Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)

Steven Bethard, Marine Carpuat, Daniel Cer, David Jurgens, Preslav Nakov, Torsten Zesch (Editors)


Anthology ID:
S16-1
Month:
June
Year:
2016
Address:
San Diego, California
Venue:
SemEval
SIGs:
SIGLEX | SIGSEM
Publisher:
Association for Computational Linguistics
URL:
https://aclanthology.org/S16-1
DOI:
10.18653/v1/S16-1
Bib Export formats:
BibTeX

pdf bib
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)
Steven Bethard | Marine Carpuat | Daniel Cer | David Jurgens | Preslav Nakov | Torsten Zesch

pdf bib
SemEval-2016 Task 4: Sentiment Analysis in Twitter
Preslav Nakov | Alan Ritter | Sara Rosenthal | Fabrizio Sebastiani | Veselin Stoyanov

pdf bib
SemEval-2016 Task 5: Aspect Based Sentiment Analysis
Maria Pontiki | Dimitris Galanis | Haris Papageorgiou | Ion Androutsopoulos | Suresh Manandhar | Mohammad AL-Smadi | Mahmoud Al-Ayyoub | Yanyan Zhao | Bing Qin | Orphée De Clercq | Véronique Hoste | Marianna Apidianaki | Xavier Tannier | Natalia Loukachevitch | Evgeniy Kotelnikov | Nuria Bel | Salud María Jiménez-Zafra | Gülşen Eryiğit

pdf
SemEval-2016 Task 6: Detecting Stance in Tweets
Saif Mohammad | Svetlana Kiritchenko | Parinaz Sobhani | Xiaodan Zhu | Colin Cherry

pdf
SemEval-2016 Task 7: Determining Sentiment Intensity of English and Arabic Phrases
Svetlana Kiritchenko | Saif Mohammad | Mohammad Salameh

pdf
CUFE at SemEval-2016 Task 4: A Gated Recurrent Model for Sentiment Classification
Mahmoud Nabil | Amir Atyia | Mohamed Aly

pdf
QCRI at SemEval-2016 Task 4: Probabilistic Methods for Binary and Ordinal Quantification
Giovanni Da San Martino | Wei Gao | Fabrizio Sebastiani

pdf
SteM at SemEval-2016 Task 4: Applying Active Learning to Improve Sentiment Classification
Stefan Räbiger | Mishal Kazmi | Yücel Saygın | Peter Schüller | Myra Spiliopoulou

pdf
I2RNTU at SemEval-2016 Task 4: Classifier Fusion for Polarity Classification in Twitter
Zhengchen Zhang | Chen Zhang | Fuxiang Wu | Dong-Yan Huang | Weisi Lin | Minghui Dong

pdf
LyS at SemEval-2016 Task 4: Exploiting Neural Activation Values for Twitter Sentiment Classification and Quantification
David Vilares | Yerai Doval | Miguel A. Alonso | Carlos Gómez-Rodríguez

pdf
TwiSE at SemEval-2016 Task 4: Twitter Sentiment Classification
Georgios Balikas | Massih-Reza Amini

pdf
ISTI-CNR at SemEval-2016 Task 4: Quantification on an Ordinal Scale
Andrea Esuli

pdf
aueb.twitter.sentiment at SemEval-2016 Task 4: A Weighted Ensemble of SVMs for Twitter Sentiment Analysis
Stavros Giorgis | Apostolos Rousas | John Pavlopoulos | Prodromos Malakasiotis | Ion Androutsopoulos

pdf
thecerealkiller at SemEval-2016 Task 4: Deep Learning based System for Classifying Sentiment of Tweets on Two Point Scale
Vikrant Yadav

pdf
NTNUSentEval at SemEval-2016 Task 4: Combining General Classifiers for Fast Twitter Sentiment Analysis
Brage Ekroll Jahren | Valerij Fredriksen | Björn Gambäck | Lars Bungum

pdf
UDLAP at SemEval-2016 Task 4: Sentiment Quantification Using a Graph Based Representation
Esteban Castillo | Ofelia Cervantes | Darnes Vilariño | David Báez

pdf
GTI at SemEval-2016 Task 4: Training a Naive Bayes Classifier using Features of an Unsupervised System
Jonathan Juncal-Martínez | Tamara Álvarez-López | Milagros Fernández-Gavilanes | Enrique Costa-Montenegro | Francisco Javier González-Castaño

pdf
Aicyber at SemEval-2016 Task 4: i-vector based sentence representation
Steven Du | Xi Zhang

pdf
PUT at SemEval-2016 Task 4: The ABC of Twitter Sentiment Analysis
Mateusz Lango | Dariusz Brzezinski | Jerzy Stefanowski

pdf
mib at SemEval-2016 Task 4a: Exploiting lexicon based features for Sentiment Analysis in Twitter
Vittoria Cozza | Marinella Petrocchi

pdf
MDSENT at SemEval-2016 Task 4: A Supervised System for Message Polarity Classification
Hang Gao | Tim Oates

pdf
CICBUAPnlp at SemEval-2016 Task 4-A: Discovering Twitter Polarity using Enhanced Embeddings
Helena Gomez | Darnes Vilariño | Grigori Sidorov | David Pinto Avendaño

pdf
Finki at SemEval-2016 Task 4: Deep Learning Architecture for Twitter Sentiment Analysis
Dario Stojanovski | Gjorgji Strezoski | Gjorgji Madjarov | Ivica Dimitrovski

