Ziyang Ma


2024

pdf
ChatMusician: Understanding and Generating Music Intrinsically with LLM
Ruibin Yuan | Hanfeng Lin | Yi Wang | Zeyue Tian | Shangda Wu | Tianhao Shen | Ge Zhang | Yuhang Wu | Cong Liu | Ziya Zhou | Liumeng Xue | Ziyang Ma | Qin Liu | Tianyu Zheng | Yizhi Li | Yinghao Ma | Yiming Liang | Xiaowei Chi | Ruibo Liu | Zili Wang | Chenghua Lin | Qifeng Liu | Tao Jiang | Wenhao Huang | Wenhu Chen | Jie Fu | Emmanouil Benetos | Gus Xia | Roger Dannenberg | Wei Xue | Shiyin Kang | Yike Guo
Findings of the Association for Computational Linguistics: ACL 2024

While LLMs demonstrate impressive capabilities in musical knowledge, we find that music reasoning is still an unsolved task.We introduce ChatMusician, an open-source large language model (LLM) that integrates intrinsic musical abilities. It is based on continual pre-training and finetuning LLaMA2 on a text-compatible music representation, ABC notation, and the music is treated as a second language.ChatMusician can understand and generate music with a pure text tokenizer without external multi-modal neural structures or tokenizers. Interestingly, endowing musical abilities does not harm language abilities, even achieving a slightly higher MMLU score.ChatMusician is capable of composing well-structured, full-length music, condition on texts, chords, melodies, motifs, musical forms, etc.On our meticulously curated college-level music understanding benchmark, MusicTheoryBench, ChatMusician surpasses LLaMA2 and GPT-3.5 by a noticeable margin. We show that ChatMusician preserves or even surpasses the original LLaMA2 7B’s language abilities by evaluating on MMLU benchmark.Our work reveals that LLMs can be an excellent compressor for music, which can be seen as humanity’s creative language, but there remains significant territory to be conquered.We release our 5B token music-language corpora MusicPiles, the collected MusicTheoryBench, code, model and demo.

pdf
emotion2vec: Self-Supervised Pre-Training for Speech Emotion Representation
Ziyang Ma | Zhisheng Zheng | Jiaxin Ye | Jinchao Li | Zhifu Gao | ShiLiang Zhang | Xie Chen
Findings of the Association for Computational Linguistics: ACL 2024

We propose emotion2vec, a universal speech emotion representation model. emotion2vec is pre-trained on open-source unlabeled emotion data through self-supervised online distillation, combining utterance-level loss and frame-level loss during pre-training. emotion2vec outperforms state-of-the-art pre-trained universal models and emotion specialist models by only training linear layers for the speech emotion recognition task on the mainstream IEMOCAP dataset. In addition, emotion2vec shows consistent improvements among 10 different languages of speech emotion recognition datasets. emotion2vec also shows excellent results on other emotion tasks, such as song emotion recognition, emotion prediction in conversation, and sentiment analysis. Comparison experiments, ablation experiments, and visualization comprehensively demonstrate the universal capability of the proposed emotion2vec. To the best of our knowledge, emotion2vec is the first universal representation model in various emotion-related tasks, filling a gap in the field.

pdf
Source-free Domain Adaptation for Aspect-based Sentiment Analysis
Zishuo Zhao | Ziyang Ma | Zhenzhou Lin | Jingyou Xie | Yinghui Li | Ying Shen
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Unsupervised Domain Adaptation (UDA) of the Aspect-based Sentiment Analysis (ABSA) task aims to transfer knowledge learned from labeled source domain datasets to unlabeled target domains on the assumption that samples from the source domain are freely accessible during the training period. However, this assumption can easily lead to privacy invasion issues in real-world applications, especially when the source data involves privacy-preserving domains such as healthcare and finance. In this paper, we introduce the Source-Free Domain Adaptation Framework for ABSA (SF-ABSA), which only allows model parameter transfer, not data transfer, between different domains. Specifically, the proposed SF-ABSA framework consists of two parts, i.e., feature-based adaptation and pseudo-label-based adaptation. Experiment results on four benchmarks show that the proposed framework performs competitively with traditional unsupervised domain adaptation methods under the premise of insufficient information, which demonstrates the superiority of our method under privacy conditions.