II A  and 1r E II B if i = j and ( i ,  1r) E II A  and 1r (/:. IT B if i = j and ( i , 1r) (/:. ITA and 1r E Ils 
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The unification fails if there exists some pair ( i ,  1r) E Ilc, such that 8c, ( i ,  1r) = T .  
Many o f  the properties of AFSs, proven i n  the previous section , hold fo r  AMRSs, too. In 

particular ,  if A is an AMRSs then so is (A , j)  U B if it is defined , len( (A ,  j)  U B) = len(A) and 
(A, j)  u B J  A .  

4 Parsing 

Parsing is the process of determining whether a given string belongs to the language defined 
by a given grammar , and assigning a structure to the permissible strings . We formalize and 
explicate some of the notions of (3 , chapter 1 3] .  We give direct definitions for rules , grammars 
and languages , based on our new notion of AMRSs. This presentation is more adequate to 
current TFS-based systems than [7 , 12] ,  that use first-order terms. Moreover , it does not 
necessitate special , ad-hoe features and types for encoding trees in TFSs as [1 1] does . We don 't 
assume any explicit context-free back-bone for the grammars , as does ( 13] .  

We describe a pure bottom-up chart..:.based algorithm. The formalism we presented is aimed 
at being a platform for specifying grammars in H PSG, which is characterized by employing 
a few very general rules ;  selecting the rules that are applicable in every step of the process 
requires unification anyhow. Therefore we choose a particular parsing algorithm that does not 
make use of top down predictions but rather assumes that every rule might be applied in every 
step . This assumption is realized by initializing the chart with predictive edges for every rule, 
in every position . 

4 .1  Rules and Grammars 

We define rules and grammars over a fixed set WORDS of words . H owever, we assume that the 
lexicon associates with every word w a feature structure C( w ) ,  its category, 1 so we can ignore 
the terminal words and consider only their categories . The input for the parser , therefore, is a 
sequence2 of TFSs rather than a string of words . Definition 4 .1  (Pre-terminals} Let w = w 1 . . . wn E WoRos* and Ai = C(wi ) for l :S i  :S n .  PTw (j, k )  is defined if l :S j :S k :S n 1 in which case it is th e AMRS Abs( (Aj , Aj+1 , . . .  , Ak) ) .  Note that PTw (j, k )  · PTw (k + l , m) = PTw (j, m) . We omit the subscript w when i t  is clear from the context. Definition 4.2 (Rules} A rule is a MRS of length n > l with a distinguished last element. If (A1 , . . .  , An - 1 ,  An ) is a rule then An is its head3 and (A1 , . . .  , An- 1 )  is its body.4 We write such a rule as (A1 , . . .  , An - 1 ⇒ An ) - In addition, every category of a lexical item is a rule (with an empty body). We assume that such categories don't head any other rule. Definition 4.3 ( Grammars} A grammar G = (R , A s ) is a finite set of rules n and a start symbol As that is a TFS. 
An example grammar , whose purpose is purely i llustrative, is depicted in figure 2 .  For the 
following discussion we fix a particular grammar G = (R , As ) -Definition 4.4 (Derivation} An AMRS A =  { IndA , IIA , 8A , �A) derives a n  AMRS B (denoted A - BJ if there exists a rule p E R,  with len(p) = n and R = Abs(p) , such that 

• some element of A unifies with the head of R: there exist AMRSs A' , R' and j E IndA such that A' = (A , j)  U Rn and R' = (R,  n) U Ai 1 Ambiguous words are associated with more than one category. We ignore such cases in the sequel. 2 We assume that there is no reentrancy among lexical items. 3 This use of head must not be confused with the linguistic one, the core features of a phrase. 4 Notice that the traditional direction is reversed and that the head and the body need not be disjoint. 
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• B can be obtained by replacing -the j-th element of A' with the body of R' . 5 '� : is the reflexive transitive closure of '�' .  