pdf
Tweester at SemEval-2016 Task 4: Sentiment Analysis in Twitter Using Semantic-Affective Model Adaptation
Elisavet Palogiannidi | Athanasia Kolovou | Fenia Christopoulou | Filippos Kokkinos | Elias Iosif | Nikolaos Malandrakis | Haris Papageorgiou | Shrikanth Narayanan | Alexandros Potamianos

pdf
UofL at SemEval-2016 Task 4: Multi Domain word2vec for Twitter Sentiment Classification
Omar Abdelwahab | Adel Elmaghraby

pdf
NRU-HSE at SemEval-2016 Task 4: Comparative Analysis of Two Iterative Methods Using Quantification Library
Nikolay Karpov | Alexander Porshnev | Kirill Rudakov

pdf
INSIGHT-1 at SemEval-2016 Task 4: Convolutional Neural Networks for Sentiment Classification and Quantification
Sebastian Ruder | Parsa Ghaffari | John G. Breslin

pdf
UNIMELB at SemEval-2016 Tasks 4A and 4B: An Ensemble of Neural Networks and a Word2Vec Based Model for Sentiment Classification
Steven Xu | HuiZhi Liang | Timothy Baldwin

pdf
SentiSys at SemEval-2016 Task 4: Feature-Based System for Sentiment Analysis in Twitter
Hussam Hamdan

pdf
DSIC-ELIRF at SemEval-2016 Task 4: Message Polarity Classification in Twitter using a Support Vector Machine Approach
Víctor Martinez Morant | LLuís-F. Hurtado | Ferran Pla

pdf
SENSEI-LIF at SemEval-2016 Task 4: Polarity embedding fusion for robust sentiment analysis
Mickael Rouvier | Benoit Favre

pdf
DiegoLab16 at SemEval-2016 Task 4: Sentiment Analysis in Twitter using Centroids, Clusters, and Sentiment Lexicons
Abeed Sarker | Graciela Gonzalez

pdf
VCU-TSA at Semeval-2016 Task 4: Sentiment Analysis in Twitter
Gerard Briones | Kasun Amarasinghe | Bridget McInnes

pdf
UniPI at SemEval-2016 Task 4: Convolutional Neural Networks for Sentiment Classification
Giuseppe Attardi | Daniele Sartiano

pdf
IIP at SemEval-2016 Task 4: Prioritizing Classes in Ensemble Classification for Sentiment Analysis of Tweets
Jasper Friedrichs

pdf
PotTS at SemEval-2016 Task 4: Sentiment Analysis of Twitter Using Character-level Convolutional Neural Networks.
Uladzimir Sidarenka

pdf
INESC-ID at SemEval-2016 Task 4-A: Reducing the Problem of Out-of-Embedding Words
Silvio Amir | Ramon F. Astudillo | Wang Ling | Mário J. Silva | Isabel Trancoso

pdf
SentimentalITsts at SemEval-2016 Task 4: building a Twitter sentiment analyzer in your backyard
Cosmin Florean | Oana Bejenaru | Eduard Apostol | Octavian Ciobanu | Adrian Iftene | Diana Trandabăţ

pdf
Minions at SemEval-2016 Task 4: or how to build a sentiment analyzer using off-the-shelf resources?
Călin-Cristian Ciubotariu | Marius-Valentin Hrişca | Mihail Gliga | Diana Darabană | Diana Trandabăţ | Adrian Iftene

pdf
YZU-NLP Team at SemEval-2016 Task 4: Ordinal Sentiment Classification Using a Recurrent Convolutional Network
Yunchao He | Liang-Chih Yu | Chin-Sheng Yang | K. Robert Lai | Weiyi Liu

pdf
ECNU at SemEval-2016 Task 4: An Empirical Investigation of Traditional NLP Features and Word Embedding Features for Sentence-level and Topic-level Sentiment Analysis in Twitter
Yunxiao Zhou | Zhihua Zhang | Man Lan

pdf
OPAL at SemEval-2016 Task 4: the Challenge of Porting a Sentiment Analysis System to the “Real” World
Alexandra Balahur

pdf
Know-Center at SemEval-2016 Task 5: Using Word Vectors with Typed Dependencies for Opinion Target Expression Extraction
Stefan Falk | Andi Rexha | Roman Kern

pdf
NileTMRG at SemEval-2016 Task 5: Deep Convolutional Neural Networks for Aspect Category and Sentiment Extraction
Talaat Khalil | Samhaa R. El-Beltagy

pdf
XRCE at SemEval-2016 Task 5: Feedbacked Ensemble Modeling on Syntactico-Semantic Knowledge for Aspect Based Sentiment Analysis
Caroline Brun | Julien Perez | Claude Roux

pdf
NLANGP at SemEval-2016 Task 5: Improving Aspect Based Sentiment Analysis using Neural Network Features
Zhiqiang Toh | Jian Su

pdf
bunji at SemEval-2016 Task 5: Neural and Syntactic Models of Entity-Attribute Relationship for Aspect-based Sentiment Analysis
Toshihiko Yanase | Kohsuke Yanai | Misa Sato | Toshinori Miyoshi | Yoshiki Niwa

pdf
IHS-RD-Belarus at SemEval-2016 Task 5: Detecting Sentiment Polarity Using the Heatmap of Sentence
Maryna Chernyshevich

pdf
BUTknot at SemEval-2016 Task 5: Supervised Machine Learning with Term Substitution Approach in Aspect Category Detection
Jakub Macháček

pdf
GTI at SemEval-2016 Task 5: SVM and CRF for Aspect Detection and Unsupervised Aspect-Based Sentiment Analysis
Tamara Álvarez-López | Jonathan Juncal-Martínez | Milagros Fernández-Gavilanes | Enrique Costa-Montenegro | Francisco Javier González-Castaño

