Shujian Zhang


2024

pdf
WPO: Enhancing RLHF with Weighted Preference Optimization
Wenxuan Zhou | Ravi Agrawal | Shujian Zhang | Sathish Reddy Indurthi | Sanqiang Zhao | Kaiqiang Song | Silei Xu | Chenguang Zhu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Reinforcement learning from human feedback (RLHF) is a promising solution to align large language models (LLMs) more closely with human values. Off-policy preference optimization, where the preference data is obtained from other models, is widely adopted due to its cost efficiency and scalability. However, off-policy preference optimization often suffers from a distributional gap between the policy used for data collection and the target policy, leading to suboptimal optimization. In this paper, we propose a novel strategy to mitigate this problem by simulating on-policy learning with off-policy preference data. Our Weighted Preference Optimization (WPO) method adapts off-policy data to resemble on-policy data more closely by reweighting preference pairs according to their probability under the current policy. This method not only addresses the distributional gap problem but also enhances the optimization process without incurring additional costs. We validate our method on instruction following benchmarks including Alpaca Eval 2 and MT-bench. WPO not only outperforms Direct Preference Optimization (DPO) by up to 5.6% on Alpaca Eval 2 but also establishes a remarkable length-controlled winning rate against GPT-4-turbo of 76.7% based on Gemma-2-9b-it. We release the code and models at https://github.com/wzhouad/WPO.

pdf
LanguageFlow: Advancing Diffusion Language Generation with Probabilistic Flows
Shujian Zhang | Lemeng Wu | Chengyue Gong | Xingchao Liu
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Recent works have demonstrated success in controlling sentence attributes (e.g., sentiment) and structure (e.g., syntactic structure) based on the diffusion language model. A key component that drives theimpressive performance for generating high-quality samples from noise is iteratively denoise for thousands of steps. While beneficial, the complexity of starting from the noise and the learning steps has limited its implementation to many NLP real-world applications. This paper proposes Language Rectified Flow (LF).Our method is based on the reformulation of the standard probabilistic flow models.Language rectified flow learns (neural) ordinary differentialequation models to transport between the source distribution and the target distribution, henceproviding a unified and effective solution to generative modeling and domain transfer.From the source distribution, our language rectified flow yields fast simulation and effectively decreases the inference time. Experiments on three challenging fine-grained control tasks and multiple high-quality text editing show that our method consistently outperforms its baselines. Extensive experiments and ablation studies demonstrate that our method can be general, effective, and beneficial for many NLP tasks.

2022

pdf
Passage-Mask: A Learnable Regularization Strategy for Retriever-Reader Models
Shujian Zhang | Chengyue Gong | Xingchao Liu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Retriever-reader models achieve competitive performance across many different NLP tasks such as open question answering and dialogue conversations. In this work, we notice these models easily overfit the top-rank retrieval passages and standard training fails to reason over the entire retrieval passages. We introduce a learnable passage mask mechanism which desensitizes the impact from the top-rank retrieval passages and prevents the model from overfitting. Controlling the gradient variance with fewer mask candidates and selecting the mask candidates with one-shot bi-level optimization, our learnable regularization strategy enforces the answer generation to focus on the entire retrieval passages. Experiments on different tasks across open question answering, dialogue conversation, and fact verification show that our method consistently outperforms its baselines. Extensive experiments and ablation studies demonstrate that our method can be general, effective, and beneficial for many NLP tasks.

pdf
ALLSH: Active Learning Guided by Local Sensitivity and Hardness
Shujian Zhang | Chengyue Gong | Xingchao Liu | Pengcheng He | Weizhu Chen | Mingyuan Zhou
Findings of the Association for Computational Linguistics: NAACL 2022

Active learning, which effectively collects informative unlabeled data for annotation, reduces the demand for labeled data. In this work, we propose to retrieve unlabeled samples with a local sensitivity and hardness-aware acquisition function. The proposed method generates data copies through local perturbations and selects data points whose predictive likelihoods diverge the most from their copies. We further empower our acquisition function by injecting the select-worst case perturbation. Our method achieves consistent gains over the commonly used active learning strategies in various classification tasks. Furthermore, we observe consistent improvements over the baselines on the study of prompt selection in prompt-based few-shot learning. These experiments demonstrate that our acquisition guided by local sensitivity and hardness can be effective and beneficial for many NLP tasks.

2021

pdf
Knowing More About Questions Can Help: Improving Calibration in Question Answering
Shujian Zhang | Chengyue Gong | Eunsol Choi
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Learning with Different Amounts of Annotation: From Zero to Many Labels
Shujian Zhang | Chengyue Gong | Eunsol Choi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Training NLP systems typically assumes access to annotated data that has a single human label per example. Given imperfect labeling from annotators and inherent ambiguity of language, we hypothesize that single label is not sufficient to learn the spectrum of language interpretation. We explore new annotation distribution schemes, assigning multiple labels per example for a small subset of training examples. Introducing such multi label examples at the cost of annotating fewer examples brings clear gains on natural language inference task and entity typing task, even when we simply first train with a single label data and then fine tune with multi label examples. Extending a MixUp data augmentation framework, we propose a learning algorithm that can learn from training examples with different amount of annotation (with zero, one, or multiple labels). This algorithm efficiently combines signals from uneven training data and brings additional gains in low annotation budget and cross domain settings. Together, our method achieves consistent gains in two tasks, suggesting distributing labels unevenly among training examples can be beneficial for many NLP tasks.