Intuitively, A derives 13 through some A F S  Ai i n  A ,  i f  some rule p E 'R," licenses the derivation . 
Ai is unified with the head of the rule, and if the unification succeeds , the (possibly modified) 
body of the rule replaces AJ in A .  

Definit ion 4.5 (Language) The language of a grammar G is L(G) WoRos*  I A �  B for some A �  Abs(A� ) and B � PTw ( l ,  n ) } . {w  = W t · ·  · Wn E 

Figure 3 shows a sequence of derivations , starting from some feature structure that is more 
specific than the initial symbol and ending in a sequence of structures that can stand for the 
string "John loves fish" , based upon the example grammar .  

4.2 Parsing as Operational Semantics 

vVe view parsing as a computational process endowing TFS formalisms with an operational 
semantics . which can be used to derive control mechanisms for an abstract machine we de
sign ( [ 14] ) .  A computation is triggered by some input string of words w = w1 · · · Wn of length n > 0. For the following discussion we fix a particular input string w of length n. A state of the 
computation is a set of items, and stat,es are related by a transition relation . The presentation 
below corresponds to a pure bottom-up algorithm. 

Definition 4.6 (Dotted rules) A dotted 1·ule (or edge) is a pair (A ,  k) where A =  Abs(o-) is an  A MRS s·u ch that p � a- for some p E 1l and where O :'.S k < len(A) . An edge (A , k) is complete if k = len (A)  - I ;  an edge is active otherw·ise .  
A dotted rule consists of an AMRS A that is more specific than ( the abstraction of) some 
grammar rule, and a number k that denotes the position of the dot within A. The dot can 
precede any element of A ( in the case of lexical rules ,  it can also succeed the rule) . 

Definit ion 4. 7 (Items) An ·item is a triple [i , (A , k) , j] where O :S i :'.S j :'.S n and (A ,  k) is a dotted rnle. An item is complete if the edge in it is complete. Let ITEMS be the collection of all items. 
During parsing, the intuitive meaning of an item is that the part of A prior to the dot (which 
is indicated by k )  derives a substring of the input, and if it can be shown that the part of 
A succeeding the dot derives a consecutive substring of the input, then the head of A derives 
the concatenation of the two substrings . This invariant is formally defined and proven in the 
section 4 . 3 .  i and j indicate the span of the item . 

A computation is determined by a sequence of states , each of which is a collection of items, 
where the first state corresponds to the initialization and each subsequent state contains its 
predecessor and is related to it by the transition relation . 

Definition 4.8 ( States ) A state S � ITEMS is a finite set of items. 
Definition 4.9 ( Initialization) Let ,S' = fzex U lp,·edi.ct  be the ·initial state, where :  l1ex = { [i - 1 , (Ai , O) : i] j 1 :'.S i  :'.S n  and Ai = PTw ( i , i ) }  I predict = { [i, (Abs(p ) , 0) , i] I O :'.S i :'.S n a n d  p E R }  l1ex contains the ( complete) items that correspond t o  categories o f  the input words , whereas I predi ct contains an (active) item for each grammar rule and a position in the input string . 

5 The exact details can be found in [1 5] . 
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Definition 4.10  {Dot movement ) · The partial function DM : ITEMS x ITEMS --+ ITEMS is defined as follows: DM([i ,  (A, kA) ,  IA] , [IB , (B ,  kB) ,  j] ) = [i , (C, kc) , j] , where: 
• IA = IB , n = len(A) , m = len(B) 
• kA < n - l {the  edge (A ,  kA) is active), kB = m - l (the edge (B ,  kB} is complete), kc = kA + l 
• C = (A ,  k + l )  U Bm {C is obtained from A by unifying the element of A succeeding the dot with the head of B) DM is not defined if IA f= IB , if the edge in its first argument is complete, if the edge in its second argument is active , or if the unification fails . 