pdf
AUEB-ABSA at SemEval-2016 Task 5: Ensembles of Classifiers and Embeddings for Aspect Based Sentiment Analysis
Dionysios Xenos | Panagiotis Theodorakakos | John Pavlopoulos | Prodromos Malakasiotis | Ion Androutsopoulos

pdf
AKTSKI at SemEval-2016 Task 5: Aspect Based Sentiment Analysis for Consumer Reviews
Shubham Pateria | Prafulla Choubey

pdf
MayAnd at SemEval-2016 Task 5: Syntactic and word2vec-based approach to aspect-based polarity detection in Russian
Vladimir Mayorov | Ivan Andrianov

pdf
INSIGHT-1 at SemEval-2016 Task 5: Deep Learning for Multilingual Aspect-based Sentiment Analysis
Sebastian Ruder | Parsa Ghaffari | John G. Breslin

pdf
TGB at SemEval-2016 Task 5: Multi-Lingual Constraint System for Aspect Based Sentiment Analysis
Fatih Samet Çetin | Ezgi Yıldırım | Can Özbey | Gülşen Eryiğit

pdf
UWB at SemEval-2016 Task 5: Aspect Based Sentiment Analysis
Tomáš Hercig | Tomáš Brychcín | Lukáš Svoboda | Michal Konkol

pdf
SentiSys at SemEval-2016 Task 5: Opinion Target Extraction and Sentiment Polarity Detection
Hussam Hamdan

pdf
COMMIT at SemEval-2016 Task 5: Sentiment Analysis with Rhetorical Structure Theory
Kim Schouten | Flavius Frasincar

pdf
ECNU at SemEval-2016 Task 5: Extracting Effective Features from Relevant Fragments in Sentence for Aspect-Based Sentiment Analysis in Reviews
Mengxiao Jiang | Zhihua Zhang | Man Lan

pdf
UFAL at SemEval-2016 Task 5: Recurrent Neural Networks for Sentence Classification
Aleš Tamchyna | Kateřina Veselovská

pdf
UWaterloo at SemEval-2016 Task 5: Minimally Supervised Approaches to Aspect-Based Sentiment Analysis
Olga Vechtomova | Anni He

pdf
INF-UFRGS-OPINION-MINING at SemEval-2016 Task 6: Automatic Generation of a Training Corpus for Unsupervised Identification of Stance in Tweets
Marcelo Dias | Karin Becker

pdf
pkudblab at SemEval-2016 Task 6 : A Specific Convolutional Neural Network System for Effective Stance Detection
Wan Wei | Xiao Zhang | Xuqin Liu | Wei Chen | Tengjiao Wang

pdf
USFD at SemEval-2016 Task 6: Any-Target Stance Detection on Twitter with Autoencoders
Isabelle Augenstein | Andreas Vlachos | Kalina Bontcheva

pdf
IUCL at SemEval-2016 Task 6: An Ensemble Model for Stance Detection in Twitter
Can Liu | Wen Li | Bradford Demarest | Yue Chen | Sara Couture | Daniel Dakota | Nikita Haduong | Noah Kaufman | Andrew Lamont | Manan Pancholi | Kenneth Steimel | Sandra Kübler

pdf
Tohoku at SemEval-2016 Task 6: Feature-based Model versus Convolutional Neural Network for Stance Detection
Yuki Igarashi | Hiroya Komatsu | Sosuke Kobayashi | Naoaki Okazaki | Kentaro Inui

pdf
UWB at SemEval-2016 Task 6: Stance Detection
Peter Krejzl | Josef Steinberger

pdf
DeepStance at SemEval-2016 Task 6: Detecting Stance in Tweets Using Character and Word-Level CNNs
Prashanth Vijayaraghavan | Ivan Sysoev | Soroush Vosoughi | Deb Roy

pdf
NLDS-UCSC at SemEval-2016 Task 6: A Semi-Supervised Approach to Detecting Stance in Tweets
Amita Misra | Brian Ecker | Theodore Handleman | Nicolas Hahn | Marilyn Walker

pdf
ltl.uni-due at SemEval-2016 Task 6: Stance Detection in Social Media Using Stacked Classifiers
Michael Wojatzki | Torsten Zesch

pdf
CU-GWU Perspective at SemEval-2016 Task 6: Ideological Stance Detection in Informal Text
Heba Elfardy | Mona Diab

pdf
JU_NLP at SemEval-2016 Task 6: Detecting Stance in Tweets using Support Vector Machines
Braja Gopal Patra | Dipankar Das | Sivaji Bandyopadhyay

pdf
IDI@NTNU at SemEval-2016 Task 6: Detecting Stance in Tweets Using Shallow Features and GloVe Vectors for Word Representation
Henrik Bøhler | Petter Asla | Erwin Marsi | Rune Sætre

pdf
ECNU at SemEval 2016 Task 6: Relevant or Not? Supportive or Not? A Two-step Learning System for Automatic Detecting Stance in Tweets
Zhihua Zhang | Man Lan

pdf
MITRE at SemEval-2016 Task 6: Transfer Learning for Stance Detection
Guido Zarrella | Amy Marsh

pdf
TakeLab at SemEval-2016 Task 6: Stance Classification in Tweets Using a Genetic Algorithm Based Ensemble
Martin Tutek | Ivan Sekulić | Paula Gombar | Ivan Paljak | Filip Čulinović | Filip Boltužić | Mladen Karan | Domagoj Alagić | Jan Šnajder

