Xiaozhuan Liang


2024

pdf
BioT5+: Towards Generalized Biological Understanding with IUPAC Integration and Multi-task Tuning
Qizhi Pei | Lijun Wu | Kaiyuan Gao | Xiaozhuan Liang | Yin Fang | Jinhua Zhu | Shufang Xie | Tao Qin | Rui Yan
Findings of the Association for Computational Linguistics: ACL 2024

Recent research trends in computational biology have increasingly focused on integrating text and bio-entity modeling, especially in the context of molecules and proteins. However, previous efforts like BioT5 faced challenges in generalizing across diverse tasks and lacked a nuanced understanding of molecular structures, particularly in their textual representations (e.g., IUPAC). This paper introduces BioT5+, an extension of the BioT5 framework, tailored to enhance biological research and drug discovery. BioT5+ incorporates several novel features: integration of IUPAC names for molecular understanding, inclusion of extensive bio-text and molecule data from sources like bioRxiv and PubChem, the multi-task instruction tuning for generality across tasks, and a numerical tokenization technique for improved processing of numerical data. These enhancements allow BioT5+ to bridge the gap between molecular representations and their textual descriptions, providing a more holistic understanding of biological entities, and largely improving the grounded reasoning of bio-text and bio-sequences. The model is pre-trained and fine-tuned with a large number of experiments, including 3 types of problems (classification, regression, generation), 15 kinds of tasks, and 21 total benchmark datasets, demonstrating the remarkable performance and state-of-the-art results in most cases. BioT5+ stands out for its ability to capture intricate relationships in biological data, thereby contributing significantly to bioinformatics and computational biology. Our code is available at https://github.com/QizhiPei/BioT5.

pdf
To Forget or Not? Towards Practical Knowledge Unlearning for Large Language Models
Bozhong Tian | Xiaozhuan Liang | Siyuan Cheng | Qingbin Liu | Mengru Wang | Dianbo Sui | Xi Chen | Huajun Chen | Ningyu Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024

Large Language Models (LLMs) trained on extensive corpora inevitably retain sensitive data, such as personal privacy information and copyrighted material. Recent advancements in knowledge unlearning involve updating LLM parameters to erase specific knowledge. However, current unlearning paradigms are mired in vague forgetting boundaries, often erasing knowledge indiscriminately. In this work, we introduce KnowUnDo, a benchmark containing copyrighted content and user privacy domains to evaluate if the unlearning process inadvertently erases essential knowledge. Our findings indicate that existing unlearning methods often suffer from excessive unlearning. To address this, we propose a simple yet effective method, MemFlex, which utilizes gradient information to precisely target and unlearn sensitive parameters. Experimental results show that MemFlex is superior to existing methods in both precise knowledge unlearning and general knowledge retaining of LLMs.

2022

pdf
CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark
Ningyu Zhang | Mosha Chen | Zhen Bi | Xiaozhuan Liang | Lei Li | Xin Shang | Kangping Yin | Chuanqi Tan | Jian Xu | Fei Huang | Luo Si | Yuan Ni | Guotong Xie | Zhifang Sui | Baobao Chang | Hui Zong | Zheng Yuan | Linfeng Li | Jun Yan | Hongying Zan | Kunli Zhang | Buzhou Tang | Qingcai Chen
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Artificial Intelligence (AI), along with the recent progress in biomedical language understanding, is gradually offering great promise for medical practice. With the development of biomedical language understanding benchmarks, AI applications are widely used in the medical field. However, most benchmarks are limited to English, which makes it challenging to replicate many of the successes in English for other languages. To facilitate research in this direction, we collect real-world biomedical data and present the first Chinese Biomedical Language Understanding Evaluation (CBLUE) benchmark: a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification, and an associated online platform for model evaluation, comparison, and analysis. To establish evaluation on these tasks, we report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling.

pdf
Contrastive Demonstration Tuning for Pre-trained Language Models
Xiaozhuan Liang | Ningyu Zhang | Siyuan Cheng | Zhenru Zhang | Chuanqi Tan | Huajun Chen
Findings of the Association for Computational Linguistics: EMNLP 2022

Pretrained language models can be effectively stimulated by textual prompts or demonstrations, especially in low-data scenarios. Recent works have focused on automatically searching discrete or continuous prompts or optimized verbalizers, yet studies for the demonstration are still limited. Concretely, the demonstration examples are crucial for an excellent final performance of prompt-tuning. In this paper, we propose a novel pluggable, extensible, and efficient approach named contrastive demonstration tuning, which is free of demonstration sampling. Furthermore, the proposed approach can be: (i) Plugged into any previous prompt-tuning approaches; (ii) Extended to widespread classification tasks with a large number of categories. Experimental results on 16 datasets illustrate that our method integrated with previous approaches LM-BFF and P-tuning can yield better performance. Code is available in https://github.com/zjunlp/PromptKG/tree/main/research/Demo-Tuning.