Yicheng Xu


2024

pdf
LAMBDA: Large Language Model-Based Data Augmentation for Multi-Modal Machine Translation
Yusong Wang | Dongyuan Li | Jialun Shen | Yicheng Xu | Mingkun Xu | Kotaro Funakoshi | Manabu Okumura
Findings of the Association for Computational Linguistics: EMNLP 2024

Multi-modal machine translation (MMT) can reduce ambiguity and semantic distortion compared with traditional machine translation (MT) by utilizing auxiliary information such as images. However, current MMT methods face two primary challenges. The first is their underperformance compared to MT methods based on pre-trained models. The second is the inadequate exploitation and integration of the image modality within the model, primarily due to a lack of triplet training data. A mainstream approach is to introduce large amounts of parallel and monolingual data to train the text model and the visual model separately. However, incorporating extensive external data can result in data imbalance, which may introduce biases during training. Additionally, the collection and cleaning of such large datasets is labor-intensive. To overcome these challenges, we introduce a novel, low-cost, large language model-based data augmentation method called LAMBDA, which can enrich the original samples and expand the dataset without requiring external images and text. We propose a fine-grained image captioning module with a noise filter to hierarchically and accurately extract unexploited information from images. Additionally, we design two specific prompts to guide the GPT-3.5 model in generating enriched texts and the corresponding translations. The enriched samples contain diverse text and strong connections between text and images, leading to significant improvements for MMT baselines, with the highest being an increase of up to 3.83 BLEU score and 3.61 METEOR score.

2023

pdf
TACR: A Table Alignment-based Cell Selection Method for HybridQA
Jian Wu | Yicheng Xu | Yan Gao | Jian-Guang Lou | Börje Karlsson | Manabu Okumura
Findings of the Association for Computational Linguistics: ACL 2023

Hybrid Question-Answering (HQA), which targets reasoning over tables and passages linked from table cells, has witnessed significant research in recent years. A common challenge in HQA and other passage-table QA datasets is that it is generally unrealistic to iterate over all table rows, columns, and linked passages to retrieve evidence. Such a challenge made it difficult for previous studies to show their reasoning ability in retrieving answers. To bridge this gap, we propose a novel Table-alignment-based Cell-selection and Reasoning model (TACR) for hybrid text and table QA, evaluated on the HybridQA and WikiTableQuestions datasets. In evidence retrieval, we design a table-question-alignment enhanced cell-selection method to retrieve fine-grained evidence. In answer reasoning, we incorporate a QA module that treats the row containing selected cells as context. Experimental results over the HybridQA and WikiTableQuestions (WTQ) datasets show that TACR achieves state-of-the-art results on cell selection and outperforms fine-grained evidence retrieval baselines on HybridQA, while achieving competitive performance on WTQ. We also conducted a detailed analysis to demonstrate that being able to align questions to tables in the cell-selection stage can result in important gains from experiments of over 90% table row and column selection accuracy, meanwhile also improving output explainability.