pdf
LSIS at SemEval-2016 Task 7: Using Web Search Engines for English and Arabic Unsupervised Sentiment Intensity Prediction
Amal Htait | Sebastien Fournier | Patrice Bellot

pdf
iLab-Edinburgh at SemEval-2016 Task 7: A Hybrid Approach for Determining Sentiment Intensity of Arabic Twitter Phrases
Eshrag Refaee | Verena Rieser

pdf
UWB at SemEval-2016 Task 7: Novel Method for Automatic Sentiment Intensity Determination
Ladislav Lenc | Pavel Král | Václav Rajtmajer

pdf
NileTMRG at SemEval-2016 Task 7: Deriving Prior Polarities for Arabic Sentiment Terms
Samhaa R. El-Beltagy

pdf
ECNU at SemEval-2016 Task 7: An Enhanced Supervised Learning Method for Lexicon Sentiment Intensity Ranking
Feixiang Wang | Zhihua Zhang | Man Lan

pdf
SemEval-2016 Task 1: Semantic Textual Similarity, Monolingual and Cross-Lingual Evaluation
Eneko Agirre | Carmen Banea | Daniel Cer | Mona Diab | Aitor Gonzalez-Agirre | Rada Mihalcea | German Rigau | Janyce Wiebe

pdf
SemEval-2016 Task 2: Interpretable Semantic Textual Similarity
Eneko Agirre | Aitor Gonzalez-Agirre | Iñigo Lopez-Gazpio | Montse Maritxalar | German Rigau | Larraitz Uria

pdf
SemEval-2016 Task 3: Community Question Answering
Preslav Nakov | Lluís Màrquez | Alessandro Moschitti | Walid Magdy | Hamdy Mubarak | Abed Alhakim Freihat | Jim Glass | Bilal Randeree

pdf
SemEval-2016 Task 10: Detecting Minimal Semantic Units and their Meanings (DiMSUM)
Nathan Schneider | Dirk Hovy | Anders Johannsen | Marine Carpuat

pdf
SemEval 2016 Task 11: Complex Word Identification
Gustavo Paetzold | Lucia Specia

pdf
FBK HLT-MT at SemEval-2016 Task 1: Cross-lingual Semantic Similarity Measurement Using Quality Estimation Features and Compositional Bilingual Word Embeddings
Duygu Ataman | José G. C. de Souza | Marco Turchi | Matteo Negri

pdf
VRep at SemEval-2016 Task 1 and Task 2: A System for Interpretable Semantic Similarity
Sam Henry | Allison Sands

pdf
UTA DLNLP at SemEval-2016 Task 1: Semantic Textual Similarity: A Unified Framework for Semantic Processing and Evaluation
Peng Li | Heng Huang

pdf
UWB at SemEval-2016 Task 1: Semantic Textual Similarity using Lexical, Syntactic, and Semantic Information
Tomáš Brychcín | Lukáš Svoboda

pdf
HHU at SemEval-2016 Task 1: Multiple Approaches to Measuring Semantic Textual Similarity
Matthias Liebeck | Philipp Pollack | Pashutan Modaresi | Stefan Conrad

pdf
Samsung Poland NLP Team at SemEval-2016 Task 1: Necessity for diversity; combining recursive autoencoders, WordNet and ensemble methods to measure semantic similarity.
Barbara Rychalska | Katarzyna Pakulska | Krystyna Chodorowska | Wojciech Walczak | Piotr Andruszkiewicz

pdf
USFD at SemEval-2016 Task 1: Putting different State-of-the-Arts into a Box
Ahmet Aker | Frederic Blain | Andres Duque | Marina Fomicheva | Jurica Seva | Kashif Shah | Daniel Beck

pdf
NaCTeM at SemEval-2016 Task 1: Inferring sentence-level semantic similarity from an ensemble of complementary lexical and sentence-level features
Piotr Przybyła | Nhung T. H. Nguyen | Matthew Shardlow | Georgios Kontonatsios | Sophia Ananiadou

pdf
ECNU at SemEval-2016 Task 1: Leveraging Word Embedding From Macro and Micro Views to Boost Performance for Semantic Textual Similarity
Junfeng Tian | Man Lan

pdf
SAARSHEFF at SemEval-2016 Task 1: Semantic Textual Similarity with Machine Translation Evaluation Metrics and (eXtreme) Boosted Tree Ensembles
Liling Tan | Carolina Scarton | Lucia Specia | Josef van Genabith

pdf
WOLVESAAR at SemEval-2016 Task 1: Replicating the Success of Monolingual Word Alignment and Neural Embeddings for Semantic Textual Similarity
Hannah Bechara | Rohit Gupta | Liling Tan | Constantin Orăsan | Ruslan Mitkov | Josef van Genabith

pdf
DTSim at SemEval-2016 Task 1: Semantic Similarity Model Including Multi-Level Alignment and Vector-Based Compositional Semantics
Rajendra Banjade | Nabin Maharjan | Dipesh Gautam | Vasile Rus

pdf
ISCAS_NLP at SemEval-2016 Task 1: Sentence Similarity Based on Support Vector Regression using Multiple Features
Cheng Fu | Bo An | Xianpei Han | Le Sun

pdf
DLS@CU at SemEval-2016 Task 1: Supervised Models of Sentence Similarity
Md Arafat Sultan | Steven Bethard | Tamara Sumner

pdf
DCU-SEManiacs at SemEval-2016 Task 1: Synthetic Paragram Embeddings for Semantic Textual Similarity
Chris Hokamp | Piyush Arora