Lemma 4.1 1  If x = [ix , (Ax , kx ) , jx] E ITEMS,  y = [iy , {Ay , ky } , jy ] E ITEMS and z = DM(x,  y) is defined, then z = [iz , (Az , kz } ,  iz ] where iz = ix , iz 2: iz , Az t Ax and kz > kx . 
Corollary 4.12 If x ,  y E ITEMS then DM(x,  y) E ITEMS if it is defined. To compute the next state, new items are added if they result by applying DM to existing items, unless the result is more specific than existing items. This is a realizat ion of the subsumption check suggested in [1 1 ,  12) .  
Definition 4. 13 ( Ordering items) Ifx = [ix , (Ax , kx } , ix] and y = [iy , {Ay , ky } , jy] are items, x subsumes y (written x ::S y) iff ix = iy , ix = jy , kx = ky and Ax ::S Ay . 
Definition 4.14 Let -6.(S) = { z  I z = DM(x,  y) for some x ,  y E S and there does not exist z' E S such that z' =:s z } .  The transition relation � '  holds between two states S and S' ( denoted by S f- S') if S' = S u  -6.(S) . 

Definition 4.15 ( Computation) A computation is an infinite sequence of states Si , i 2: 0, such that So = S and for every i 2: 0, Si f- Si+ I .  A computation is terminating if there exists some m 2: 0 for which Sm = Sm+I {i. e. , a fix-point is reached). A computation is successful if one of its states contains an item of the form [0 , (A,  k - 1 } , n) where n is the input length, k = len(A) and Abs(A$ ) � Ak ; otherwise, the computation fails. 
4.3 Proof of Correctness In this section we show that parsing, as defined above, is (partially) correct . First , the algorithm is sound: computations succeed only for input strings that are sentences of the language . Second, it is complete :  if a string is a sentence , it is accepted by the algorithm. Then we show that the computation terminates for off-line parsable grammars. 
4.3. 1 Soundness 

