Yungi Kim


2024

pdf
Evalverse: Unified and Accessible Library for Large Language Model Evaluation
Jihoo Kim | Wonho Song | Dahyun Kim | Yunsu Kim | Yungi Kim | Chanjun Park
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

This paper introduces Evalverse, a novel library that streamlines the evaluation of Large Language Models (LLMs) by unifying disparate evaluation tools into a single, user-friendly framework. Evalverse enables individuals with limited knowledge of artificial intelligence to easily request LLM evaluations and receive detailed reports, facilitated by an integration with communication platforms like Slack. Thus, Evalverse serves as a powerful tool for the comprehensive assessment of LLMs, offering both researchers and practitioners a centralized and easily accessible evaluation framework. Finally, we also provide a demo video for Evalverse, showcasing its capabilities and implementation in a two-minute format.

pdf
SAAS: Solving Ability Amplification Strategy for Enhanced Mathematical Reasoning in Large Language Models
Hyeonwoo Kim | Gyoungjin Gim | Yungi Kim | Jihoo Kim | Byungju Kim | Wonseok Lee | Chanjun Park
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

This study presents a novel learning approach designed to enhance both mathematical reasoning and problem-solving abilities of Large Language Models (LLMs). We focus on integrating the Chain-of-Thought (CoT) and the Program-of-Thought (PoT) learning, hypothesizing that prioritizing the learning of mathematical reasoning ability is helpful for the amplification of problem-solving ability. Thus, the initial learning with CoT is essential for solving challenging mathematical problems. To this end, we propose a sequential learning approach, named SAAS (Solving Ability Amplification Strategy), which strategically transitions from CoT learning to PoT learning. Our empirical study, involving an extensive performance comparison using several benchmarks, demonstrates that our SAAS achieves state-of-the-art (SOTA) performance. The results underscore the effectiveness of our sequential learning approach, marking a significant advancement in the field of mathematical reasoning in LLMs.

pdf
SOLAR 10.7B: Scaling Large Language Models with Simple yet Effective Depth Up-Scaling
Sanghoon Kim | Dahyun Kim | Chanjun Park | Wonsung Lee | Wonho Song | Yunsu Kim | Hyeonwoo Kim | Yungi Kim | Hyeonju Lee | Jihoo Kim | Changbae Ahn | Seonghoon Yang | Sukyung Lee | Hyunbyung Park | Gyoungjin Gim | Mikyoung Cha | Hwalsuk Lee | Sunghun Kim
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6: Industry Track)

We introduce SOLAR 10.7B, a large language model (LLM) with 10.7 billion parameters, demonstrating superior performance in various natural language processing (NLP) tasks. Inspired by recent efforts to efficiently up-scale LLMs, we present a method for scaling LLMs called depth up-scaling (DUS), which encompasses depthwise scaling and continued pretraining. In contrast to other LLM up-scaling methods that use mixture-of-experts, DUS does not require complex changes to train and inference efficiently. We show experimentally that DUS is simple yet effective in scaling up high-performance LLMs from small ones. Building on the DUS model, we additionally present SOLAR 10.7B-Instruct, a variant fine-tuned for instruction-following capabilities, surpassing Mixtral-8x7B-Instruct. SOLAR 10.7B is publicly available under the Apache 2.0 license, promoting broad access and application in the LLM field.

pdf
Open Ko-LLM Leaderboard: Evaluating Large Language Models in Korean with Ko-H5 Benchmark
Chanjun Park | Hyeonwoo Kim | Dahyun Kim | SeongHwan Cho | Sanghoon Kim | Sukyung Lee | Yungi Kim | Hwalsuk Lee
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper introduces the Open Ko-LLM Leaderboard and the Ko-H5 Benchmark as vital tools for evaluating Large Language Models (LLMs) in Korean. Incorporating private test sets while mirroring the English Open LLM Leaderboard, we establish a robust evaluation framework that has been well integrated in the Korean LLM community. We perform data leakage analysis that shows the benefit of private test sets along with a correlation study within the Ko-H5 benchmark and temporal analyses of the Ko-H5 score. Moreover, we present empirical support for the need to expand beyond set benchmarks. We hope the Open Ko-LLM Leaderboard sets precedent for expanding LLM evaluation to foster more linguistic diversity.