pdf
GWU NLP at SemEval-2016 Shared Task 1: Matrix Factorization for Crosslingual STS
Hanan Aldarmaki | Mona Diab

pdf
CNRC at SemEval-2016 Task 1: Experiments in Crosslingual Semantic Textual Similarity
Chi-kiu Lo | Cyril Goutte | Michel Simard

pdf
MayoNLP at SemEval-2016 Task 1: Semantic Textual Similarity based on Lexical Semantic Net and Deep Learning Semantic Model
Naveed Afzal | Yanshan Wang | Hongfang Liu

pdf
UoB-UK at SemEval-2016 Task 1: A Flexible and Extendable System for Semantic Text Similarity using Types, Surprise and Phrase Linking
Harish Tayyar Madabushi | Mark Buhagiar | Mark Lee

pdf
BIT at SemEval-2016 Task 1: Sentence Similarity Based on Alignments and Vector with the Weight of Information Content
Hao Wu | Heyan Huang | Wenpeng Lu

pdf
RICOH at SemEval-2016 Task 1: IR-based Semantic Textual Similarity Estimation
Hideo Itoh

pdf
IHS-RD-Belarus at SemEval-2016 Task 1: Multistage Approach for Measuring Semantic Similarity
Maryna Beliuha | Maryna Chernyshevich

pdf
JUNITMZ at SemEval-2016 Task 1: Identifying Semantic Similarity Using Levenshtein Ratio
Sandip Sarkar | Dipankar Das | Partha Pakray | Alexander Gelbukh

pdf
Amrita_CEN at SemEval-2016 Task 1: Semantic Relation from Word Embeddings in Higher Dimension
Barathi Ganesh HB | Anand Kumar M | Soman KP

pdf
NUIG-UNLP at SemEval-2016 Task 1: Soft Alignment and Deep Learning for Semantic Textual Similarity
John Philip McCrae | Kartik Asooja | Nitish Aggarwal | Paul Buitelaar

pdf
NORMAS at SemEval-2016 Task 1: SEMSIM: A Multi-Feature Approach to Semantic Text Similarity
Kolawole Adebayo | Luigi Di Caro | Guido Boella

pdf
LIPN-IIMAS at SemEval-2016 Task 1: Random Forest Regression Experiments on Align-and-Differentiate and Word Embeddings penalizing strategies
Oscar William Lightgow Serrano | Ivan Vladimir Meza Ruiz | Albert Manuel Orozco Camacho | Jorge Garcia Flores | Davide Buscaldi

pdf
UNBNLP at SemEval-2016 Task 1: Semantic Textual Similarity: A Unified Framework for Semantic Processing and Evaluation
Milton King | Waseem Gharbieh | SoHyun Park | Paul Cook

pdf
ASOBEK at SemEval-2016 Task 1: Sentence Representation with Character N-gram Embeddings for Semantic Textual Similarity
Asli Eyecioglu | Bill Keller

pdf
SimiHawk at SemEval-2016 Task 1: A Deep Ensemble System for Semantic Textual Similarity
Peter Potash | William Boag | Alexey Romanov | Vasili Ramanishka | Anna Rumshisky

pdf
SERGIOJIMENEZ at SemEval-2016 Task 1: Effectively Combining Paraphrase Database, String Matching, WordNet, and Word Embedding for Semantic Textual Similarity
Sergio Jimenez

pdf
RTM at SemEval-2016 Task 1: Predicting Semantic Similarity with Referential Translation Machines and Related Statistics
Ergun Biçici

pdf
DalGTM at SemEval-2016 Task 1: Importance-Aware Compositional Approach to Short Text Similarity
Jie Mei | Aminul Islam | Evangelos Milios

pdf
iUBC at SemEval-2016 Task 2: RNNs and LSTMs for interpretable STS
Iñigo Lopez-Gazpio | Eneko Agirre | Montse Maritxalar

pdf
Rev at SemEval-2016 Task 2: Aligning Chunks by Lexical, Part of Speech and Semantic Equivalence
Ping Tan | Karin Verspoor | Timothy Miller

pdf
FBK-HLT-NLP at SemEval-2016 Task 2: A Multitask, Deep Learning Approach for Interpretable Semantic Textual Similarity
Simone Magnolini | Anna Feltracco | Bernardo Magnini

pdf
IISCNLP at SemEval-2016 Task 2: Interpretable STS with ILP based Multiple Chunk Aligner
Lavanya Tekumalla | Sharmistha Jat

pdf
VENSESEVAL at Semeval-2016 Task 2 iSTS - with a full-fledged rule-based approach
Rodolfo Delmonte

pdf
UWB at SemEval-2016 Task 2: Interpretable Semantic Textual Similarity with Distributional Semantics for Chunks
Miloslav Konopík | Ondřej Pražák | David Steinberger | Tomáš Brychcín

pdf
DTSim at SemEval-2016 Task 2: Interpreting Similarity of Texts Based on Automated Chunking, Chunk Alignment and Semantic Relation Prediction
Rajendra Banjade | Nabin Maharjan | Nobal Bikram Niraula | Vasile Rus

pdf
UH-PRHLT at SemEval-2016 Task 3: Combining Lexical and Semantic-based Features for Community Question Answering
Marc Franco-Salvador | Sudipta Kar | Thamar Solorio | Paolo Rosso

pdf
RDI_Team at SemEval-2016 Task 3: RDI Unsupervised Framework for Text Ranking
Ahmed Magooda | Amr Gomaa | Ashraf Mahgoub | Hany Ahmed | Mohsen Rashwan | Hazem Raafat | Eslam Kamal | Ahmad Al Sallab