Lemma 4. 16  If [i , (A ,  k) , j) E Sm for some m 2: 0 then i = j only if (A ,  k) is not complete and k = 0 .  
Proof: B y  induction o n  m.  
Theorem 4.1 7  ( Completion) If (A , k )  i s  a complete edge, l en (A)  > l and  A l . .k � B then Ak+I � B .  
Proof: Since ( A ,  k)  is an edge such that len(A) > l ,  there exists an abstract rule R such that R � A. Hence (A ,  k + l ) U Rk+ 1 = Ak+1 , ( R, k + l ) U Ak+ 1 = A and Ak+ 1 --+ A l . .k . Since A l . .k � B we obtain Ak +I  � B. 
Theorem 4. 18  (Parsing invariant (a) ) If z = [iz , (Az , kz ) , jz ] E Sm for some m 2:: 0, I =  len(Az ) and iz < iz , then A; · · k" � PT(iz + l , jz ) if I >  l ,  A; � PT(iz + 1 , jz ) if I =  l .  
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Proof: By . induction on m. Base : for al_l _items � E I predict , iz = iz and the proposition obtains (vacuously) .  For all items z E I1ex , l = l and Az = FT(iz + 1 , jz ) .  I f  m > 0 :  Let x = DM(x, y) where x = [ix , (Ax , kx ) , ixL Y =  [iy , {Ay , ky } , jy ] and x , y E  ITEM� . (Ay , ky ) is complete , hence by 4 . 16  iy < jy and by the induction hypothesis and the completion · theorem, A!Y � PT(iy + l , jy ) ,  Also , len(Az ) > 1 since all rules are of length > 1 .  By the induction hypothesis , A�- -k.r � PT(ix + l , ix ) ,  Therefore A! · ·k.r � PT(ix + l , ix ) ,  Since A!Y � PT(iy + l , jy ) ,  we get A!_.,+ l � PT(iy + l , jy ) ,  Therefore A! .. k� � PT(iz + l , jz ) .  Corollary 4.19 If a computation triggered b y  w = Wt , . . .  , Wn is successful then w E £(  G) . Proof: For a computation to be successful there must be a state Sm that contains some item [0 , (A,  k - 1 ) ,  n] where k = len(A) and Abs(A$ ) � Ak . From the above theorem it f9llows that A 1 · · k - l � PT( l , n ) .  Since A _is complete, by the completion theorem Ak � PT( l , ri) ,  and thus Wt , . . .  , Wn E L(G) . 4.3.2 Completeness The following lemma shows that one derivation step , licensed by a rule R of length r + 1 ,  corresponds to r applications of the D M  function , starting with an item that predicts R and advancing the dot r times ,  until a complete item is generated. Lemma 4.20 If A -+ B and there exists m � 0 such that for every l :S b :S len( B)  there exists Xb E Sm such th at Xb = [ib , (Bb , kb ) , ib] is complete and Bt"+ 1 = B b , and i 1 = 0 ,  ib - 1  = ib for 0 < b < len( B) and jlen( B)  = n, then there exists m' � 0 such that for every l :S a  :S ·len(A) there exists Ya E Sm ' such that Ya = [·ia , (Aa , ka ) ,  ia ] is complete and A�A+ l  = A a and i 1 = 0 , Ja- 1  = ia for O < a <  len(B)  and J/en( B) = n .  Proof: (sketch) A -+ B by some rule R of length r + 1 that expands the p-th element of 
A to the elements q1 , . . .  , qr in B .  For all elements of A except p, the proposition holds by assumption . Since R is a rule , there exists an item XR E !predict that XR = [iq 1 , (R, 0) , iq i J  where iq 1 i s  the first index of xq 1 , Let Y1 = DM(xR , Xq 1 ) and YI = DM (Y1- 1 , xq, )  fo r  1 < I :S r. All the y items exist : by the requirements on the indices of the Xb-s, the indices of the y items fit .  The unifications performed by DM don 't fail : if they would , A wouldn 't derive B. Then Yr E Sm+r is complete (as there were exactly r applications of DM) and y;+ 1 = AP . Theorem 4.21 (Parsing invariant (b) )  If A �  PT(i+ l , j) for i  < j then there exist m � 0 and x E Sm such that x = [i , (B ,  k - 1 ) , j] where k = len(B)  and Bk = A .  Proof: B y  induction on d ,  the number of derivation steps . Base : i f  d = 0 then A -+ PT( i+ l ,  j )  iff  PT( i+ l ,  j) E I1ex , in  which case an  item as required exists. I f  d > l ,  an  immediate application of the above lemma to the induction hypothesis gives the required result .  Corollary 4.22 If w = Wt , . . .  , Wn E £(  G) then the computation triggered by w is successful. Proof: Since W1 , . . .  , Wn E L( G) ,  there exists an AFS A � Abs(A$ ) such that A � PT( l ,  n) . By the parsing invariant , there exist m � 0 and x E Sm , x = [O , (B ,  k - 1) , n] where k = len(B)  and A = Bk . Abs(A s ) � A = Bk and therefore the computation i s  successful .  4.3.3 Termination It is well-known ( see , e .g . ,  [9, 1 1 ] )  that unification-based grammar formalisms are Turing-equivalent , · and therefore decidability cannot be guaranteed in the general case. This is also true for the formalism we describe here . However, for grammars that satisfy a certain restriction , termination of the computation can be proven. The following definition is an adaptation of the one given in [1 1] . 
