2024
pdf
abs
Are LLM-based Evaluators Confusing NLG Quality Criteria?
Xinyu Hu
|
Mingqi Gao
|
Sen Hu
|
Yang Zhang
|
Yicheng Chen
|
Teng Xu
|
Xiaojun Wan
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Some prior work has shown that LLMs perform well in NLG evaluation for different tasks. However, we discover that LLMs seem to confuse different evaluation criteria, which reduces their reliability. For further verification, we first consider avoiding issues of inconsistent conceptualization and vague expression in existing NLG quality criteria themselves. So we summarize a clear hierarchical classification system for 11 common aspects with corresponding different criteria from previous studies involved. Inspired by behavioral testing, we elaborately design 18 types of aspect-targeted perturbation attacks for fine-grained analysis of the evaluation behaviors of different LLMs. We also conduct human annotations beyond the guidance of the classification system to validate the impact of the perturbations. Our experimental results reveal confusion issues inherent in LLMs, as well as other noteworthy phenomena, and necessitate further research and improvements for LLM-based evaluation.
2023
pdf
abs
Improving Knowledge Production Efficiency With Question Answering on Conversation
Changlin Yang
|
Siye Liu
|
Sen Hu
|
Wangshu Zhang
|
Teng Xu
|
Jing Zheng
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)
Through an online customer service application, we have collected many conversations between customer service agents and customers. Building a knowledge production system can help reduce the labor cost of maintaining the FAQ database for the customer service chatbot, whose core module is question answering (QA) on these conversations. However, most existing researches focus on document-based QA tasks, and there is a lack of researches on conversation-based QA and related datasets, especially in Chinese language. The challenges of conversation-based QA include: 1) answers may be scattered among multiple dialogue turns; 2) understanding complex dialogue contexts is more complicated than documents. To address these challenges, we propose a multi-span extraction model on this task and introduce continual pre-training and multi-task learning schemes to further improve model performance. To validate our approach, we construct two Chinese datasets using dialogues as the knowledge source, namely cs-qaconv and kd-qaconv, respectively. Experimental results demonstrate that the proposed model outperforms the baseline on both datasets. The online application also verifies the effectiveness of our method. The dataset kd-qaconv will be released publicly for research purposes.
pdf
abs
AdapterDistillation: Non-Destructive Task Composition with Knowledge Distillation
Junjie Wang
|
Yicheng Chen
|
Wangshu Zhang
|
Sen Hu
|
Teng Xu
|
Jing Zheng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track
Leveraging knowledge from multiple tasks through introducing a small number of task specific parameters into each transformer layer, also known as adapters, receives much attention recently. However, adding an extra fusion layer to implement knowledge composition not only increases the inference time but also is non-scalable for some applications. To avoid these issues, we propose a two-stage knowledge distillation algorithm called AdapterDistillation. In the first stage, we extract task specific knowledge by using local data to train a student adapter. In the second stage, we distill the knowledge from the existing teacher adapters into the student adapter to help its inference. Extensive experiments on frequently asked question retrieval in task-oriented dialog systems validate the efficiency of AdapterDistillation. We show that AdapterDistillation outperforms existing algorithms in terms of accuracy, resource consumption and inference time.
2021
pdf
A Dialogue-based Information Extraction System for Medical Insurance Assessment
Shuang Peng
|
Mengdi Zhou
|
Minghui Yang
|
Haitao Mi
|
Shaosheng Cao
|
Zujie Wen
|
Teng Xu
|
Hongbin Wang
|
Lei Liu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021