pdf
SLS at SemEval-2016 Task 3: Neural-based Approaches for Ranking in Community Question Answering
Mitra Mohtarami | Yonatan Belinkov | Wei-Ning Hsu | Yu Zhang | Tao Lei | Kfir Bar | Scott Cyphers | Jim Glass

pdf
SUper Team at SemEval-2016 Task 3: Building a Feature-Rich System for Community Question Answering
Tsvetomila Mihaylova | Pepa Gencheva | Martin Boyanov | Ivana Yovcheva | Todor Mihaylov | Momchil Hardalov | Yasen Kiprov | Daniel Balchev | Ivan Koychev | Preslav Nakov | Ivelina Nikolova | Galia Angelova

pdf
PMI-cool at SemEval-2016 Task 3: Experiments with PMI and Goodness Polarity Lexicons for Community Question Answering
Daniel Balchev | Yasen Kiprov | Ivan Koychev | Preslav Nakov

pdf
UniMelb at SemEval-2016 Task 3: Identifying Similar Questions by combining a CNN with String Similarity Measures
Timothy Baldwin | Huizhi Liang | Bahar Salehi | Doris Hoogeveen | Yitong Li | Long Duong

pdf
ICL00 at SemEval-2016 Task 3: Translation-Based Method for CQA System
Yunfang Wu | Minghua Zhang

pdf
Overfitting at SemEval-2016 Task 3: Detecting Semantically Similar Questions in Community Question Answering Forums with Word Embeddings
Hujie Wang | Pascal Poupart

pdf
QU-IR at SemEval 2016 Task 3: Learning to Rank on Arabic Community Question Answering Forums with Word Embedding
Rana Malhas | Marwan Torki | Tamer Elsayed

pdf
ECNU at SemEval-2016 Task 3: Exploring Traditional Method and Deep Learning Method for Question Retrieval and Answer Ranking in Community Question Answering
Guoshun Wu | Man Lan

pdf
SemanticZ at SemEval-2016 Task 3: Ranking Relevant Answers in Community Question Answering Using Semantic Similarity Based on Fine-tuned Word Embeddings
Todor Mihaylov | Preslav Nakov

pdf
MTE-NN at SemEval-2016 Task 3: Can Machine Translation Evaluation Help Community Question Answering?
Francisco Guzmán | Preslav Nakov | Lluís Màrquez

pdf
ConvKN at SemEval-2016 Task 3: Answer and Question Selection for Question Answering on Arabic and English Fora
Alberto Barrón-Cedeño | Daniele Bonadiman | Giovanni Da San Martino | Shafiq Joty | Alessandro Moschitti | Fahad Al Obaidli | Salvatore Romeo | Kateryna Tymoshenko | Antonio Uva

pdf
ITNLP-AiKF at SemEval-2016 Task 3 a quesiton answering system using community QA repository
Chang’e Jia

pdf
UFRGS&LIF at SemEval-2016 Task 10: Rule-Based MWE Identification and Predominant-Supersense Tagging
Silvio Cordeiro | Carlos Ramisch | Aline Villavicencio

pdf
WHUNlp at SemEval-2016 Task DiMSUM: A Pilot Study in Detecting Minimal Semantic Units and their Meanings using Supervised Models
Xin Tang | Fei Li | Donghong Ji

pdf
UTU at SemEval-2016 Task 10: Binary Classification for Expression Detection (BCED)
Jari Björne | Tapio Salakoski

pdf
UW-CSE at SemEval-2016 Task 10: Detecting Multiword Expressions and Supersenses using Double-Chained Conditional Random Fields
Mohammad Javad Hosseini | Noah A. Smith | Su-In Lee

pdf
ICL-HD at SemEval-2016 Task 10: Improving the Detection of Minimal Semantic Units and their Meanings with an Ontology and Word Embeddings
Angelika Kirilin | Felix Krauss | Yannick Versley

pdf
VectorWeavers at SemEval-2016 Task 10: From Incremental Meaning to Semantic Unit (phrase by phrase)
Andreas Scherbakov | Ekaterina Vylomova | Fei Liu | Timothy Baldwin

pdf
PLUJAGH at SemEval-2016 Task 11: Simple System for Complex Word Identification
Krzysztof Wróbel

pdf
USAAR at SemEval-2016 Task 11: Complex Word Identification with Sense Entropy and Sentence Perplexity
José Manuel Martínez Martínez | Liling Tan

pdf
Sensible at SemEval-2016 Task 11: Neural Nonsense Mangled in Ensemble Mess
Gillin Nat

pdf
SV000gg at SemEval-2016 Task 11: Heavy Gauge Complex Word Identification with System Voting
Gustavo Paetzold | Lucia Specia

pdf
Melbourne at SemEval 2016 Task 11: Classifying Type-level Word Complexity using Random Forests with Corpus and Word List Features
Julian Brooke | Alexandra Uitdenbogerd | Timothy Baldwin

pdf
CLaC at SemEval-2016 Task 11: Exploring linguistic and psycho-linguistic Features for Complex Word Identification
Elnaz Davoodi | Leila Kosseim

pdf
JU_NLP at SemEval-2016 Task 11: Identifying Complex Words in a Sentence
Niloy Mukherjee | Braja Gopal Patra | Dipankar Das | Sivaji Bandyopadhyay

pdf
MAZA at SemEval-2016 Task 11: Detecting Lexical Complexity Using a Decision Stump Meta-Classifier
Shervin Malmasi | Marcos Zampieri