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Definition 4.23 ( Off-line parsability) A grammar G is off-line pars able if there · exists a function f from AMRSs to AMRSs such that: • for every AMRS A, f(A)  � A • the range of f is finite • for every string w and AMRSs A , B, if there exist kA , kB, that A l . . kA � PTw ( i , j) and B 1 . . kB � PTw ( i ,  j) and A g  B and B g A then f(A) -:j; f(B) . Theorem 4.24 If G is off-line parsable then every computation terminates. Proof: (sketch) Select some computation triggered by some input w of length n. We want to show that only a finite number of items can be generated during the computation. Observe that the indices that determine the span of the item are limited : 0 ::; i ::; j ::; n .  The location of the dot within each AMRS A is also limited : 0 ::; k < len(A) . It remains to show that only a finite number of edges are generated. Suppose that [i , (A ,  k) , j) E S is an item that was generated during the computation . Now suppose another item is generated where only the AM RS is different : [i, (B , k) , j) .  If B ;;! A it will not be included in �(S) because of the subsumption test . There is only a finite number of AMRSs A' such that B � A (since subsumption is a well-founded relation) .  Now suppose A g B and B g A .  By the parsing invariant (a) there exist A' , B' such that A l . . k  � PTw ( i , j) and B 1 . . k  � PTw ( i , j ) .  Since G is off-line parsable, 
f(A) -:j; f(B ) .  Since the range of f is finite , there are only finitely many edges with equal span that are pairwise incomparable. Since only a finite number of items can be generated, and the states of the computation are such that Sm � Sm+l for m 2:: 0, a fix-point is reached within a finite number of state transitions. 
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The grammar listed in figure 2 consists of four rules and three lexical entries . The rules are extensions of the common context-free rules S ---+ NP VP, NP ---+ PN and VP ---+ V NP. Notice that the head of each rule is on the right hand side of the '⇒' sign . Note also that values are shared among the body and the head of each rule , thus enabling percolation of information during derivation . 
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Figure 2: An example grammar 
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A leftmost derivation of the string "John loves fish" is given in figure 3 ,  where each derivation 
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bears the nu_inber of the rule that licenses it .  The string is a sentence of the grammar since the derivation starts with a feature structure that is more specific .than the initial symbol and ends with feature structures that are subsumed by the lexical entries · of the input string. 
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head 
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HEAD : H EAD : HEAD : 
CASE : SECT : CASE : Figure 3 :  A leftmost derivation Finally, we simulate the process of parsing with the example grammar and the input "John loves fish" . As a matter of convention , if [i , (A , k) , j] is an item , we say that the edge (A ,  k) is in the ( i, j) entry. We also explicitly indicate the position of the dot ( denoted by ' • ' )  within M RSs instead of using an integer . The first state, So , consists of l1ex U !predict ;  liex contains three items: the pre-terminals corresponding to "John" , "loves" and "fish" with the dot set to 0 in entries (0 ,  1 ) ,  ( 1 ,  2) and (2 ,  3) , respectively. !pr edict contains, for each entry ( i ,  i) , where 0 :::;  i :=:; 3 ,  .an edge of the form (R,  0) , where R is one of the grammar rules . Thus there are 12 items in !pr edict ·  .S'i contains three more items. Application of DM to the item corresponding to rule 2 in entry (0 ,  0) and to the item corresponding to "John" in (0 ,  1 )  results in the addition of the edge 
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to entry (0 ,  1 ) .  In a similar way, the edge 
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is added to entry ( 1 ,  2 ) ,  by virtue of rule 3 and "loves" and the edge 
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· • HEAD : 1 [agr] ] CASE : ffi (9) 

is added to entry (2,  3) by virtue of the rule 2 and "fish" . 
Several items are added to S2 , two of which are of more interest . On the basis of item 7 

and the item corresponding to rule 1 in ( 0 ,  0 ) ,  the edge phrase SYN : [ 
n

] 
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( 1 0) 
is added to ( 0 ,  1 ) .  On the basis of item 8 in ( 1 ,  2 )  and item 9 in ( 2 ,  3 ) ,  the following edge is 

added to ( 1 ,  3 ) : 
ph rase SYN : [ v ]  
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This complete edge can now be used with edge 1 0  t o  form, i n  S3 , the following edge i n  ( 0 ,  3 ) :  phrase SYN : [ n ]  
HEAD , (!{:: 
CASE : [ case] 

[agr [}] PERS : NUM : 
[phrase l SY N : [ v ]  phrase 
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and since the  head of this complete edge , which spans the  entire input string, i s  more specific 
than the initial symbol ,  the string "John loves fish" is accepted by the parser. 
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