pdf
LTG at SemEval-2016 Task 11: Complex Word Identification with Classifier Ensembles
Shervin Malmasi | Mark Dras | Marcos Zampieri

pdf
MacSaar at SemEval-2016 Task 11: Zipfian and Character Features for ComplexWord Identification
Marcos Zampieri | Liling Tan | Josef van Genabith

pdf
Garuda & Bhasha at SemEval-2016 Task 11: Complex Word Identification Using Aggregated Learning Models
Prafulla Choubey | Shubham Pateria

pdf
TALN at SemEval-2016 Task 11: Modelling Complex Words by Contextual, Lexical and Semantic Features
Francesco Ronzano | Ahmed Abura’ed | Luis Espinosa-Anke | Horacio Saggion

pdf
IIIT at SemEval-2016 Task 11: Complex Word Identification using Nearest Centroid Classification
Ashish Palakurthi | Radhika Mamidi

pdf
AmritaCEN at SemEval-2016 Task 11: Complex Word Identification using Word Embedding
Sanjay S.P | Anand Kumar M | Soman K P

pdf
CoastalCPH at SemEval-2016 Task 11: The importance of designing your Neural Networks right
Joachim Bingel | Natalie Schluter | Héctor Martínez Alonso

pdf
HMC at SemEval-2016 Task 11: Identifying Complex Words Using Depth-limited Decision Trees
Maury Quijada | Julie Medero

pdf
UWB at SemEval-2016 Task 11: Exploring Features for Complex Word Identification
Michal Konkol

pdf
AI-KU at SemEval-2016 Task 11: Word Embeddings and Substring Features for Complex Word Identification
Onur Kuru

pdf
Pomona at SemEval-2016 Task 11: Predicting Word Complexity Based on Corpus Frequency
David Kauchak

pdf
SemEval-2016 Task 12: Clinical TempEval
Steven Bethard | Guergana Savova | Wei-Te Chen | Leon Derczynski | James Pustejovsky | Marc Verhagen

pdf
SemEval-2016 Task 8: Meaning Representation Parsing
Jonathan May

pdf
SemEval-2016 Task 9: Chinese Semantic Dependency Parsing
Wanxiang Che | Yanqiu Shao | Ting Liu | Yu Ding

pdf
SemEval-2016 Task 13: Taxonomy Extraction Evaluation (TExEval-2)
Georgeta Bordea | Els Lefever | Paul Buitelaar

pdf
SemEval-2016 Task 14: Semantic Taxonomy Enrichment
David Jurgens | Mohammad Taher Pilehvar

pdf
UMD-TTIC-UW at SemEval-2016 Task 1: Attention-Based Multi-Perspective Convolutional Neural Networks for Textual Similarity Measurement
Hua He | John Wieting | Kevin Gimpel | Jinfeng Rao | Jimmy Lin

pdf
Inspire at SemEval-2016 Task 2: Interpretable Semantic Textual Similarity Alignment based on Answer Set Programming
Mishal Kazmi | Peter Schüller

pdf
KeLP at SemEval-2016 Task 3: Learning Semantic Relations between Questions and Answers
Simone Filice | Danilo Croce | Alessandro Moschitti | Roberto Basili

pdf
SwissCheese at SemEval-2016 Task 4: Sentiment Classification Using an Ensemble of Convolutional Neural Networks with Distant Supervision
Jan Deriu | Maurice Gonzenbach | Fatih Uzdilli | Aurelien Lucchi | Valeria De Luca | Martin Jaggi

pdf
IIT-TUDA at SemEval-2016 Task 5: Beyond Sentiment Lexicon: Combining Domain Dependency and Distributional Semantics Features for Aspect Based Sentiment Analysis
Ayush Kumar | Sarah Kohail | Amit Kumar | Asif Ekbal | Chris Biemann

pdf
LIMSI-COT at SemEval-2016 Task 12: Temporal relation identification using a pipeline of classifiers
Julien Tourille | Olivier Ferret | Aurélie Névéol | Xavier Tannier

pdf
RIGA at SemEval-2016 Task 8: Impact of Smatch Extensions and Character-Level Neural Translation on AMR Parsing Accuracy
Guntis Barzdins | Didzis Gosko

pdf
DynamicPower at SemEval-2016 Task 8: Processing syntactic parse trees with a Dynamic Semantics core
Alastair Butler

pdf
M2L at SemEval-2016 Task 8: AMR Parsing with Neural Networks
Yevgeniy Puzikov | Daisuke Kawahara | Sadao Kurohashi

pdf
ICL-HD at SemEval-2016 Task 8: Meaning Representation Parsing - Augmenting AMR Parsing with a Preposition Semantic Role Labeling Neural Network
Lauritz Brandt | David Grimm | Mengfei Zhou | Yannick Versley

pdf
UCL+Sheffield at SemEval-2016 Task 8: Imitation learning for AMR parsing with an alpha-bound
James Goodman | Andreas Vlachos | Jason Naradowsky

pdf
CAMR at SemEval-2016 Task 8: An Extended Transition-based AMR Parser
Chuan Wang | Sameer Pradhan | Xiaoman Pan | Heng Ji | Nianwen Xue

pdf
The Meaning Factory at SemEval-2016 Task 8: Producing AMRs with Boxer
Johannes Bjerva | Johan Bos | Hessel Haagsma

pdf
UofR at SemEval-2016 Task 8: Learning Synchronous Hyperedge Replacement Grammar for AMR Parsing
Xiaochang Peng | Daniel Gildea

pdf
CLIP@UMD at SemEval-2016 Task 8: Parser for Abstract Meaning Representation using Learning to Search
Sudha Rao | Yogarshi Vyas | Hal Daumé III | Philip Resnik

pdf
CU-NLP at SemEval-2016 Task 8: AMR Parsing using LSTM-based Recurrent Neural Networks
William Foland | James H. Martin

pdf
CMU at SemEval-2016 Task 8: Graph-based AMR Parsing with Infinite Ramp Loss
Jeffrey Flanigan | Chris Dyer | Noah A. Smith | Jaime Carbonell

pdf
IHS-RD-Belarus at SemEval-2016 Task 9: Transition-based Chinese Semantic Dependency Parsing with Online Reordering and Bootstrapping.
Artsiom Artsymenia | Palina Dounar | Maria Yermakovich

pdf
OCLSP at SemEval-2016 Task 9: Multilayered LSTM as a Neural Semantic Dependency Parser
Lifeng Jin | Manjuan Duan | William Schuler

pdf
OSU_CHGCG at SemEval-2016 Task 9 : Chinese Semantic Dependency Parsing with Generalized Categorial Grammar
Manjuan Duan | Lifeng Jin | William Schuler

pdf
LIMSI at SemEval-2016 Task 12: machine-learning and temporal information to identify clinical events and time expressions
Cyril Grouin | Véronique Moriceau

pdf
Hitachi at SemEval-2016 Task 12: A Hybrid Approach for Temporal Information Extraction from Clinical Notes
Sarath P R | Manikandan R | Yoshiki Niwa

pdf
CDE-IIITH at SemEval-2016 Task 12: Extraction of Temporal Information from Clinical documents using Machine Learning techniques
Veera Raghavendra Chikka

pdf
VUACLTL at SemEval 2016 Task 12: A CRF Pipeline to Clinical TempEval
Tommaso Caselli | Roser Morante

pdf
GUIR at SemEval-2016 task 12: Temporal Information Processing for Clinical Narratives
Arman Cohan | Kevin Meurer | Nazli Goharian

pdf
UtahBMI at SemEval-2016 Task 12: Extracting Temporal Information from Clinical Text
Abdulrahman Khalifa | Sumithra Velupillai | Stephane Meystre

pdf
ULISBOA at SemEval-2016 Task 12: Extraction of temporal expressions, clinical events and relations using IBEnt
Marcia Barros | Andre Lamurias | Gonçalo Figueiro | Marta Antunes | Joana Teixeira | Alexandre Pinheiro | Francisco M. Couto

pdf
UTA DLNLP at SemEval-2016 Task 12: Deep Learning Based Natural Language Processing System for Clinical Information Identification from Clinical Notes and Pathology Reports
Peng Li | Heng Huang

pdf
Brundlefly at SemEval-2016 Task 12: Recurrent Neural Networks vs. Joint Inference for Clinical Temporal Information Extraction
Jason Fries

pdf
KULeuven-LIIR at SemEval 2016 Task 12: Detecting Narrative Containment in Clinical Records
Artuur Leeuwenberg | Marie-Francine Moens

pdf
CENTAL at SemEval-2016 Task 12: a linguistically fed CRF model for medical and temporal information extraction
Charlotte Hansart | Damien De Meyere | Patrick Watrin | André Bittar | Cédrick Fairon

pdf
UTHealth at SemEval-2016 Task 12: an End-to-End System for Temporal Information Extraction from Clinical Notes
Hee-Jin Lee | Hua Xu | Jingqi Wang | Yaoyun Zhang | Sungrim Moon | Jun Xu | Yonghui Wu

pdf
NUIG-UNLP at SemEval-2016 Task 13: A Simple Word Embedding-based Approach for Taxonomy Extraction
Joel Pocostales

pdf
USAAR at SemEval-2016 Task 13: Hyponym Endocentricity
Liling Tan | Francis Bond | Josef van Genabith

pdf
JUNLP at SemEval-2016 Task 13: A Language Independent Approach for Hypernym Identification
Promita Maitra | Dipankar Das

pdf
QASSIT at SemEval-2016 Task 13: On the integration of Semantic Vectors in Pretopological Spaces for Lexical Taxonomy Acquisition
Guillaume Cleuziou | Jose G. Moreno

pdf
TAXI at SemEval-2016 Task 13: a Taxonomy Induction Method based on Lexico-Syntactic Patterns, Substrings and Focused Crawling
Alexander Panchenko | Stefano Faralli | Eugen Ruppert | Steffen Remus | Hubert Naets | Cédrick Fairon | Simone Paolo Ponzetto | Chris Biemann

pdf
Duluth at SemEval 2016 Task 14: Extending Gloss Overlaps to Enrich Semantic Taxonomies
Ted Pedersen

pdf
TALN at SemEval-2016 Task 14: Semantic Taxonomy Enrichment Via Sense-Based Embeddings
Luis Espinosa-Anke | Francesco Ronzano | Horacio Saggion

pdf
MSejrKu at SemEval-2016 Task 14: Taxonomy Enrichment by Evidence Ranking
Michael Schlichtkrull | Héctor Martínez Alonso

pdf
Deftor at SemEval-2016 Task 14: Taxonomy enrichment using definition vectors
Hristo Tanev | Agata Rotondi

pdf
UMNDuluth at SemEval-2016 Task 14: WordNet’s Missing Lemmas
Jon Rusert | Ted Pedersen

pdf
VCU at Semeval-2016 Task 14: Evaluating definitional-based similarity measure for semantic taxonomy enrichment
Bridget McInnes